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SOCIETE MATHEMATIQUE SUISSE

Friihjahrssitzung in Bern, 30. 6. 65

Herr Prof. Dr. R. Brauer (Harvard University) hélt einen Vortrag
iber , Einige neuere Entwicklungen in der Theorie der endlichen
Gruppen (Bericht)®.

Jahresversammlung in Genf, 25. 9. 65

An der Jahresversammlung werden neun wissenschaftliche Mit-
teilungen vorgelegt, die untenstehend entweder durch Titel oder
durch Auszug angefiihrt sind:

Sophie Piccarp (Neuchatel): Les groupes libres et quasi-libres
modulo n. Des théorémes d’existence.
Jules CHuARrD (Lausanne): Réseaux cubiques tracés sur une sphere.

André Ammann (Yverdon): Fibrations cycliques d’un espace fibré
circulaire cycliquement partitionné.

Cécile TANNER (Londres): L’algebre de Thomas Harriot (1560-1621)
M. A. Knus (Ziirich): Algebres graduées et algebres filtrées.

Urs StammBAcH (Zirich): Homologische Methoden in der Gruppen-
theorie.

Francois Sigrist (Ziirich): Obstruction et transgression.

Georges LEreEscHE (Neuchétel): Algebres d’opérateurs non bornés
sur I'espace d’Hilbert.

Jean-Claude Hovry (Geneve): Sur I’ensemble des valeurs stationnaires
d’une application différentiable.

Herr Prof. H. Debrunner (Bern) hielt einen Hauptvortrag iiber
»Aspekte der Knotentheorie®“.




— 322 —

Sophie Piccarp (Neuchatel): Les groupes libres modulo n. Les groupes
quast libres modulo n. Théorémes d’existence.

Le présent travail se place dans le cadre de I'étude générale sui-
vante:

1. Rechercher les caractéres qui peuvent étre communs & toutes les
relations reliant un ensemble de générateurs d’un groupe multi-
plicatif.

2. Etant donné un ensemble de propriétés qui peuvent étre com-
munes a toutes les relations reliant les éléments d’'un ensemble de
générateurs d’'un groupe multiplicatif, étudier la classe de groupes
dont chacun posséde au moins un ensemble de générateurs, tel
que toute relation qui les lie posséde les propriétés données.
Six classes de groupes ont été découvertes et étudiées par cette
voie: ce sont les groupes libres, quasi libres, pseudo-libres et les
groupes libres, quasi libres et pseudo-libres modulo #n, ou n est
un entier = 2 donné.

Un groupe multiplicatif G est appelé libre modulo n s’il possede
au moins un ensemble A de générateurs — dits libres modulo n —
qui ne sont liés que par des relations triviales modulo »n, ¢’est-a-dire
par des relations de la forme f(ay,...,ax) = 1 ou 1 est I’élément
neutre de G et f est une composition finie des éléments du sous-
ensemble A* = {a,, ..., a} de A, totalement réductible modulo n
(rappelons que la réduction modulo n d’un produit de puissances
entieres d’éléments de A* consiste a effectuer alternativement et aussi
longtemps que possible I'une ou I'autre des deux opérations élémen-
taires suivantes: 1. Réduction, par le seul jeu des axiomes de groupe
multiplicatif, du produit considéré a la forme 1) ai! ... @i}, ot @y, € A*,
s=1,.., 10, Guy 7 Qugyq, s = 1, ..., [—1, et ol ¢5 st un entier non
nul quel que soit s = 1, ..., . 2. Réduction, dans un produit de la
forme 1), de tous les exposants modulo n. Aprés un nombre fini
d’opérations de ce genre, on tombe soit sur un reste qui est = 1,
auquel cas le produit considéré est dit totalement réductible modulo n,
soit sur un reste de la forme 1) oul = 1 et ol ¢4, ..., ¢y sont des entiers
compris entre 1 et n—1. Les groupes libres modulo n ont été découverts
en 1964. Ils constituent une vaste classe de groupes, dont les groupes
libres ne sont qu’un cas tres particulier.

Un groupe multiplicatif G est dit quast libre modulo n §’il possede
au moins un ensemble de générateurs quasi libres modulo » qui ne
sont liés que par des relations quast triviales modulo n, ¢’est-a-dire
par des relations de la forme f (aq, ..., &) = 1, ou f est une composi-
tion finie d’éléments de A, de degré = 0 (mod n) par rapport a
chacun d’eux.

Soit G un groupe quasi libre modulo n et soit A un ensemble
donné de générateurs quasi libres modulo n de G. Tout élément de A
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est soit d’ordre infini, soit d’ordre fini multiple de n. Tout élément
de G posséde un degré fixe modulo n par rapport & tout élément de
A et on peut répartir les éléments de G en classes d’équivalence M ™,
en prenant dans une classe /™ deux éléments de G dans le cas et ce
cas seulement ot ils sont du méme degré modulo n par rapport a
tout élément de A.

On peut munir I’ensemble des classes M@ d’une structure de
groupe abélien en appelant produit de deux telles classes ;M) et
o, M@ Pensemble des éléments ab de G, tels que a € ;M™ et b e , M,
Avec cette loi de composition, I'ensemble I'™ des classes M) est
un groupe abélien associ¢ a G. Quel que soit le sous-groupe y de
' la réunion des classes M qui constitue les éléments de v est un
sous-groupe invariant de G. Les classes /™ ont un caractere intrin-
seque, indépendant de I’ensemble de générateurs A & partir duquel
elles ont été définies. Tout groupe quasi libre modulo n est fonda-
mental et tout ensemble A de générateurs quasi libres modulo n de
G est un ensemble irréductible de générateurs de G.

Un groupe libre modulo n non cyclique n’est pas abélien.

Tout groupe libre modulo » est quasi libre modulo n et par suite
il jouit de toutes les propriétés d’un groupe quasi libre modulo n. Mais
tout groupe quasi libre n’est pas libre modulo n.

Soit maintenant G un groupe libre modulo » et soit A un ensemble
de générateurs libres modulo »n de ce groupe.

Tout élément de G possede un reste fixe » modulo n et on peut
répartir les éléments de G en classes C, en prenant dans une méme
classe C deux éléments de G dans le cas et dans ce cas seulement ou
ils ont le méme reste » modulo n. Les classes €, munies de la méme loi
de composition que les classes M ™ forment un groupe G, qui n’est,
en général, pas abélien, mais qui jouit de cette propriété que quel
que soit le sous-groupe g. de G, la réunion des classes C, qui forment
le groupe g. est un sous-groupe de G. L’élément neutre du groupe G,
est la classe €'y formée de tous les éléments de G qui sont représentés
par des compositions finies d’éléments de A4 totalement réductibles
modulo n. € est un sous-groupe invariant de G. Le groupe G. est
indépendant de A. Deux éléments a et b de G sont dits symétriques
modulo n, si leur produit ab = ¢ € C;. Un sous-groupe g de G est dit
tneartant modulo n si agb = g quel que soit le couple a, b d’éléments
de G symétriques modulo n. C; et G lui-méme sont des sous-groupes
invariants modulo n de G. 1l en est de méme de la réunion des classes C
qui forment un sous-groupe de n. Mais { 1 } ne I’est en général pas.
I’ensemble des sous-groupes invariants modulo n d’un groupe libre
modulo »n forme un treillis avec les deux lois de treillis: intersection et
union. On appelle automorphisme modulo n du groupe G toute applica-
tion o/ de G sur lui-méme qui détermine un isomorphisme du groupe
G/Cy. Dans tout automorphisme modulo n, la classe C; est appliquée




— 324 —

sur elle-méme de fagon binumivoque et au produit de deux éléments
de G correspond toujours le produit de leurs images multiplié par un
élément de C,. Quel que soit le couple a, b d’éléments, symétriques
modulo 7 de G, 'application o/{™ qui fait passer de tout élément d de G
a adb est un automorphisme modulo n dit automorphisme intérieur
modulo n. L’ensemble de tous les automorphismes modulo n d’un
groupe libre modulo n est un groupe dont 'ensemble de tous les
automorphismes intérieurs modulo n est un sous-groupe. Tout auto-
morphisme de G est aussi un automorphisme modulo # et tout auto-
morphisme intérieur est aussi un automorphisme intérieur modulo 7.

On appelle endomorphisme modulo #» de G une application &™
de G dans G qui détermine un endomorphisme du groupe G/C,. Dans
tout endomorphisme mod n la classe C; est appliquée sur elle-méme.

Un sous-groupe g de G est dit caractéristique modulo n §’il est
transformé en lui-méme par tous les automorphismes modulo » de G.
En particulier, C; et G sont de tels sous-groupes de G. Un automor-
phisme modulo 7z ne transforme pas nécessairement un ensemble de
générateurs libres modulo » en un ensemble du méme type: I’ensemble
des images peut méme ne pas engendrer G. Up groupe G libre modulo n
est dit élémentaire s’il possede au moins un ensemble A UB de géné-
rateurs liés par les seules relations caractéristiques " = 1, quel que
soit b G B. Si B = @, G est libre et tout groupe libre est un groupe
libre modulo »n élémentaire. Un groupe libre modulo n élémentaire
est le produit libre des groupes cycliques engendrés par les éléments de
Iensemble AUB. Il est indépendant de la nature de ses éléments et
tout groupe libre modulo » est entierement caractérisé par un couple
ordonné m 1 qui sont les cardinaux des ensembles 4 et B. Pour tout
couple ordonné m, n de nombres cardinaux, il existe un groupe libre
modulo »n élémentaire dont ils sont les caractéristiques. Si n est
premier, tout sous-groupe d’un groupe libre mod. n élémentaire est
aussl libre mod. n et élémentaire. Mais il existe une infinité de groupes
libres modulo » non élémentaires et qui ne sont pas les produits
libres des groupes cycliques engendrés par les éléments d’un ensemble
quelconque A de générateurs libres modulo n. Tel est, par exemple,
le groupe G (a, b) libre modulo 2 de transformations des entiers qui
est engendré par les deux cyeles infinis ¢ = (... —3, —2,—1, 0, 1,
2,3,...) et b=1(..,3,4,1,2 —1,—2, —3,—4, ...) qui sont deux
générateurs libres modulo 2 de g (a, b) liés par une infinité de relations
non triviales, parmi lesquelles (a?tb2#)#*1 = 1, quel que soit 1'en-
tier 4. Ce dernier groupe possede des sous-groupes non fondamentaux,
donc non libres modulo n, par exemple le sous-groupe vy de toutes les
substitutions d’un nombre fini quelconque d’entiers quelconques. Il
existe un groupe libre modulo n engendré par deux générateurs
a et b, libres modulo 2 et qui sont liés par la seule relation caracté-
ristique a2 b = 1. Pour tout nombre cardinal m, il existe un groupe G
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libre modulo 7, engendré par un ensemble A de générateurs libres
modulo n, de puissance m. Il existe également, pour tout nombre
cardinal m, un groupe G quasi libre modulo »n engendré par un en-
semble A de puissance m de générateurs quasi libres modulo n, quel
que soit I’entier de n = 2.

D’un ensemble donné A de générateurs libres modulo n d’un
groupe G libre modulo 7 on peut déduire de nouveaux ensembles de
générateurs libres modulo »n par application répétée des deux opéra-
tions suivantes:

1. Remplacement d’un élément a de I’ensemble considéré par a™,
ou m est un entier, de la suite 1, 2, ..., In — 1, premier avec In
si @ est d’ordre fini ln ([ = entier = 1), oubien m = —1, s1 a est,
d’ordre infini.

2. Remplacement d'un élément quelconque a de I’ensemble de géné-
rateurs considéré par son produit, a droite, a gauche ou des deux
cOtés a la fois, par une composition finie totalement réductible
modulo n d’éléments autres que a de ’ensemble considéré de
générateurs.

Soient a et b deux éléments quelconques d’un groupe G libre modulo
n, soit a* un élément de G symétrique de a modulo n et soit b* un
élément symétrique de b modulo n. Le produit aba*b* est appelé un
commutateur de a et b modulo n. 11 existe en général plusieurs commu-
tateurs modulo n de deux éléments a et b de G. Le sous-groupe de G
engendré par I'ensemble des commutateurs modulo n de couples
d’éléments de G est un sous-groupe invariant modulo n de G, appelé
le sous-groupe commutateur modulo n de G.

Une succession finie de groupes G,, Gy, ..., Gy, telle que G, =
G, Gy = Cy, Gy D Gy D D G, et ou Gs est un sous-groupe maximum
invariant modulo nde Gs—4,s =1, ... u, est appelée série de composition
modulo n de G. Un groupe libre modulo n ne posséde pas toujours une
telle série de composition.

Tout groupe libre modulo »n élémentaire non cyclique posséde
une infinité de sous-groupes libres. Le centre d’un groupe libre
modulo n élémentaire non cyclique se réduit a 1, mais un groupe
libre modulo » non élémentaire peut posséder des éléments cen-
traux = 1.

Tout groupe G libre modulo n est un produit libre des groupes
cycliques engendrés par les éléments de n’importe quel ensemble de
générateurs libres modulo »n de G.
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J. Cuuarp (Lausanne): Réseaux cubiques tracés sur une sphere.
Le greffage.

Un réseau tracé sur une spheére transforme la surface de celle-ci
en un polyedre. Les arétes des polyedres que nous examinons forment
un réseau cubique. 1l ¢’en suit qu’a chaque sommet aboutissent
3 arétes. Les faces du polyeédre sont simplement connexes. Le polyédre
a o, sommets, a; arétes et o, faces. Nous introduisons un nombre u
qui fixe la classe du polyédre. Le théoreme d’Euler permet d’écrire
les égalités

po=o,—1 p—1=—=—-

Le réseau cubique considéré est réductible, en vertu du théoréme
de Petersen, cela de diverses manieres, en un réseau quadratique
(réseau R) et un réseau linéaire (réseau L). Le réseau R est formé
de o, arétes tandis que le réseau L n’en compte que 1% o,. Les réseaux R
ainsl obtenus peuvent étre répartis en 3 types: type I, le réseau ne
comporte qu'un seul contour fermé; type 11, 1l y en a 2 ou plusieurs
qui comptent tous un nombre pair d’arétes; type I1I, certains de ces
contours fermés ont un nombre impair d’arétes (ils sont d’ailleurs en
nombres pairs).

Le polyedre de la Planche 1 appartient a la classe p. = 4. 11
renferme 4 réseaux R (par suite 4 réseaux L). Il va nous permettre
d’exposer en quoi consiste la méthode du greffage.

2 EOO
OO0

Prancue 1

Sur une des arétes du polyedre, n’importe laquelle, on marque
2 points que 'on considere comme 2 nouveaux sommets. On réunit
ces sommets par une nouvelle aréte. On forme ainsi un nouveau
polyédre, de classe . = 5, dont on recherche les réseaux 2. On
constate que si 'aréte sur laquelle s’est opéré le greffage est sur un

R
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réseau R de la classe p = 4, on obtient 2 réseaux £ sur le polyedre
de la classe g, = 5, sinon on n’en obtient qu'un seul. C’est ce que fait
voir la Planche 2. Ce dernier polyédre renferme donc 6 réseaux R

e 0
GG

PraNxcHE 2

Un second greffage conduit & un polyedre de la classe p = 6.
Les caracteres relevés ci-dessus, dans le passage du polyedre de la

classe p = 4 a celui du polyedre de la classe u = 5, se retrouvent

ici intégralement. Il convient de noter que la Planche 1 présente
4 réseaux R dont 3 sont du type I et 1 du type III. La Planche 2 en
présente 6 dont 4 sont du type I, 1 du type II et 1 du type III. La
Planche 3 en présente 9 dont 4 sont du type I, 4 du type II et 1 du

type I11.

Prancue 3

Lorsque l'on passe & la troisieme opération de greffage, une
remarque s’impose. Jusqu’ici nous avons utilisé des arétes qui fai-
salent partie du méme réseau R: Planche 1. Si la troisitme aréte
appartient encore a ce réseau R, il n’y a aucune raison de ne pas
rencontrer encore des réseaux /2 du type I. Le nouveau polyedre est
de la classe p. = 7. Celui de la Fig. 1: Planche 4 compte 8 réseaux R
du type I, 6 du type II et 1 du type IIL.
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Si, par contre, I’aréte utilisée appartient au réseau L correspon-
dant, les réseaux R du type I ont tous disparu, les 4 figures de gauche
de la Planche 3 en donnent la raison. C’est ainsi qu’en Fig. 2: Planche 4
on dénombre 12 réseaux R du type II et 1 du type I1I, tandis que la
Fig. 3 conduit a 12 réseaux R du type Il et 2 du type III.

En utilisant la deuxieme figure de la Planche 1, on constate que
la Fig. 4: Planche 4 renferme des réseaux R du type I, tandis que la
Fig. 5 n’en a pas.

Ue0aa

Le greffage ainsi effectué n’est pas un but, mais un moyen qui
permet de justifier I'inexistence de réseaux R du type I dans un
réseau cubique donné. Ce qui est important ce n’est pas la présence
de faces limitées par 2 arétes seulement, mais plutot celle de faces
ayant en commun 2 arétes distinctes. C’est ce que l'on évite en se
placant dans le « cas difficile » de Errera.

Voici quelques exemples de réseaux cubiques dans lesquels le
troisieme greffage a été effectué sur une aréte d’un réseau L.
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