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ANWENDUNGEN
DES SGHAUDERSCHEN FIXPUNKTSATZES

AUF
GEWISSE NICHTLINEARE INTEGRALGLEICHUNGEN

von H. Ehrmann und H.-E. Lahmann

1. Einleitung. Die vorliegende Arbeit soll zeigen, dass einige
in Spezialfällen der nichtlinearen Integralgleichungen bzw. der

Gleichungen mit vollstetigen Operatoren bekannte Sätze, deren
Beweis mit Hilfe der Theorie des topologischen Abbildungs-
grades oder der Leray-Schauaerschen « Theorie der a-priori-
Schranken » durchgeführt worden ist, allein durcn Anwendung
des Schauderschen Fixpunktsatzes beweisbar sind. Dabei
ergeben sich entweder Verallgemeinerungen der Sätze oder
Vereinfachungen der Beweise. Nur an einer Stelle (Abschnitt 6),
wo neben der Existenz auch die Eindeutigkeit einer Lösung
bewiesen werden soll, wird statt des Schauderschen Satzes der
Banachsche Fixpunktsatz für kontrahierende Abbildungen
benutzt.

In Abschnitt 2 wird der Schaudersche Fixpunktsatz formuliert,

wie er für das Folgende verwendet wird.
Abschnitt 3 enthält den Beweis eines Existenzsatzes für

Gleichungen der Gestalt Kju u mit einem linearen,
vollstetigen, normalen Operator K und einem im allgemeinen
nichtlinearen Operator /, die beide in einem (i. allg. komplexen)
Hilbertraum operieren. Dabei ist da« Verhalten von / auf einer
Kugel II u y C entscheidend für die Lösbarkeit.

Hieraus folgt ein allgemeiner Satz von Krasnoselski [11],
den dieser unter Verwendung topologischer Methoden wie der
Homotopieinvarianz des topologischen Abbildungsgrades
beweist. Der in Abschnitt 4 bewiesene Satz 2 enthält eine kleine
Verschärfung.

L'Enseignement mathém., t. XI, fasc. 4 18
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Die Anwendung von Satz 1 auf nichtlineare Integralgleichungen

vom Hammersteinschen Typ mit symmetrischem
Kern x) K (x, y) liefert weiter einen einfachen Beweis eines
Satzes von Dolph [4], der von diesem mit Hilfe der Leray-
Schauderschen « Methode der a-priori-Schranken » bewiesen
wurde [3]. Die Möglichkeit, den betreffenden Satz unmittelbar
mit Hilfe des Schauderschen Fixpunktsatzes zu beweisen, liegt
darin begründet, dass der betreffende Satz über a-priori-
Schranken, wie H. Schaefer [6] gezeigt hat, aus dem
Schauderschen Satz folgt. In Abschnitt 5 wird gezeigt, dass auch

umgekehrt der Schaudersche Fixpunktsatz bei vollstetigen
Operatoren eine elementare Folgerung des Leray-Schauderschen
Satzes ist. Beide Sätze sind in diesem Sinne äquivalent.

In Abschnitt 6 wird ein Existenz- und Eindeutigkeitssatz
mit Hilfe kontrahierender Abbildungen bewiesen. Der Satz

verallgemeinert einen entsprechenden Satz von Dolph für
nichtlineare Hammersteinsche Integralgleichungen auf Gleichungen
mit normalen Operatoren, wobei gleichzeitig der Beweis wesentlich

vereinfacht wird.
In 7 wird schliesslich ein Existenzsatz für nichtlineare

Gleichungen mit Operatoren in Banachräumen bewiesen, der eine

leichte Verallgemeinerung eines Satzes darstellt, den Krasno-
selski [11] aus dem sogenannten « Antipodensatz » von Ljusternik,
Schnirelmann und Borsuk folgert. Hier gelingt der Beweis
ebenfalls allein mit Hilfe des Schauderschen Fixpunktsatzes
ohne Bezug auf die zum Beweis des Antipodensatzes und der

Folgerung benötigte Anwendung der Theorie des Abbildungs-
grades.

2. J. Schauder [2] bewies den folgenden Fixpunktsatz:

Bildet ein Operator T eine konvexe, abgeschlossene

Teilmenge M eines Banachraumes stetig in sich ab und ist TM
kompakt, so enthält M einen Fixpunkt u* Tu*.

i) In diesem Fall sind die Eigenwerte von K reell. Satz 1 umfasst auch Operatoren

K mit komplexen Eigenwerten. Ausserdem enthält er im wesentlichen einen
auf andere Art unter der einschneidenden Voraussetzung der Fréchet-Difl'erenzier-
barkeit der Operatoren bewiesenen Existenzsatz [10].
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Hieraus folgt insbesondere, dass jeder vollstetige Operator T
auf einem Banachraum B mit Werten in 5, der die Kugel K,
H II ^ C, in sich, abbildet,

(2.1) H Tu H für ||u||^C,
einen Fixpunkt u* Tu* in K besitzt.

Statt (2. 1) genügt es jedoch, zu fordern, dass

(2.2) H Tu H ^ C für ||tt H C

gilt 1). Wir geben einen anderen einfachen Beweis:

Wegen der Vollstetigkeit von T gilt

(2. 3) H Tu H ^ D für ||« || ^ C

mit einer Konstanten D.
Der Operator S,

(2.4) Su

11*11

für H il H ^ C

für H w H > C

ist stetig und beschränkt. Daher ist der Operator TS vollstetig.
TS bildet die Kugel K±1 || u || ^ D, wegen (2. 2) und (2. 3) in
sich ab. Daher existiert nach dem Schauderschen Satz
ein Fixpunkt u* TSu* in Kv Wegen (2. 4) und (2. 2) ist
II TSu* y y u* y ^ C, also u* ein Fixpunkt von T in K.

3. Es gilt der folgende Satz.

Satz 1. K sei ein linearer, normaler, vollstetiger Operator
auf einem Hilbertraum H und mit Werten in H.

Für sämtliche charakteristischen Zahlen X von K gelte:

(3.1) 12 - ju | è y (y > 0)

mit einer komplexen Zahl fi.

1) H. Schaefer [7], S. 9, 10. M. A. Krasnoselski [11], S. 124, scliliesst dies
aus der Homotopieinvarianz des Abbildungsgrades.
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/ sei ein stetiger, beschränkter Operator auf H und mit
Werten in if, und es gelte x)

(3.2) \\(f-nl)u H g y H ti||
für alle u e if mit \\u \ \ C,(C > 0)

Dann besitzt die Gleichung

(3. 3) Kfu u

eine Lösung u* e H mit || u* || ^ C.

Beweis : Nach [5], S. 232-233, existiert ein in H vollständiges
Orthonormalsystem cpx, <p2, aus Eigenvektoren und Nullö-
sungen 2), so dass jedes Element xeH eine Darstellung

(3.4) <Pv

mit komplexen Konstanten av besitzt. Aus (3. 1) und (3. 4)

folgt
2

| (7 -nK)x112 11 £ av 1 - Y)(pv|(2 £ I a, |2

also

(3.5)

1 - ja >

y2\\Kx\\\

| (I —/âK) x H M Kx für xe H

Wegen (3. 1) und der Vollstetigkeit des linearen Operators K
ist ji ein regulärer Punkt von K. Daher existiert (f — fiK)'1 als

linearer, beschränkter Operator auf if, und mit

y

folgt aus (3. 5)

x (/ —fiK)'1 y

(3.6)
1

K(I—fiK)~ y H ^ - II y II für yeH.

i) I identischer Operator
1

2) K<t (pv; ist <Py Nullösung, so sei Av oo, also j-
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Wegen der Vollstetigkeit von if und der Stetigkeit und
Beschränktheit der Operatoren (I — jiK)"1 und f — ixl ist

T KV-fiKy1 (f-ixl)
ein vollstetiger Operator auf H.

Aus (3. 6) und (3. 2) folgt

II 77/ H ^ 11 u 11 für u eH mit \\u 11 C

Folglich existiert nach dem Schauderschen Fixpunktsatz x) eine

Lösung u* der Gleichung Tu u mit || u* || ^ C. Diese
Gleichung ist aber wegen der Vertauschbarkeit von K mit seiner
Resolventen (/ —/zif)-1 äquivalent der Ausgangsgleichung (3. 3),

q. e. d.

Folgerung: Gilt statt (3. 2) die Ungleichung

(3.2') H (f-fil)u M ^cc H u II + A (At 0), ueH,
0 < a < y

A
für H u H *= C, so gilt die Aussage des Satzes ebenfalls;

y — a

denn aus (3. 6) und (3. 2') folgt

II Tu II II K( I-nKy'if-ßOuW^2 II «II + - c
y y

für 11 « 11 C

Der Schaudersche Fixpunktsatz liefert wie oben die Behauptung.

4. Der Beweis von Satz 1 zeigt, dass die Aussage richtig
bleibt, wenn man auf die Gültigkeit des Entwicklungssatzes
verzichtet und statt (3. 1) nur fordert, dass p kein Punkt des
Spektrums von K ist und (3. 2) mit

(4-1) V ^ |~j| » L

gilt.

Siehe Abschnitt 2.
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Hieraus folgt ein Existenzsatz x) von Krasnoselski, den dieser
mit Hilfe der Theorie des Abbildungsgrades beweist.

Satz 2. Es sei K (x, y) Element des L2 {[a, b] x [a, &,]}, / (x, y)
eine stetige Funktion für a x b, — oo < ?/ < oo, die der

Ungleichung
n

(4. 2) \f(x,y) - ny\ g ß \ y| + £ (x) | 1_Pv + (x)
V ~ 1

genügt mit einem regulären Punkt y (der komplexen Zahlenebene)

von i£, 0 ^ ß < - t~t (L Operator wie in (4. 1)),
Ii lii

Sv(x)eL?lPv, 0 < pv <1, v 1, D (x) eL2 [a, b].
Dann existiert eine Lösung ij/ (#) ei2[a, b] der Hammerstein-

schen Integralgleichung
b

i l/(x)$K(x,z)f(z,\l/(z))dz.
a

Beweis: Unter den obigen Voraussetzungen über Sv gilt
Sv (x) | i// (x) gL2, wenn ij/ (x) eL2. Weiter folgt nach der
Hölderschen Ungleichung

II Sv(x)•| <Mx) I1-"' II2 ]\Sv(s
a

(4. 3)

^ jj |Sv(x)|F*dxj jj |^(x)|2Jx| g M2||^||2(1-pv)

mit
c b—M2 max < J | |Pv dx

v= 1, n t a

Nach Krasnoselski [11], Seite 30, wirkt der Operator

/ x,i {x)) stetig und beschränkt in L2.

i) M. A. Krasnoselski [11], S. 165. Dort wird die Existenz einer Lösung für
« hinreichend kleine ß » bewiesen. An Stelle des Intervalls [a, b] kann eine messbare
Menge G des n-dimensionalen Raumes treten.
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Aus (4. 2) und (4. 3) folgt

n

m - w II ^ ßM II + E II sv(x) | iA|1_Pv II + ||D(x)|| ^
V=1

n

£ß\W\\ +MEll^ll1-^ + IIDII ^
V=1

<(e+M°. + _g_f||»n < — n^n
~V irni/ "iiüi

für H ^|| C bei einem hinreichend grossen C ^ 1.

Damit gilt (3. 2) mit y
^

und nach obiger Bemerkung
II Lll

die Behauptung.

5. Satz 3 (C. L. Dolph [4]). Es sei

b

K(pf K (x, y
a

ein vollstetiger, hermitescher Operator im L2 [a, ö],

^ 2_2 ^ < 0 < A0 ^ A1 ^ 22 ^

die Folge der charakteristischen Zahlen Xn von K.
Sei ferner / (x, y) eine stetige Funktion für a ^ x ^ b,

— oo < y < oo, für die positive Konstanten C, und Zahlen

yn, fin+1 mit An < yn < yn+1 < Xn+1 existieren, so dass die
Ungleichungen

yny - C ^f(x9y) ^ fin+1y + C für y > y0
(5.1)

yn+i y - C (x,y) ^ finy + C für y < - y0

gelten. Dann existiert eine Lösung x/j (x) ei2 der Hammerstein-
schen Integralgleichung

b

ij/(x) $ K(x, y) f (y,(y))
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Beweis: Mit

a max (| ß-ßn|, | ß~ßn+i|) < folgt aus (5. 1)

(5.2) \f(x,y) - ßy\ ^ a\y\ +Cfür|

Wegen der Stetigkeit von / existiert daher eine Konstante Cl7

so dass (5. 2) mit Cx statt C für alle y gilt.
Daraus folgt dann

Satz 1 mit Folgerung liefert die Behauptung.
Den Satz 3 bewies Dolph x) mit Hilfe der « Leray-Schauder-

schen Methode der a-priori-Schranken », während er oben
unmittelbar mit Hilfe des Schaudersehen Satzes bewiesen wurde.
H. Schaefer [6] gab einen eleganten Beweis des von Dolph
benutzten Spezialfalles dieser Methode, der nur den Fixpunktsatz
von Schauder bzw. Tychonoff benutzt, und verallgemeinerte ihn
gleichzeitig auf vollstetige Abbildungen in lokalkonvexen,
vollständigen Hausdorffschen topologischen Vektorräumen.

Man kann nun auch ebenso leicht zeigen, dass umgekehrt aus
dem betreffenden Satz der a-priori-Schranken der Schaudersche

Fixpunktsatz folgt, so dass man diesen Spezialfall der Leray-
Schauderschen Methode als eine blosse Umformulierung des

Schauderschen Fixpunktsatzes ansehen kann.
Wir beschränken uns bei der Formulierung auf den in

Hinblick auf Hammersteinsche Integralgleichungen allein
interessierenden Fall von Banachräumen 2).

Wir setzen die Gültigkeit des folgenden Satzes voraus.

1) In [4], S. 295 weist Dolph auf die fundamentale Rolle der a-priori-Schranken
hin. Siehe J. Leray und J. Schauder [3], S. 64, Théorème 1.

2) Es sei hier jedoch bemerkt, dass dieselbe Beweismethode auch bei lokal-
konvexen, vollständigen, Hausdorffschen topologischen Vektorräumen angewandt
werden kann.

II/Oer) - ny II ^ II « \yI+ || ^ a 11 u 11 + a

{A Ct • -Jb — a)
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Satz A. — A sei eine vollstetige Abbildung eines Banachrau-

mes B in sich.

Dann gilt: Ist die Teilmenge

{ x eB : x AAx 0 < A < 1 }

beschränkt, so ist die Gleichung

x AAx

für jedes 2e[0, 1] lösbar.
Hiermit beweisen wir den Schauderschen Fixpunktsatz:

Satz B. — T sei eine vollstetige Abbildung der abgeschlossenen

Kugel
Kr {xeB: H x II ^ r}

eines Banachraumes B in sich.

Dann existiert ein Fixpunkt x Tx in Kr.

Beweis: a) Aus Satz A folgt unmittelbar: Ist A ein auf dem

Banachraum B definierter vollstetiger Operator, der B in die

Kugel Kr abbildet, AB a Kn so besitzt A einen Fixpunkt x e Kr.
ß) Nun habe T die obigen Eigenschaften. Dann betrachten

wir die Abbildung A TS mit

x für [ | x 11

(5. 3) Sx

11*11
für 11 x 11 > r

S ist stetig und beschränkt, also A — TS vollstetig. A erfüllt
die Voraussetzungen von a). Daher existiert ein Fixpunkt
x Ax in Kn der wegen (5. 3) Fixpunkt von T ist.

6. Es gilt der folgende Existenz- und Eindeutigkeitssatz.

Satz 4. Es erfülle K die Voraussetzungen des Satzes 1. / sei
ein Operator auf dem Hilbertraum 77, für den die Lipschitz-
bedingung

(6-1) II (/ - ßl)cp-(f -nl)\l>H^ a H (p— $ H cp,\jjeH,

mit einer Konstanten a < ygilt, wobei y die in (3. 1) geforderte
Eigenschaft habe.
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Dann besitzt die Gleichung Kfu u genau eine Lösung
u* ei7, gegen die die Iterationsfolge x)

un+1 Tun n 0, 1, 2,...

T K (I — fiK)~1 (/ — iil) bei einem beliebigen Anfangselement
u0 e H konvergiert.

Beweis: Wie im Beweis von Satz 1 folgt

UKil-tiKy'yW ^ -\\y\\ für y e H
7

Daher gilt mit (6. 1) für den Operator T

II Tcp - TiAII ^ - II (/ -(/ - M* \\ S-\\cp -ils\\
y y

a
für (p, x/jeH. Wegen - < 1 ist T kontrahierend. Daher folgt aus

y
dem Banachschen Fixpunktsatz und der Äquivalenz der
Gleichung Tu u mit der Ausgangsgleichung Kfu — u die Behauptung.

Bemerkung : oc) Wie im Abschnitt 4 genügt es, in Satz 4 zu
fordern, dass die Gleichung (4. 1) gilt und fi regulärer Punkt
von K ist, d.h. (I — jiK)~1 als linearer, beschränkter Operator
auf H existiert. In diesem Fall kann auch die Bedingung der
Vollstetigkeit durch die Stetigkeit von K und der Hilbertraum H
durch einen allgemeineren Banachraum ersetzt werden.

ß) Mit ähnlichen Überlegungen wie in Abschnitt 5 folgt aus
Satz 4 leicht ein entsprechender Existenz- und Eindeutigkeitssatz

2) von Dolph [4], S. 291, für den Spezialfall nichtlinearer
Integralgleichungen vom Hammersteinschen Typ, dessen wesentliche

Voraussetzung die Ungleichung

,f(x,y2)-f(x,y1)
_ fin + i < An + i

y2 - yi

Anmerkung bei der Korrektur: Eine ausführliche Untersuchung dieses
Iterationsverfahrens unter anderen Bedingungen wie Monotonieeigenschaften von Kund /
wurde bereits von I. I. Kolodner [13] durchgeführt.

2) Dolph beweist den Satz mit Hilfe eines Iterationsverfahrens mit veränderlichen
Operatoren.
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mit den in Abschnitt 5 definierten Zahlen und Xv (v=ft, n-\-l)t
ist.

7. Krasnoselski [11], S. 165-166, beweist den Satz 2

(Abschnitt 4) über die Existenz einer Lösung der Hammersteinschen
Integralgleichung für hinreichend kleine ß mit Hilfe einer

Folgerung aus dem «Antipodensatz» von Ljusternik, Schnirel-

mann, Borsuk und Krasnoselski. Der Beweis dieses Satzes

benutzt in wesentlichen Teilen die Theorie des topologischen
Abbildungsgrades. Hier soll gezeigt werden, dass die betreffende
Folgerung — sogar eine leichte Verallgemeinerung — schon mit
dem Schauderschen Fixpunktsatz bewiesen werden kann.

Satz 5. A sei ein vollstetiger Operator auf einer Kugel A,
II x II ^ A, (R > 0) eines Banachraumes B in J5, L ein linearer,
vollstetiger Operator auf B in B.

Auf dem Rande von A, also für alle xeB mit || x || A,
gelte

(7.1) H Ax - Lx H < H* - Lx H

Dann existiert ein Fixpunkt x AxeK.
Beweis: 1. Fall: 1 sei Eigenwert von L. Dann existiert

ein x mit || x || R und x Lx. Aus (7. 1) folgt dann x Ax.
2. Fall: 1 sei kein Eigenwert von L. Der auf B definierte

Operator A,
Ax für 11 x 11 ^ R

Ax " "
A TT—TT R) für 11 x 11 > Ä

R VIUII

ist iïiit A vollstetig.
Für II x II ^ R gilt mit (7. 1)

(7.2) \ \ Ax — Lx \ \—II — l(—-—
R Vllxll VlUII

S II x —

Da 1 kein Eigenwert von List,existiert zu jedem genau
ein xeB mit y I-L)x,und für alle yeB mit || ||
11 / — L11 • R gilt
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Il y M ||/ -L1I-Ä 11 (7 — L) x 11 ^ 11 / — L 11 • 11 x 11

also R ^ 11 x 11

Daher folgt aus (7. 2) mit y (7 — L) x

(7.3) \\{A-L)(I -L)-Xy\\^\\y
für I y d -QU R.

T (A—Q (7 —L)-1 ist als Produkt eines vollstetigen und
eines stetigen, linearen Operators vollstetig auf B und bildet
den Rand der Kugel K\ || y || ^ || 7 — L || • R wegen (7. 3)
in K' ab. Folglich existiert nach Schauder ein Fixpunkt
y Ty eK'.

Es gilt daher (7—L) x (A —Q x, also x Ax.
Ist II x II ^ 7?, so ist x Ax\ ist II x II > 7?, so ist

x 1^.4
R 11*11

R

also
11*11

R
11*11'

R mit
n*ir

R R

Damit ist der Satz vollständig bewiesen.

8. Schlussbemerkungen: 1. Es bleibt die Frage offen, ob

auch der « Antipodensatz » von Ljusternik, Schnirelmann,
Borsuk und Krasnoselski [11], S. 124, mit Hilfe des Schauderschen

Fixpunktsatzes ohne Anwendung der Theorie des topo-
logischen Abbildungsgrades bewiesen werden kann. Dieser Satz

besagt, dass für einen vollstetigen Operator A auf einem

Banachraum, dessen Vektorfeld $ — 7 — A in entgegengesetzten

Punkten x und — x einer Kugeloberfläche || x || R
verschiedene Richtung hat,

<£(-*) (j)X

II </>(-*) II 110*11'.

und dort nirgends verschwindet, ein Fixpunkt x Ax, || x || < iï,
existiert.
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2. Allgemeinere Abschätzungsbedingungen für die Funktion

/ (x, y) bei Hammersteinschen Integralgleichungen treten
bereits bei Hammerstein [1] in der Form

lf(x,y)dy ^ yV— + C 7 <
0 ^

auf, wobei X1 die kleinste charakteristische Zahl des symmetrischen,

positiv definiten Kernes ist. Nach unserem Wissen ist
eine Verallgemeinerung (Dolph [4], Krasnoselski [11] u. a.) in
der Form

V

IA„v2 - C„ ^ 2 * J/ (x,y)dy^yn+1v2 + C„+1
0

wobei yn, yn+1 dieselbe Bedeutung wie in Abschnitt 5 haben,
bisher nur gelungen, wenn der symmetrische Kern nicht zugleich
unendlich viele positive und unendlich viele negative Eigenwerte

hat.

3. Der Satz 1 unterscheidet sich von einigen entsprechenden
Sätzen im Spezialfall Hammersteinscher Integralgleichungen
noch dadurch, dass die Normbeschränkung von f — yl nur auf
der Oberfläche einer Kugel verlangt wird. Da der Existenzsatz
aber für Lösungen im Hilbertraum gilt, ist damit die Bedingung
nicht auf ein endliches y-Intervall eingeschränkt.

Existenzsätze, in denen die Lösungen beschränkte, also

insbesondere stetige Funktionen sind, benötigen im Grunde

genommen nur das Anwachsen von / (x, y) in einem endlichen-
allerdings i. allg. vom Kern K (x, y) abhängigen- y-Intervall.
Über die Grösse dieses Intervalls kann man in gewissen Fällen
Aussagen machen, vgl. J. Schröder [8] und E. Bohl [12], die
den Schauderschen Fixpunktsatz auf Intervalle in
halbgeordneten Banachräumen anwenden.

4. Vielfach ist der Schaudersche Fixpunktsatz und
insbesondere der in Abschnitt 4 angewandte Banachsche Fixpunktsatz

auch zur numerischen Abschätzung der Lösungen benutzt
worden (vgl. etwa J. Schröder [8], L. Collatz [9], E. Bohl [12]).
Grundsätzlich ist dies bei allen obigen Sätzen ebenfalls möglich.
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Jedoch erhält man bei den Sätzen im Hilbertraum nicht die
für numerische Zwecke i. allg. gewünschte Betragsabschätzung
der Lösungen. Hierauf wurde in dieser Arbeit, die nur Existenzfragen

behandelt, nicht eingegangen.
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