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Nous nous proposons de démontrer ici quelques autres résultats

du même genre à l'aide de l'inégalité de Karamata.

2. L'inégalité de Karamata

Rappelons brièvement en quoi consiste cette inégalité. Si les

nombres réels (x) (xl7 x2,..., xn) et (x') (xu x2, xn) satisfont

aux trois conditions

(I) xx ^ x2 ^ ^ x„ x'i ^ x2 ^ ^ xn,

(II) xx + X2 + + xv ^ xi + X2 + + xi (1 ^V <77)

(III) Xx + X2 + + Xn X\ + x2 + + xn

nous dirons avec les auteurs de [2] que (xf) majore (#), et écrirons
(x) < (x').

M. J. Karamata a démontré [3] que si (x) -< (x'), alors

0 (*i) + (j> (x2) + + <j> (xn) ^ (j) (xx) + (j> (x2) + +0 (xn) (3)

pour toute fonction é continue et convexe dans un intervalle
comprenant (x) et (x'). Si </> est deux fois dérivable et </>" > 0,

il n'y a égalité dans (3) que lorsque (x) (x'). L'inégalité (3)
est évidemment renversée si (j) est concave, car — (j) est alors

convexe.
M. M. Petrovic a montré dans [4] que si la fonction / (x)

possède au voisinage de x 0 un développement en série de

puissances a0 ax x a2 x2 avec ah ^ 0 pour k 2

alors

/ (*i) +/ (x2) +f(x3) ^ /(^i +x2 +x3) + 2/(0),
et M. le Professeur Karamata nous a indiqué que c'est
précisément la lecture de cet article qui lui donna l'idée de l'inégalité
(3).

3. Quelques applications

Soit Ax A 2 A 3 un triangle quelconque et at le côté opposé au
sommet At, alors que rrii désigne la médiane passant par At et rt
le rayon du cercle exinscrit tangent à at.
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Nous pouvons supposer que at ^ a2 ^ a3, et donc que

rx g: r2 ^ r3 et wt ^ m2 ^ m3

Nous démontrerons d'abord l'existence d'un nombre
0 < s < 1 tel que

V"3"

~Y Mu (a) ^ Mu (r) pour u > s

(4)

-y- Mu (a) ^ Mu (r) powr u < s

V3
En effet, (a) — (r) est une fonction continue de u,

et M. F. Leuenberger a montré [5] qu'elle est positive pour u 0

et négative pour u — 1. Il existe donc une valeur s de la variable,

yß
0 < s < 1 pour laquelle ~^—Ms (a) — Ms (r) 0

A

De plus, on peut montrer que

l'i O'i-i +r;+i)
a,

Jr1r2+ r2 r3 +
'

les indices étant pris mod 3; il s'ensuit facilement que

V ai ri et
73-

a3 r3

(5)

(6)
2 2

En raison de ces propriétés, et puisque >0 nous avons

a{ ^ a'2 ^ a'3 ^ rs2 ^ rs3

Vß s ^ s
ai ^ rq

J (ni +#2) ri + r2

N— I (nï +n2 +^3) rï + ^2 + r3 •

L'Enseignement inathém., t. XI, fasc. 4.
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Il suffit maintenant d'appliquer l'inégalité de Karamata en
choisissant pour 4> les fonctions convexes définies par

(j) (:x) xu/s (x>0) pour u < 0 ou u > s,
4> (x) — x"/s (x >0) pour 0 < u < s

(j) (x) — log x (x > 0),

pour voir que (4) a lieu. Si u ^ 5 il n'y a égalité que lorsque

^3 at — 2rt pour i 1, 2, 3, c'est-à-dire lorsque le triangle
est équilatéral.

Montrons maintenant en suivant le même raisonnement qu'il
existe une valeur t, 0 < t < 1 telle que

f Mu (m) ^ Mu (r) pour u > t
(7)

[ Mu (m) ^ Mu (r) pour u < t ;

c'est évidemment une inégalité plus précise que celle de Mqkowski
pour u ^ t.

Les inégalités M0 (m) ^ M0 (r) et Mx (m) ^ Mx (r) sont
démontrées dans [5]. Il ne reste donc plus à montrer que mt r3
et m3 ^ rx

Pour prouver la première de ces inégalités, rappelons que

4m]2(aî_1+a? + 1) (8)

d'où 4m] ^ (a,-i +ai+1)2 — a]

soit "ij — \/ rt-iri+i>et en particulier m3^ ^fr2r3^D'autre part, on voit en appliquant les formules (5) et (8)

que l'inégalité m3 ^ rl est équivalente à

2 [r](r3+ r3)2 + r] r2+ r3)2] - r] (rt + r2)2 g 4r]-£ rt rj
i<j

ou encore à

r] r] + r\ r\+ 4r2 r\ + 4 rxr]r3 ^ 4 r2 +r3 + 2 r2 r]

ce qui peut s'écrire aussi

4?*! r3 (r]-ri) + (r3 -r2)[4r]r2- r] -r2)] ^ 0 (9)
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Or, on a manifestement rx r2 —^3 et ^ri > ri ~ r2 >
et le

produit de ces deux inégalités positives donne 4r\ r2 > rl (r< -r2).
Puisqu'on a encore r1^r2 aucun des termes du côté gauche de

(9) n'est négatif, ce qui démontre cette inégalité.
Nous avons donc

M0 (r) ^ M0 (m) et M1 (r) ^ M1 (m),

r3 ^ ml et r1 ^ m3 ;

c'est dire qu'il existe un t1), 0 < t < 1 tel que (m*) -< (P)

L'inégalité (7) se trouve ainsi démontrée, et il est facile de voir
qu'il n'y a égalité que dans le cas d'un triangle équilatéral.

Pour conclure, remarquons qu'il ne peut exister d'inégalité
/3

générale entre A— Mu (a) et Mu (m) ; ceci est une conséquence
2

immédiate d'un théorème d'Euler [6] qui affirme qu'on peut
construire avec les médianes mt du triangle A1A2A2 un nouveau
triangle dont les médianes sont alors | at. Par contre, on sait qu'il
existe certaines égalités ; on voit aisément avec (8) qu'on a toujours

^ M2 (a) M2(m) et ^ M4 (a) M4 (m)
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(Reçu le 30 juin 1964)
J. Steinig
5, rue Toeffer
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i) La valeur exacte de t, comme celle de s, dépendra du choix de a); par exemple,
s > i lorsque (a) ^ (3, 4, 5), au lieu que s < £ si (a) (2, 24, 24).
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