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Nous nous proposons de démontrer ici quelques autres résul-
tats du méme genre a I'aide de I'inégalité de Karamata.

2. IVINEGALITE DE KARAMATA

Rappelons brievement en quoi consiste cette inégalité. Si les
nombres réels (z) = (x4, 2,, ..., z,) et (') = (x1, 23, ..., T,) satis-
font aux trois conditions

M % 2x 20 2%, X 22X, 2
I x; +x, + ... +x, Sx; +%x, + ... +x, (1Z5v<n),
(TII1) x; + X, + oo + X, = X1 + X5 + ... +X,,

L2 X,,

nous dirons avec les auteurs de [2] que (z’) majore (z), et écrirons

() < ().
M. J. Karamata a démontré [3] que si (x) < («'), alors

d(x) +P(x)+ .. +P(x) P xD)+P(x2) + ... +¢(x) (3

pour toute fonction ¢ continue et convexe dans un intervalle
comprenant (z) et (z’). S1 ¢ est deux fois dérivable et ¢"" > O,
il n’y a égalité dans (3) que lorsque (z) = (2'). L’inégalité (3)
est évidemment renversée si ¢ est concave, car — ¢ est alors
convexe.

M. M. Petrovié a montré dans [4] que si la fonction f (z)
posséde au voisinage de x = 0 un développement en série de
puissances ay, + @,  + a, x> + ..., avec a, =0 pour k =2,
alors

Jxy) +f (x2) +f(x3) = (x5 +x;,+%3) +21(0),

et M. le Professeur Karamata nous a indiqué que c’est préci-
sément la lecture de cet article qui lui donna I'idée de I'inégalité

(3).

3. QUELQUES APPLICATIONS

Soit A; A, A5 un triangle quelconque et a; le coté opposé au
sommet A;, alors que m; désigne la médiane passant par A4, et r;
le rayon du cercle exinscrit tangent a a;.
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Nous pouvons supposer que ¢, = d, = a3, et donc que
rp2r,zry et my S my = m;.

Nous démontrerons d’abord lexistence d’un nombre s,
0<s<1, tel que

Wa
B3 M,(a) £ M,(r) pour u >s
o @
J3
3 M,{a) = M, (r) pour u <s.
L
En effet, —— M, (a) — M, (r) est une fonction continue de u,

2

et M. F. Leuenberger a montré[5] qu’elle est positive pour u =0
et négative pour u = 1. Il existe donc une valeur s de la variable,

3 :
0 <s< 1, pour laquelle TMS () — M (r) = 0.

De plus, on peut montrer que

ri(rimg +risq)

ai = s (5)
\/7'17”2 T+ raty + 13y
les indices étant pris mod 3; il s’ensuit facilement que
/3 3
%al <r et _\g_%grg_ (6)

En raison de ces propriétés, et puisque s > 0, nous avons

2as , r1zry 273,

/\ N L

<

W)

7]
Q
-
1A
e

/§ S
(32— (ai+as+a3) =ri +r5 + 1.

L’ Enseignement mathém., t. XI, fasc. 4. 19
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Il suffit maintenant d’appliquer Pinégalité de Karamata en
choisissant pour ¢ les fonctions convexes définies par

d(x) = x** (x>0) pour u<0 ouu>s,
¢ (x) = —x** (x>0) pour 0 <u <s,
$(x) = —logx (x>0),

pour voir que (4) a lieu. Si u # s, il 0’y a égalité que lorsque
\/§ a; = 2r; pour 1 = 1,2 3, cest-a-dire lorsque le triangle
est équilatéral.

Montrons maintenant en suivant le méme raisonnement qu’il
existe une valeur ¢, 0 < ¢t < 1, telle que

[Mu (m) = M, (r) pour u >t

j Q
L M, (m) = M, (r) pour u <t;

c’est évidemment une inégalité plus précise que celle de Makowski
pour u ={.

Les inégalités My (m) = My (r) et M, (m) = M, (r) sont
démontrées dans [5]. Il ne reste donc plus & montrer que m,; = r,
et m; =ry.

Pour prouver la premiere de ces inégalités, rappelons que

2 2 2 2
dmi; = 2(aj-,+ai+1) —ai, (8)
PR 2 2 2
d’ou dmi = (a;_, +a;1,)" —aji,
so1t m; = \/ri—l Fiv1 s

et en particulier my = /r,r; =r;.
D’autre part, on voit en appliquant les formules (5) et (8)
que l'inégalité my = r, est équivalente &
2 [rg (ry+r3)* + ri (rs +"3)2] — 13 (ry+ry)? < 47 Y7 T
i<j
ou encore a

2.2 2 2 2 2 2 2 2
riry +rary +4riry +4ryryry = Ari (ryryt+rirs) + 2rirprs,

ce qui peut s’écrire aussi

4ryry (ri‘—r%) + (ry—r3) [47':12’”2 —r3 (’”1—7"2)] 20. 9
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Or, on a manifestement ry r, >l et 4ry >r, —r,, et le
produit de ces deux inégalités positives donne hrir, > 13 (ry —1a).
Puizqu’on a encore r; =r, , aucun des termes du c6té gauche de
(9) n’est négatif, ce qui démontre cette inégalité.

Nous avons done

Mo (r) £ Mg (m) et M, () 2 M, (m),
7‘3 é m1 et r]_ Z—_ m3;

cest dire qu’il existe un t!), 0 <t < 1, tel que (m") < ().
1’inégalité (7) se trouve ainsi démontrée, et il est facile de voir

quil 0’y a égalité que dans le cas d’un triangle équilatéral.
Pour conclure, remarquons qu’il ne peut exister d’inégalité

3 | . ,
générale entre .\_/2_ M, (a) et M, (m) ; cect est une conséquence

immédiate d’un théoréme d’Euler [6] qui affirme qu’on peut
construire avec les médianes m; dutriangle 4; 4, A; unnouveau
triangle dont les médianes sont alors # a;. Par contre, on sait qu’il
existe certaines égalités; on voit aisément avee (8) qu'on atoujours

3/2—_3—]112 (a) = M, (m) et %% My (a) = My (m).
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J. Stelnig
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1) La valeur exacte de t, comme celle de s, dépendra du choix de a); par exemple,
s > % lorsque (a) = (3, 4, 5), au lieu que s < % si (a) = (2, 24, 24).
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