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SUR QUELQUES APPLICATIONS GEOMETRIQUES
D’UNE INEGALITE RELATIVE AUX FONCTIONS
CONVEXES

par J. STEINIG

1. INTRODUGTION

On sait que les hauteurs (k) = (hq, hy, h3) d’un triangle
et les rayons (r) = (r, r,, r3) de ses cercles exinscrits sont liés
par la relation

- — +— 4 —, (1)

qul peut s’écrire aussl
M_y(h) = M_, (r).

M, (z) désigne ici la moyenne d’ordre u des nombres réels
positifs (z) = (z,, z,, ..., ©,), définie par

1 n 1/u
<~ ) x?) pour u # 0

Bl \1/n |
(H xi) pour u = 0;

i=1

Mu(x) = 9

c’est une fonction continue et croissante de u sur l'intervalle
(— o0, + ).

M. A. Makowski a donné une généralisation de (1) en démon-
trant dans [1] les inégalités |

M,(h) £ M, (r) pour u > — 1
(2)

M,(h) =z M, (r) pour u < — 1.
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Nous nous proposons de démontrer ici quelques autres résul-
tats du méme genre a I'aide de I'inégalité de Karamata.

2. IVINEGALITE DE KARAMATA

Rappelons brievement en quoi consiste cette inégalité. Si les
nombres réels (z) = (x4, 2,, ..., z,) et (') = (x1, 23, ..., T,) satis-
font aux trois conditions

M % 2x 20 2%, X 22X, 2
I x; +x, + ... +x, Sx; +%x, + ... +x, (1Z5v<n),
(TII1) x; + X, + oo + X, = X1 + X5 + ... +X,,

L2 X,,

nous dirons avec les auteurs de [2] que (z’) majore (z), et écrirons

() < ().
M. J. Karamata a démontré [3] que si (x) < («'), alors

d(x) +P(x)+ .. +P(x) P xD)+P(x2) + ... +¢(x) (3

pour toute fonction ¢ continue et convexe dans un intervalle
comprenant (z) et (z’). S1 ¢ est deux fois dérivable et ¢"" > O,
il n’y a égalité dans (3) que lorsque (z) = (2'). L’inégalité (3)
est évidemment renversée si ¢ est concave, car — ¢ est alors
convexe.

M. M. Petrovié a montré dans [4] que si la fonction f (z)
posséde au voisinage de x = 0 un développement en série de
puissances ay, + @,  + a, x> + ..., avec a, =0 pour k =2,
alors

Jxy) +f (x2) +f(x3) = (x5 +x;,+%3) +21(0),

et M. le Professeur Karamata nous a indiqué que c’est préci-
sément la lecture de cet article qui lui donna I'idée de I'inégalité

(3).

3. QUELQUES APPLICATIONS

Soit A; A, A5 un triangle quelconque et a; le coté opposé au
sommet A;, alors que m; désigne la médiane passant par A4, et r;
le rayon du cercle exinscrit tangent a a;.
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