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ANWENDUNGEN
DES SCHAUDERSCHEN FIXPUNKTSATZES
AUF
GEWISSE NICHTLINEARE INTEGRALGLEICHUNGEN

von H. EsrManN und H.-E. Lagmany

1. Einleitung. Die vorliegende Arbeit soll zeigen, dass einige
in Spezialfiallen der nichtlinearen Integralgleichungen bzw. der
Gleichungen mit vollstetigen Operatoren bekannte Satze, deren
Beweis mit Hilfe der Theorie des topologischen Abbildungs-
grades oder der Leray-Schauaerschen « Theorie der a-priori-
Schranken » durchgefithrt worden ist, allein durcn Anwendung
des Schauderschen Fixpunktsatzes beweisbar sind. Dabei
ergeben sich entweder Verallgemeinerungen der Séatze oder
Vereinfachungen der Beweise. Nur an einer Stelle (Abschnitt 6),
wo neben der Existenz auch die Eindeutigkeit einer Losung
bewiesen werden soll, wird statt des Schauderschen Satzes der
Banachsche Fixpunktsatz fir kontrahierende Abbildungen
benutzt.

In Abschnitt 2 wird der Schaudersche Fixpunktsatz formu-
liert, wie er fiir das Folgende verwendet wird.

Abschnitt 3 enthédlt den Beweis eines Existenzsatzes fiir
Gleichungen der Gestalt Kfu = u mit einem linearen, voll-
stetigen, normalen Operator K und einem im allgemeinen nicht-
linearen Operator f, die beide in einem (i. allg. komplexen)
Hilbertraum operieren. Dabei ist das Verhalten von f auf einer
Kugel || u || = C entscheidend fiir die Losbarkeit.

Hieraus folgt ein allgemeiner Satz von Krasnoselski [11],
den dieser unter Verwendung topologischer Methoden wie der
Homotopieinvarianz des topologischen Abbildungsgrades be-
weist. Der in Abschnitt 4 bewiesene Satz 2 enthilt eine kleine
Verscharfung.

L’Enseignement mathém., t. XI, fasc. 4. 18
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Die Anwendung von Satz 1 auf nichtlineare Integralglei-
chungen vom Hammersteinschen Typ mit symmetrischem
Kern 1) K (z,y) liefert weiter einen einfachen Beweis eines
Satzes von Dolph [4], der von diesem mit Hilfe der Leray-
Schauderschen « Methode der a-priori-Schranken » bewiesen
wurde [3]. Die Moglichkeit, den betreffenden Satz unmittelbar
mit Hilfe des Schauderschen Fixpunktsatzes zu beweisen, liegt
darin begriindet, dass der betreffende Satz iiber a-priori-
Schranken, wie H. Schaefer [6] gezeigt hat, aus dem Schau-
derschen Satz folgt. In Abschnitt 5 wird gezeigt, dass auch
umgekehrt der Schaudersche Fixpunktsatz bei vollstetigen
Operatoren eine elementare Folgerung des Leray-Schauderschen
Satzes ist. Beide Sitze sind in diesem Sinne dquivalent.

In Abschnitt 6 wird ein Existenz- und Eindeutigkeitssatz
mit Hilfe kontrahierender Abbildungen bewiesen. Der Satz
verallgemelinert einen entsprechenden Satz von Dolph fiir nicht-
lineare Hammersteinsche Integralgleichungen auf Gleichungen
mit normalen Operatoren, wobei gleichzeitig der Beweis wesent-
lich vereinfacht wird.

In 7 wird schliesslich ein Existenzsatz fiir nichtlineare Glei-
chungen mit Operatoren in Banachridumen bewiesen, der eine
leichte Verallgemeinerung eines Satzes darstellt, den Krasno-
selski[11] aus dem sogenannten « Antipodensatz » von Ljusternik,
Schnirelmann und Borsuk folgert. Hier gelingt der Beweis
ebenfalls allein mit Hilfe des Schauderschen Fixpunktsatzes
ohne Bezug auf die zum Beweis des Antipodensatzes und der
Folgerung benotigte Anwendung der Theorie des Abbildungs-
grades.

2. J. Schauder [2] bewies den folgenden Fixpunktsatz:

Bildet ein Operator 7 eine konvexe, abgeschlossene Teil-
menge M eines Banachraumes stetig in sich ab und ist 7 M kom-
pakt, so enthialt M einen Fixpunkt u* = Tu*.

1) In diesem Fall sind die Eigenwerte von K reell. Satz 1 umfasst auch Opera-
toren K mit komplexen Eigenwerten. Ausserdem enth#lt er im wesentlichen einen
auf andere Art unter der einschneidenden Voraussetzung der Iréchet-Differenzier-
barkeit der Operatoren bewiesenen Existenzsatz [10].
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Hieraus folgt insbesondere, dass jeder vollstetige Operator T
auf einem Banachraum B mit Werten in B, der die Kugel K,
|u|| = C, in sich abbildet,

(2.1) | Tull = C fur |lull=C,

‘einen Fixpunkt u* = Tu* in K Dbesitzt.
Statt (2. 1) geniigt es jedoch, zu fordern, dass

(2.2) I Tull = C fir [lu]l =

gilt 1). Wir geben einen anderen einfachen Beweis:
Wegen der Vollstetigkeit von 7' gilt

(2.3) HTull =D fir Jflull=C

mit einer Konstanten D.
Der Operator §

’

u fir Jlu|| =C
(2.4 Su = u
C —— fir |ul]l >C
1Al

ist stetig und beschriankt. Daher ist der Operator 7S vollstetig.
TS bildet die Kugel Kj, || u|| £ D, wegen (2.2) und (2. 3) in
sich ab. Daher existiert nach dem Schauderschen Satz
ein Fixpunkt z* = TSu* in K;. Wegen (2.4) und (2. 2) ist
|| TSu* || = || u*|| < C, also u* ein Fixpunkt von 7 in K.

3. Es gilt der folgende Satz.

Satz 1. K sel ein linearer, normaler, vollstetiger Operator
auf einem Hilbertraum A und mit Werten in H,
Fiir samtliche charakteristischen Zahlen 1 von K gelte:

(3.1 |[A—ulzvy (y >0

mit einer komplexen Zahl p.

1) H. ScHAEFER [7], S. 9, 10. M. A. KRASNOSELSKI [11], S. 124, schliesst dies
aus der Homotopieinvarianz des Abblldunasgrades
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f sei ein stetiger, beschrinkter Operator auf H und mit
Werten in H, und es gelte 1)

(3.2) H(f=pDull S yllull
fir alle ue H mit ||u]| = C,(C > 0).

Dann besitzt die Gleichung
(3.3) Kfu =u

eine Losung u* e H mit ||u*|| < C.

Beweis : Nach [b], S. 232-233, existiert ein in H vollstindiges

Orthonormalsystem ¢, @,, ... aus Eigenvektoren und Nullo-
sungen 2), so dass jedes Element zeH eine Darstellung
(3.4 X =) a0,

mit komplexen Konstanten o, besitzt. Aus (3.1) und (3. 4)
folgt A

2 ,LL 2 2 'u 2
(I —uK)x || =Hfov 1—; oy |1* =2l 1—/1— 2
a, |
=292 - = y* || Kx||*,
also
(3.5) NI —pK)x || 2y Kx|| fir xeH.

Wegen (3. 1) und der Vollstetigkeit des linearen Operators K
ist u ein reguldrer Punkt von K. Daher existiert (/ —uK)™! als
linearer, beschriankter Operator auf /, und mit

y=0-pK)x, x=(0-uK) 'y
folgt aus (3. 5)

1 |
(3.6) ||K(I—MK)—1J’||§;HJ’H fir yeH.

1) I = identischer Operator.

; . . 1
2) Koy = %;‘Pv; ist @, Nullosung, so sei 4, = o, also j'_;' = (.
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Wegen der Vollstetigkeit von K und der Stetigkeit und
Beschrianktheit der Operatoren (I —uK)™! und f — ul ist

T = K(I—pK)™" (f—ul)

ein vollstetiger Operator auf H.
Aus (3.6) und (3. 2) folgt

HTull £|lu]| fiir ueH mit ||ul] = C.

Folglich existiert nach dem Schauderschen Fixpunktsatz ) eine
Losung u* der Gleichung Tu = u mit || u* || £ C. Diese Glei-
chung ist aber wegen der Vertauschbarkeit von K mit seiner
Resolventen (I —uK)™! dquivalent der Ausgangsgleichung (3.3),
q. e. d.

Folgerung: Gilt statt (3.2) die Ungleichung

3.2) N(f—pDull sallull +4, (420), ueH,
O0<a<y

A | | |
fir || u ]| = —— = C, so gilt die Aussage des Satzes ebenfalls;

denn aus (3.6) und (3. 2') folgt
Tl = KA =g =l < X1l + 5 = €
fir |Jull = C.

Der Schaudersche Fixpunktsatz liefert wie oben die Behauptung.

4. Der Beweis von Satz 1 zeigt, dass die Aussage richtig
bleibt, wenn man auf die Giltigkeit des Entwicklungssatzes
verzichtet und statt (3. 1) nur fordert, dass u kein Punkt des
Spektrums von K ist und (3. 2) mit

1
4.1 < — . L= K({—uK) !
(4. 1) PE T K(I—-pK)™

gilt.

1) Siehe Abschnitt 2,
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Hieraus folgt ein Existenzsatz 1) von Krasnoselski, den dieser
mit Hilfe der Theorie des Abbildungsgrades beweist.

Satz 2. Essei K (z, y) Element des L2 {[a, b] x [a,b,]},f (z, y)
eine stetige Funktion fir a <z £ b, — © <y < o, die der
Ungleichung

4.2) 1fGe,y) —pyl SBlyl+ Y S,® [y + D(x)

v=1

geniigt mit einem reguldren Punkt u (der komplexen Zahlene-

, .

bene) von K, 0 £ B < (L Operator wie in (4. 1)),

| L
S, (x)el’™ 0 <p, <1,v=1,..,n D) el?]a,b].

Dann existiert eine Losung  (x) € L?[a, b] der Hammerstein-
schen Integralgleichung

b
V(x) = [K(x,2)f(z,¥(2))dz .

Bewets: Unter den obigen Voraussetzungen iiber §, gilt
S, (@) | ¥ (@) |'"P e L?, wenn y (z) e L®. Weiter folgt nach der
Holderschen Ungleichung

S, ) W)™ = 1S, Py |1>P¢ " ™dx <
(4. 3)

2

b “ Dy b 1—py
= {Ilsv(x)l”” dx} .{jld/(x) Izdx} < M2y |2 P

mi
H T 2

b ad py
M? = max {j'lSv(x)|dex} .

Nach Krasnoselski[11], Seite 30, wirkt der Operator f:fy =
f(z,¥ (z)) stetig und beschriankt in L2

1) M. A. KRASNOSELSKI [11], S. 165. Dort wird die Existenz einer Losung fiir
« hinreichend kleine B » bewiesen. An Stelle des Intervalls [a, b] kann eine messbare
Menge G des n-dimensionalen Raumes treten.
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Aus (4.2) und (4. 3) folgt

S —mwp Il = Bl I+ X 1S, () -1y P72 I+ 11D ) ] =
SBIYI+ M) Ny =™ + DIl =

Mn D
___._..__‘ <
§<B+ YT MH)HM_”LHWH

e
fiir || || = C bei einem hinreichend grossen C = 1.
1
Damit gilt (3. 2) mit y = TL] und nach obiger Bemerkung

die Behauptung.

5. Satz 3 (C. L. Dolph [4]). Es sei

b
Ko = [ K(x,») o (y)dy

ein vollstetiger, hermitescher Operator im L2 [a, 0],
WSA L, S <0< A2 S

die Folge der charakteristischen Zahlen 1, von K.

Sei ferner f (z,y) eine stetige Funktion fir ¢« <z < b,
— 0 <y < o, fir die positive Konstanten C, y, und Zahlen
Koy Upry Wit A, < p, < p,41 < 4,4 existieren, so dass die
Ungleichungen

Uy —CSf(x,y) Sty y +C flir  y >y,
(5.1)
:un+1y_C§f(xay)§uny+C fir y<'—y0

gelten. Dann existiert eine Losung ¢ (z) € L2 der Hammerstein-
schen Integralgleichung

Yy (x) = [ K, f(y,¢()dy .




— %A —
Bewets : Mit

An-’rl + '1n . ’ln+1 - )“n

2 ’ 2
o = max (| u—p, |, | p— a4y |) <y folgt aus (5. 1)

(5.2) | fCp) —wylsalyl+C fir |y|>y,.

Wegen der Stetigkeit von f existiert daher eine Konstante C},
so dass (5. 2) mit C; statt C fiir alle y gilt.
Daraus folgt dann

Hfp) —pyll Sllalyl + Cll Sallyll + 4,
(4 =C,/b—a).

Satz 1 mit Folgerung liefert die Behauptung.

Den Satz 3 bewies Dolph 1) mit Hilfe der « Leray-Schauder-
schen Methode der a-priori-Schranken », wihrend er oben un-
mittelbar mit Hilfe des Schauderschen Satzes bewiesen wurde.
H. Schaefer [6] gab einen eleganten Beweis des von Dolph
benutzten Spezialfalles dieser Methode, der nur den Fixpunktsatz
von Schauder bzw. Tychonoff benutzt, und verallgemeinerte ihn
gleichzeitig auf vollstetige Abbildungen in lokalkonvexen, voll-
standigen Hausdorffschen topologischen Vektorraumen.

Man kann nun auch ebenso leicht zeigen, dass umgekehrt aus
dem betreffenden Satz der a-priori-Schranken der Schaudersche
Fixpunktsatz folgt, so dass man diesen Spezialfall der Leray-
Schauderschen Methode als eine blosse Umformulierung des
Schauderschen Fixpunktsatzes ansehen kann.

Wir beschrinken uns bei der Formulierung auf den in
Hinblick auf Hammersteinsche Integralgleichungen allein inter-
essierenden Fall von Banachridumen 2).

Wir setzen die Giiltigkeit des folgenden Satzes voraus.

1) In [4], S. 295 weist Dolph auf die fundamentale Rolle der a-priori-Schranken
hin. Siehe J. LEray und J. ScHAUDER [3], S. 64, Théoreme 1.

2) Es sei hier jedoch bemerkt, dass dieselbe Beweismethode auch bei lokal-
konvexen, vollstindigen, Hausdorffschen topologischen Vektorraumen angewandt
werden kann,
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Satz A. — A sei eine vollstetige Abbildung eines Banachrau-
mes B in sich.
Dann gilt: Ist die Teilmenge

{xeB:x = AAx, 0<l<l1}

beschrinkt, so ist die Gleichung
X = AAX

fir jedes Ae[0, 1] losbar.
Hiermit beweisen wir den Schauderschen Fixpunktsatz:

Satz B. — T sel eine vollstetige Abbildung der abgeschlosse-

nen Kugel
K, ={xeB:||x]|| £r}

eines Banachraumes B in sich.
Dann existiert ein Fixpunkt x = Tz in K,.

Beweis: o) Aus Satz A folgt unmittelbar: Ist A ein auf dem
Banachraum B definierter vollstetiger Operator, der B in die
Kugel K, abbildet, AB = K,, so besitzt A einen Fixpunkt z € X,.

B) Nun habe T die obigen Eigenschaften. Dann betrachten
wir die Abbildung A = 7'§ mit

X fir ||x|| =7
(5.3) Sx = x
r fir J|x|| >r.
[ ]

S ist stetig und beschrénkt, also 4 = T'S vollstetig. A erfiillt
die Voraussetzungen von o). Daher existiert ein Fixpunkt
x = Az in K,, der wegen (5. 3) Fixpunkt von 7T ist.

6. Es gilt der folgende Existenz- und Eindeutigkeitssatz.

Satz 4. Es erfiille K die Voraussetzungen des Satzes 1. f sei
ein Operator auf dem Hilbertraum /, fiir den die Lipschitz-
bedingung

6.1 [[(f—uhe—-(f —uDyll Salle =y, @, ¥eH,

mit einer Konstanten « < y gilt, wobei y die in (3. 1) geforderte
Eigenschaft habe.
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Dann besitzt die Gleichung Kfu = u genau eine Losung
u* e H, gegen die die Iterationsfolge 1)

U,y1 = Tu,, n=20,1,2,...,

T = K ({—pK)™! (f—ul) bei einem beliebigen Anfangselement
u, € H konvergiert.

Beweis: Wie im Beweis von Satz 1 folgt
1
KT -pK) 'yl £ 5 Hyll  fur yeH.
Daher gilt mit (6. 1) fiir den Operator T

1
1To = TWII S 11/ = uDo = (f = uD¥ | g—;‘fuco—w

fir ¢, Yy e H. Wegen Z<tist T kontrahierend. Daher folgt aus
4

dem Banachschen Fixpunktsatz und der Aquivalenz der Glei-
chung Tu = u mit der Ausgangsgleichung Kfu = u die Behaup-
tung.

Bemerkung: «) Wie im Abschnitt 4 geniigt es, in Satz 4 zu
fordern, dass die Gleichung (4. 1) gilt und p reguldrer Punkt
von K ist, d. h. (/—uK)™! als linearer, beschrinkter Operator
auf /1 existiert. In diesem Fall kann auch die Bedingung der
Vollstetigkeit durch die Stetigkeit von K und der Hilbertraum H
durch einen allgemeineren Banachraum ersetzt werden.

B) Mit dhnlichen Uberlegungen wie in Abschnitt 5 folgt aus
Satz 4 leicht ein entsprechender Existenz- und Eindeutigkeits-
satz 2) von Dolph [4], S. 291, fiir den Spezialfall nichtlinearer
Integralgleichungen vom Hammersteinschen Typ, dessen wesent-
liche Voraussetzung die Ungleichung

< f(an’.z) _f(xayl)
N Y2 = V1

S Muvt <ty

An < Uy

1) Anmerkung bei der Korrektur: Eine ausfiihrliche Untersuchung dieses Itera-
tionsverfahrens unter anderen Bedingungen wie Monotonieeigenschaften von Kund f
wurde bereits von I. I. Kolodner [13] durchgefiihrt.

2) Dolph beweist den Satz mit Hilfe eines Iterationsverfahrens mit verinderlichen
Operatoren.
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mit den in Abschnitt 5 definierten Zahlen p, und 4, (v=n, n+1),
ist.

7. Krasnoselski [11], S. 165-166, beweist den Satz 2 (Ab-
schnitt 4) iber die Existenz einer Losung der Hammersteinschen
Integralgleichung fiir hinreichend kleine S mit Hilfe einer
Folgerung aus dem « Antipodensatz » von Ljusternik, Schnirel-
mann, Borsuk und Krasnoselski. Der Beweis dieses Satzes
benutzt in wesentlichen Teilen die Theorie des topologischen
Abbildungsgrades. Hier soll gezeigt werden, dass die betreffende
Folgerung — sogar eine leichte Verallgemeinerung — schon mit
dem Schauderschen Fixpunktsatz bewiesen werden kann.

Satz 5. A sei ein vollstetiger Operator auf einer Kugel K,
||z|| £ R, (R > 0) eines Banachraumes B in B, L ein linearer,
vollstetiger Operator auf B in B.

Auf dem Rande von K, also fiir alle zeB mit ||z || = R,
gelte
(7.1) |Ax — Lx || = ||x — Lx || .

Dann existiert ein Fixpunkt x = AzeK.

Beweis: 1. Fall: 1 sei Eigenwert von L. Dann existiert
ein z mit ||z || = Rund z = Lz. Aus (7. 1) folgt dann = = Az.
2. Fall: 1 sei kein Eigenwert von L. Der auf B definierte

Operator /],
Ax fir ||x|| £R

~

Ax =1 ||x|] X y
z A(IIXHR> fir |[|x]|| >R,

1st mit 4 vollstetig.
Fir ||z || = R gilt mit (7.1)

o x| <x > (x
7.2) |lAx — Lx|| = —— || 4 R) -
(7.2) [l Ax — Lx|| 7z | B N )H

= llx — Lx|].

Da 1 kein Eigenwert von L ist, existiert zu jedem y € B genau
ein ze€B mit y = (I—L) z, und fir alle yeB mit |yl =
| 7 — L||-R gilt
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Hyll =1l =L{|-R=1{d-L)x|| <[{I—=LI[l-{Ix]l,
also R = ||x]].

Daher folgt aus (7.2) mit y = (/ —-L) x

(7.3) (A —-LyT =Ly 'yl <yl
fir |yl =0 =L)|R.

T = (A-L) (I-L)"" ist als Produkt eines vollstetigen und
eines stetigen, linearen Operators vollstetig auf B und bildet
den Rand der Kugel K', ||y|| £ ||1 — L||- R wegen (7. 3)
in K’ ab. Folglich existiert nach Schauder ein Fixpunkt
y = TyekK'.

Es gilt daher (/=L) z = (A—L) z, also x = Ax.

Ist ||z ]| < R, soist z = Az;ist ||z]|| > R, so ist

~ [ x || X
x = Ax = A R ),
R x|l

X X o X !
also R =4 R mit R|| =R
x| (Hxll ) H | x| ”

Damit 1st der Satz vollstdndig bewiesen.

8. Schlussbemerkungen: 1. Es bleibt die Frage offen, ob
auch der «Antipodensatz» von Ljusternik, Schnirelmann,
Borsuk und Krasnoselski [11], S. 124, mit Hilfe des Schauder-
schen Fixpunktsatzes ohne Anwendung der Theorie des topo-
logischen Abbildungsgrades bewiesen werden kann. Dieser Satz
besagt, dass fiir einen wvollstetigen Operator A auf einem
Banachraum, dessen Vektorfeld ¢ = I — A in entgegengesetz-

ten Punkten 2z und — z einer Kugeloberfliche || z || = R ver-
schiedene Richtung hat, ,
¢ (—x) 2 ¢ x
e (=311 " Nox|l’.

und dort nirgends verschwindet, ein Fixpunkt z = Az, ||z || <R,
existiert.
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9. Allgemeinere Abschitzungsbedingungen fiir die Funk-
tion f (x,y) bei Hammersteinschen Integralgleichungen treten
bereits bei Hammerstein [1] in der Form

2

v v
ff(xa}’)d}’§3’3+ca '})</11,
0

auf, wobei /, die kleinste charakteristische Zahl des symmetri-
schen, positiv definiten Kernes ist. Nach unserem Wissen 1st
eine Verallgemeinerung (Dolph [4], Krasnoselski [11] u. a.) in
der Form

/’lnvz - Cn § 2j.f(xay)dy é :u'n+1v2 + Cn+1 ]
0

wobei pu,, u,+; dieselbe Bedeutung wie in Abschnitt 5 haben,
bisher nur gelungen, wenn der symmetrische Kern nicht zugleich
unendlich viele positive und unendlich viele negative Eigen-
werte hat.

3. Der Satz 1 unterscheidet sich von einigen entsprechenden
Satzen im Spezialfall Hammersteinscher Integralgleichungen
noch dadurch, dass die Normbeschriankung von f — u/ nur auf
der Oberfliche einer Kugel verlangt wird. Da der Existenzsatz
aber fiir Losungen im Hilbertraum gilt, ist damit die Bedingung
nicht auf ein endliches y-Intervall eingeschrankt.

Existenzsidtze, in denen die Losungen beschrinkte, also
inshesondere stetige Funktionen sind, bendtigen im Grunde
genommen nur das Anwachsen von f (z, ¥) in einem endlichen-
allerdings 1. allg. vom Kern K (z,y) abhéngigen- y-Intervall.
Uber die Grosse dieses Intervalls kann man in gewissen Féllen
Aussagen machen, vgl. J. Schrider [8] und E. Bohl [12], die
den Schauderschen Fixpunktsatz auf Intervalle in halb-
geordneten Banachriaumen anwenden.

4. Vielfach 1st der Schaudersche Fixpunktsatz und ins-
besondere der in Abschnitt 4 angewandte Banachsche Fixpunkt-
satz auch zur numerischen Abschétzung der Losungen benutzt
worden (vgl. etwa J. Schrioder [8], L. Collatz [9], E. Bohl [12]).
Grundséatzlich 1st dies bel allen obigen Satzen ebenfalls moglich.
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Jedoch erhdlt man bei den Sdtzen im Hilbertraum nicht die
fir numerische Zwecke 1. allg. gewiinschte Betragsabschétzung
der Losungen. Hierauf wurde in dieser Arbeit, die nur Existenz-
fragen behandelt, nicht eingegangen.
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