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SOCIETE MATHEMATIQUE SUISSE

Friihjahrssitzung wn Bern, 7. Juni 1964

Am 3. Juni 1964 fand im mathematischen Institut der Uni-
versitdt Bern die Friihjahrssitzung der Gesellschaft statt. Herr
Dr. J. P. Sydler, Direktor der Bibliothek der ETH, hielt einen
Vortrag iiber « Apercus sur la vie et I'oecuvre de Jacob Steiner ».
Anschliessend begaben sich die Teilnehmer zum gemeinsamen
Mittagessen nach Utzenstorf, dem Geburtsort Jakob Steiners. Zum
Abschluss wurde gemeinsam die J. Steiner-Gedenktafel an der Kirche
besucht.

APERCUS SUR LA VIE ET SUR I’BUVRE
DE JAKOB STEINER

par J.-P. SypLER

Jakob Steiner, dont vous m’avez demandé d’honorer aujourd’hui
la mémoire, est mort il y a un peu plus de cent ans ici, & Berne, le
1er avril 1863. Au lieu de chercher moi-méme une épithete élogieuse
pour ce grand savant, permettez-moi de rappeler quelques citations:
Pour Otto Hesse: « Steiner gilt fiir den ersten Geometer seiner Zeit. »
Geiser dit: « Wenn in einem spéatern Zeitalter ein Geometer alle seine
Zeitgenossen und Mitmenschen an Fiille der Erfindungskraft und
Meisterschaft der Darstellung tiberglanzt, so wird man ihn den wie-
dererstandenen Steiner nennen.» Geiser dit encore, a I’exhumation
des restes de Steiner: « Wir haben in ihm den grossten Geometer
unseres Zeitalters besessen, auf dessen Schopfungen noch kiinftige
Jahrhunderte in Forschung und Lehre weiterbauen werden. » Quant
a Jakobi, il écrit: « Er hat nicht nur die Synthese gefordert, sondern
auch fir alle andere Zweige der Mathematik ein Muster einer voll-
kommenen Methode und Durchfiihrung aufgestellt. » Cremona parle
du « Sphinx célebre » et Kldoden, directeur de la Gewerbeschule de
Berlin, ira méme jusqu’a écrire: « Kis ist in der Tat nicht zuviel
gesagt, wenn man behauptet, dass nach dieser Arbeit der Verlust
der Biicher des Apollonius v. Perga von den Beriihrungen verschmerzt
werden kann, da hier mehr gegeben wird, als dort verloren. »
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Rappelons enfin que, sur la carte de féte du premier congres inter-
national de mathématiques & Zurich, on a représenté les portraits des
plus grands mathématiciens suisses des trois siecles passés: les Ber-
noulli, Euler et Steiner.

Je ne saurais avoir la prétention de vous montrer en un court
exposé toutes les faces du génie d’un homme qui suscite tant d’éloges
et ¢’est pourquoi je me bornerai a quelques apergus de sa vie et de
son ceuvre.

Steiner est né le 18 mars 1796 & Utzensdorf, petit village qui nous
est aussi connu grice a un contemporain de Steiner, Albert Bitzius,
dit- Jérémias Gotthelf. Steiner est né dans une famille de condition
modeste et son éducation fut tres rudimentaire. A 14 ans, il savait
a peine lire et écrire; par contre, il montrait une disposition treés nette
pour le calcul et organisa méme un petit commerce, en faisant de téte
les tractations des paysans au marché. En 1814, malgré 'opposition
de ses parents, il se rend & Yverdon ou Pestalozzi I'accepte gratuite-
ment dans son institut. Steiner se met au travail avec une espece de
fureur. Les cours de mathématiques de Maurer et de Leuzinger I’en-
thousiasment. Biitzberger a tracé un portrait du jeune Steiner de ces
années: on le voit se battre avec les polygones, en étudier toutes les
propriétés,  intersections, rapports, points singuliers. Au bout de
cing semaines, il résoud les problemes désignés comme difficiles. Tout
ne vient d’ailleurs pas par inspiration, comme le révele sa remarque:
« Gefunden Samstag den 10. Christmonat 1814, 3-+3-+44 St. daran
gesucht, des Nachts um 1 Uhr gefunden.» Cette obstination porte
ses fruits. Apres un an et demi, il est engagé comme maitre de mathé-
matiques a 'institut. Trois ans plus tard, en 1818, il part pour Heidel-
berg avec un bon certificat de Pestalozzi. Il y reste cing semestres,
donnant des lecons particulieres pour payer ses études & I'université.
Tout & coup, un peu trop précipitamment, il part pour Berlin ot un
ami lui a conseillé de se présenter pour une place au Gvmnase \Werden.
Mais il lui faut d’abord subir les examens habituels. Si son travail de
mathématiques est tres bien noté, les remarques de Hegel sur celui
de philosophie sont déplorables. Il est cependant autorisé & donner
provisoirement des cours de mathématiques aux degrés inférieurs,
apres avoir passé un examen oral ol sa précision est louée, mais ol
on constate beaucoup de lacunes, méme en mathématiques. Pourtant,
dix-huit mois plus tard, il est congédié, car on ne peut pas lui confier
I'enseignement, d’une autre discipline. 1l doit alors donner des lecons
particuliéres pour subsister. Il passe d’ailleurs pour un excellent pro-
fesseur privé et compte parmi ses éléves le prince Auguste et le fils
de Wilhelm von Humboldt. Steiner se plaint de ne pouvoir consacrer
tout le temps qu’il désire a ses recherches. Cependant ses travaux de
géométrie commencent & faire parler de lui, puisque Crelle se décide
en 1826 a publier son Journal fiir die reine und angewandte Mathematik,
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certain qu’il est de pouvoir compter sur les contributions de deux
savants: Steiner et Abel. Autre circonstance heureuse: On crée en 1826
la Gewerbeschule de Berlin et le directeur Kléden, partisan des
méthodes de Pestalozzi, fait engager Steiner. Son enseignement est
certainement excellent, mais son caractere laisse parfois a désirer.
Kléden doit le prier, en 1831, «de ne pas employer d’expressions
grossieres, de ne pas se laisser aller a la colére, car il nuit ainsi & la
réputation de 1'école ».

Nous voici arrivés en 1832, 'année ou Steiner publie sa « Syste-
matische Entwicklung » et nous nous trouvons au tournant de sa vie.
Les événements s’enchainent favorablement. En 1834, il est nommé
professeur extraordinaire a I’Université de Berlin, poste qu’il occupera
jusqu’a sa mort. En 1833 déja, I’Université de Konigsberg lui décerne
le titre de docteur h. c.; en 1834 il devient membre de I’Académie
des sciences de Berlin; en 1853, membre correspondant de I’ Accademia
dei Lincei, puis en 1854, membre correspondant de 1’Académie des
sciences de Paris.

Si sa renommée est assurée, il n’en a pas moins & faire face a
d’autres soucis. Comme tout professeur, il combat pour améliorer sa
situation, mais ne sera jamais nommé professeur ordinaire. Et surtout,
sa santé laisse a désirer. En 1833 déja, il doit demander deux mois
de congé pour se remettre et plus tard, toujours plus fréquemment,
il s’arrétera pendant un semestre, si bien que sa vie se passera a
Berlin durant I'hiver et de ville d’eau en ville de cure durant 1'été:
Vichy, Bad Gastein, Righi. Il revient de plus en plus souvent & Berne
ot il retrouve Schléfli et ou il est méme question pour lui d’une chaire
a I'université. Il s’éteint a Berne le 1T avril 1863.

Telle fut, brievement décrite, la vie de Steiner. Il nous faut
encore voir un peu son caractere.

Son don le plus remarquable fut probablement sa vision de
I’espace. 1l devait se représenter les figures avec une précision et une
plasticité incroyables et réussir a en déduire toutes sortes de consé-
quences. Souvent, dans sa correspondance avec Schlifli, il note qu’il
n’a pas encore une vue tres nette de certaines propriétés. Il ne s’agit
pas de relations simples; cela concerne les genres de contact de cones
en des points multiples ou les relations entre les tangentes de courbes
compliquées. Il est une phrase touchante de Steiner malade qui se
rapporte a cette vision. Il se plaint & Schlafli de sa fatigue et dit qu’il
s’endort «lorsqu’il ferme les yeux pour voir ». Cette visualisation a
évidemment ses dangers et ses limites. Steiner en était conscient et
¢’est pourquoi il soumettait volontiers ses résultats au controle des
analystes, & Jakobi par exemple, a Schlafli surtout. Dans l'intro-
" duction & son mémoire sur les maxima, 1l écrit d’ailleurs:

« Séduits par la facilité que donne le calcul pour résoudre cer-
taines classes de questions relatives aux maxima et minima, quelques




— 243 —

géométres ont méme conseillé Pabandon entier de la synthese pour
se livrer uniquement a la voie plus facile de I’analyse... Nous croyons
que les deux méthodes, bien loin de s’exclure et de se repousser
mutuellement, sont au contraire indispensables pour vaincre les
grandes difficultés de la matiére et conduire ainsi & la solution des
nombreux problémes qui restent encore & traiter; une fois le bub
atteint, il sera toujours temps de comparer entre elles ces deux
méthodes et les services qu’elles auront pu rendre. »

Non seulement il sent parfois la nécessité d’étayer ses résultats
par des démonstrations plus siires, mais il doute méme que ses résul-
tats soient justes. Il termine par exemple son travail sur les courbes
a centres par les mots suivants:

« Ich will hier noch bemerken, dass ich einige in dieser Abhandlung
aufgestellten Satze nicht gentigend bewiesen habe, sodass dieselben
moglicherweise fehlerhaft sein konnen. Sollte dies der Fall sein, so
mag die Neuheit und Schwierigkeit des Gegenstandes, zumal im
Vergleich mit der von mir befolgten synthetischen Betrachtungs-
weise, mich einigermaassen entschuldigen. »

Mais si Steiner n’aime pas l'analyse, il semble adorer I’analyse
combinatoire. Cela lui est peut-étre resté de ’enseignement qu’il recgut
a Yverdon, ou on lui apprit & voir tous les détails des probléemes.
Un exemple caractéristique apparait dans son article sur les courbes
du quatrieme degré. Les 28 tangentes doubles peuvent étre classées
4 a 4 en 315 groupes, de telle sorte que les 8 points de contact sont
sur une conique. Les 378 points d’intersection de ces tangentes cons-
tituent 63 groupes de 6 points situés sur une conique. A chaque
point d’intersection P correspondent deux points Q et R, intersection
des cordes de contact. Les 18 points P, Q, R d’'un méme groupe sont
sur une cubique. Chacune des 63 cubiques coupe la courbe de base
en 12 points. Ces 756 points sont les points de contact des coniques
surosculatrices qui touchent encore la courbe en un autre point.
Et Steiner continue encore. J'avoue que cette débauche de résultats
a un certain inconvénient: ils sont si touffus qu’on en oublie parfois
la simplicité de leur origine et la lecture de certaines pages de Steiner
en devient assez ardue.

Kt pourtant ce besoin de synthese est fondamental chez Steiner.
11 écrit dans son curriculum vitae:

« Schon als Schiiler drang sich mir, nachdem ich mehrere Lehr-
biicher der Geometrie kenneu gelernt, die Zufilligkeit der Ordnung
auf, die aus dem Bediirfnis des Zusammenhanges der einzelnen Sitze
als Solcher entsprang; ich fand darin etwas Willkiirliches, dass man
die Notwendigkeit der Wissenschaft aus ihrem materiellen Inhalt
nachwies, statt dass nach einem mich dunkel belebenden Gefiihl die
ganze Manifaltigkeit der Materie aus einer allgemeinen Einheit der-
selben folgen und demgemaiss erschépft werden miisste...
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» Als Lehrer stellte ich mir daher die Aufgabe, womoglich eine
jede Desziplin nur als Resultate der Entwicklung dieses einzigen
Gedankens an ihrem Orte heraustreten zu lassen. »

Et ¢’est vraiment toute sa vie qu’il consacrera a cette recherche
de synthese.

Mesdames et Messieurs, laissez-moi relever aussi un coté négatif
du caractere de Steiner, qui touche d’ailleurs plus a la morale qu’a
la science, mais qui dégoit un peu, comme toujours lorsque 1’on cons-
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tate qu'un génie est aussi un homme et qu’il a aussi ses défauts.
J’aimerais parler de sa susceptibilité et de son comportement avec
les découvertes des autres. En effet, il a souvent eu des démélés avec
d’autres savants auxquels il reprochait de ne pas assez reconnaitre ses
mérites. Il est probable que la brouille qu’il eut avec Schlafli ait eu
la méme origine. Par contre, lui-méme oublie assez souvent de citer
ses sources. Par exemple, on lit dans une de ses notes de 1853: « Ein
Englénder (Cayley) soll gefunden haben, dass /2 im Allgemeinen
27 Geraden enthélt. » Une autre remarque montre aussi clairement
qu’il connaissait les travaux de Sylvester et de Cayley, mais on ne
trouve aucune citation dans le travail sur les surfaces du 3¢ degré
qu’il publie I’année suivante. Il est certain aussi que Jakobi lui fit
connaitre les ouvrages de Poncelet. Ailleurs encore, Steiner indique
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les relations de Pliicker pour les courbes et s’en attribue la paternite.
Il est possible que, dans la fizvre de ses découvertes, il ait effective-
ment oublié que certaines idées n’étaient pas de lui et il est fort
possible qu’il les ait redécouvertes lui-méme. Méme en écartant tous
les cas oit un doute subsiste, I’ceuvre originale de Steiner reste im-
mense. Pour en avoir une idée, dessinons peut-étre le diagramme de
ses publications (fig. 1).

Sa premiére ceuvre mire pour la publication n’est peut-étre pas
une ceuvre transcendante, mais elle est remarquable. Il s’agit de son
Allgemeine Theorie iiber das Beriihren und Schneiden der Kreise und
der Kugeln. Comme vous le savez, cet ouvrage a eu une histoire
étrange. Steiner en écrivit le manuscrit durant les années 1823-26.
Or elle ne fut publiée qu’en 1931 par Fueter et Gonseth, lorsque I’on
eut mis en valeur les papiers retrouvés & Berne. Autre singularité:
Le titre original en était: Das Schneiden (mit Einschluss der Beriihrung)
der Kreise in der Ebene, das Schneiden der Kugeln im Raume, und das
Schnetden der Kreise auf der Kugelfliche. Mais dans le livre publié,
on ne trouve plus trace du chapitre sur le contact des cercles sur la
sphere. Cependant, il semble que M!e Jegher ait trouvé des fragments
de cette partie manquante parmi les documents de I'Institut de
mathématiques de Berne. Il est donc pensable qu'on ne connaisse
pas tout I'ccuvre de Steiner et c’est la un point sur lequel nous
reviendrons.

Dans son étude des cercles, Steiner part des propriétés les plus
élémentaires, des axes de méme puissance et des points de similitude;
le contact est considéré comme cas particulier de la section sous un
certain angle. Par une progression sire, on arrive a toutes les pro-
priétés des cercles et des spheres et 'ouvrage s’acheve par 106 exer-
cices qui traitent tous les cas possibles pour 1, 2, ..., 8 sphéres soumises
a certaines conditions. I.’ensemble donne une impression d’équilibre,
d’ordre étonnant, qui suggére vraiment 'idée d’'un schéma général
dont tout découle, au point que Gonseth a pu émettre ’hypothese
que Steiner a employé, plus ou moins consciemment, le modéle
obtenu en projetant le plan sur la sphere et en remplacant les cercles
par leur pole par rapport a cette sphere. Cela expliquerait aussi pour-
quoi 1l a fait disparaitre le chapitre des cercles sur la spheére, trop
révélateur de sa méthode. N'oublions pas que fleurissait alors la mode
des énigmes posées aux autres savants. On retrouve d’ailleurs dans
toute I'ceuvre de Steiner quantité de problemes ou de théorémes dont
on ne sait pas tres bien §’il les a résolus ou seulement proposés.

Puisque nous parlons des cercles, citons brievement une autre
publication de Steiner, la deuxiéme qui ait paru dans le Journal de
Crelle et qui porte le titre modeste de « Einige geometrische Betrach-
tungen ». Steiner y résoud différents probléemes sur les cercles, en
particulier le probléeme de Pappus qui établit des relations entre les

L’Enseignement mathém., t. XI, fasc. 2-3. 16
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rayons des cercles en chaine inscrits entre deux cercles, et surtout le
probleme de Malfatti: Trouver trois cercles tangents deux a deux et
dont chacun touche deux cotés d’un triangle donné (fig. 2). Non seu-
lement Steiner résoud le probleme avec tous ses cas particuliers, mais
il le généralise en le transportant dans l’espace: Trouver sur une
quadrique trois coniques tangentes deux a deux entre elles et tan-
gentes chacune a deux de trois coniques données. La encore, on peut
se demander s’il n’a pas employé son modele de la spheére. Ce que
nous pouvons aussl souligner dans cette publication, c’est le besoin
que Steiner avait d’établir des relations entre des propriétés a pre-
mieére vue indépendantes. Relevons aussi une citation de I'introduction:
« Der Verfasser pflegt in der Regel nicht eher iiber eine Aufgabe oder
iber einen Gegenstand weiter nachzuleses, bevor er nicht selbst eine
Auflésung oder Sitze dariiber gefunden hat, um alsdann seine Resul-

Fig. 2.

tate mit den schon vorhandenen zu vergleichen. » On comprend que,
avec une telle disposition d’esprit, Steiner n’ait pas manqué d’avoir
des difficultés de priorité avec d’autres savants.

Avant d’aborder les découvertes fondamentales de Steiner, pen-
chons-nous encore un moment sur un autre de ses grands themes,
celui des extrémes. Faisons un saut dans le temps et voyons un peu
Pouvrage: Ueber Maximum und Minimum bei den Figuren in der
Ebene, auf der Kugelfliche und im Raume iiberhaupt. Tout d’abord,
un détail bibliographique. La premiére partie fut traduite et publiée
en francais dans le Journal de mathématiques de Liouville apres avoir
6t¢ présentée en 1841 a4 I’Académie des sciences de Paris, puis les deux
parties parurent, en francais toujours, dans le Journal de Crelle en
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1842 et ne furent publiées en allemand que dans les (Buvres complétes,
d’aprés le manuserit original, en 1882. C’est & ce moment d’ailleurs
que le manuscrit semble avoir disparu, probablement dans la corbeille
a papier de la rédaction. Nous ne voulons pas nous appesantir sur
la rigueur axiomatique des démonstrations de Steiner. Il semble que,
presque toujours, il admette Iexistence du maximum. Par contre, il
s’efforce de trouver plusieurs méthodes pour arriver aux résultats.
Prenons par exemple le cas des figures de périmeétre donné dont I’aire

/]

doit étre maximale. Une telle figure doit d’abord étre convexe. S1 A
et B sont les points qui divisent le pourtour en deux longueurs égales,
la droite AB doit couper la surface en deux figures de méme aire,
sinon, par symétrie, on obtiendrait une surface plus grande. Soit D
un point sur arc AB. L’angle ADB doit étre droit, sinon le triangle
ADB pourrait étre transformé en un triangle rectangle, de surface
plus grande, sur les cdtés duquel on pourrait accoler les parties de
surface sous-tendues par AD et DB. Par conséquent, la surface
cherchée est un cercle. 5

Autre méthode: En partant de considérations simples sur les
triangles, on montre que, si les c6tés d’'un polygone, sauf la base, sont
donnés, ’aire est un maximum si tous les sommets sont sur un cercle
centré au milieu de la base. Et on retrouve le cercle en remplacant
dans Je cas précédent un triangle par un polygone.

Ou encore: La ligne de longueur donnée qui joint deux points des
cotés d'un angle et qui délimite une surface d’aire maximum est un
arc de cercle centré & I'intersection des droites. En effet, cette ligne
doit étre convexe et symétrique par rapport a la bissectrice des deux
droites, puis symétriques par rapport a toutes les autres bissectrices
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des demi-angles formés. C’est donc un arc de cercle. Et de 1a, Steiner
se permet de passer directement au cercle, sans trop se préoccuper
de ce qui se passe lorsque I'angle des droites est plus grand que .

Sa méthode la plus connue est celle de la symétrisation qu’il donne
comme nouvelle possibilité de démonstration. Considérons dans un
triangle par exemple tous les segments contenus dans le triangle et
paralleles & une direction fixe. Déplacons ces segments sur leurs
droites de facon & ce que leurs extrémités soient symétriques par

rapport & un axe qui leur est perpendiculaire. Le quadrilatére obtenu
a méme surface, mais son périmetre est plus petit. En répétant la
construction pour des directions quelconques, on voit que la figure
de périmetre donné et de surface maximale est celle qu1 a autant
d’axes de symétrie que 'on désire (fig. 3).

Steiner emploie aussi cette derniere méthode dans le cas de ’espace,
en indiquant d’ailleurs une deuxieme méthode, sur laquelle je ne veux
‘pas insister. Il ¢’intéresse aussi aux problemes de maximum relatifs
aux pyramides, aux cylindres et, de plus, a tous les problemes compli-
qués suscités par des conditions supplémentaires, comme celui de
trouver la figure de périmetre donné et d’aire maximale tracée sur
une surface et inscrite & un certain nombre de courbes données. En
particulier, pour qu’un polygone inscrit & une courbe soit extréme,
il faut que la tangente en chaque sommet soit parallele a la diagonale
qui joint les sommets voisins.

Nous avons un peu insisté sur cette question des maxima d’abord
parce qu’elle montre bien I'imagination de Steiner, sa fantaisie pour
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trouver les méthodes qu'il faut pour établir les propriétés quil veut
démontrer. Mais aussi parce que trés souvent il a repris ce théme,
pourrait-on dire. Dans de nombreux théoremes, il recherche sl n’v
a pas encore en plus un extréme a faire apparaitre. Ainsi, par exemple,
il montre que, par tout point D d'une ellipse, passent trois cercles
osculateurs a ellipse en A4, B, C. Les points A, B, C, D sont sur un
cercle, mais de plus, le triangle ABC est un triangle inscrit d’aire
maximale (fig. 4).

Il est temps de nous intéresser maintenant au chef-d’ceuvre de
Steiner. (Pest en 1832 que parait son livre de 230 pages sur la Syste-
matische Entwicklung der Abhdngigkeit geometrischer Gestalten von
einander, 1. Theil. L’ouvrage devait compter cing parties, seule la
premiere a été rédigée par Steiner. Par contre, il en a fait le sujet
de nombreux cours & Berlin et a préparé plusieurs notes sur les
« Populdre Kegelschnitte » qui devaient prendre place dans cet
ensemble. Heureusement, deux de ses éleves en ont publié en 1867
des parties, d’aprés des manuscrits ou d’apres les lecons. Geiser a
donné: Die Theorie der Kegelschnitte in elementarer Darstellung et
Schrioter: Die Theorte der Kegelschnitie gestiitst auf projektive
Eigenschaften, 560 pages qui correspondent au cinquieme chapitre
de la Systematische Entwicklung. Nous pouvons donc avoir une bonne
idée de I’ensemble et assez bien cerner les intentions de Steiner.

Pour faire ressortir 'importance de cet ouvrage, il convient de
brosser a grands traits le tableau de la situation de la géométrie au
début du xixe siecle.

On peut distinguer deux aspects de la géométrie: la géométrie
synthétique et la géométrie analytique. La géomeétrie svnthétique
considere les objets pour eux-mémes, dans 'espace, et cherche leurs
propriétés en se basant sur une sorte de réalisation. parfois unique-
ment imaginative, mais qui suppose une certaine visualisation ou
représentation des figures. Cette vision permet ensuite d’appliquer
le raisonnement logique aux endroits les plus favorables, ce qui révele
de mnouvelles propriétés, une nouvelle vision, ete. La géométrie
analytique, elle, remplace les objets par des coordonnées et des para-
metres; ce remplacant de 'objet est porté dans le domaine du calcul
o 1l est soumis a des opérations logiques dont on tire les conséquences
et ces conséquences sont finalement retraduites pour ainsi dire dans
le langage géométrique. La géométrie fut d’abord essentiellement
synthétique, mais il semble qu’Apollonius ait fait quelques essais de
géométrie analytique. Nouveaux essais timides 2000 ans plus tard
avec Viete, Descartes, Fermat. Mais le grand essor de la géométrie
analytique a lieu apres la découverte du calcul infinitésimal par
Newton et Leibnitz et c’est son age d’or, dominé entre autres par
Euler et Clairaut. Nous arrivons ainsi a la fin du xvime siécle, ot
Monge écrit son Application de Uanalyse ¢ la géométrie. Or c’est ce
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méme Monge qui publie peu apres ses Legons de géométrie descriptive
qui vont provoquer un renouveau de la géométrie synthétique. Le
dessin, les projections, permettent de nouveau de raisonner sur des
objets vus, et de nombreux savants abandonnent la géométrie ana-
lytique pour se tourner vers la géométrie synthétique. En 1822 parait
le Trauté des propriétés projectives des figures de Poncelet. En 1824, Pon-
celet présente a I’Académie des sciences de Paris son Mémoire sur lu
théorie générale des polaires réciproques qui est publié partiellement en
1826 et in extenso en 1829. Dans ces ouvrages, il étudie les propriétés
des figures qui restent invariantes par une projection centrale, le
rapport anharmonique en particulier. Pour lui, la dualité découle
essentiellement de la polarité par rapport aux coniques. Relevons
encore son principe de continuité, qui attribue les mémes propriétés
a deux figures générales qui se transforment I'une dans l'autre de
facon continue, et son introduction de certains éléments imaginaires,
comme par exemple les points cycliques des cercles.

On a ainsi une idée de la géométrie vers 1820-1830 et I'on voit
ce que Steiner pouvait avoir appris lorsqu’il rédigeait son Entwicklung.
Qu’a-t-il apporté de nouveau ? Il définit d’abord les formes fonda-
mentales dont il va se servir: ponctuelles, faisceaux de droites, de
coniques. Entre ces éléments intervient d’abord une correspondance
biunivoque spéciale, la perspectivité, ce qui oblige & considérer les
éléments a l'infini. On passe de la a la correspondance biunivoque
générale, la projectivité entre les formes fondamentales, dont la
dualité de Poncelet n’est plus qu’un cas particulier. it surtout, les
formes projectives dans un méme espace engendrent des courbes et
des surfaces et une quantité de propriétés découlent soudain d’un
principe simple. Un grand nombre de théorémes qui semblaient ne
posséder aucune relation entre eux viennent s’ordonner dans une
vaste structure organique. L.a géométrie projective semble actuelle-
ment si simple et si claire qu'on en oublie un peu 'effet qu’eut sa
découverte. Il faut reconnaitre que Steiner sut en tirer immédiate-
ment un nombre incroyable de conséquences, si bien que I’on désigna
les faisceaux projectifs comme la « machine a vapeur » de Steiner. Je
ne vais pas me permettre de parler plus longuement de géométrie
projective a des mathématiciens chevronnés. Je voudrais pourtant
citer un seul exemple simple, qui montre la virtuosité de Steiner dans la
recherche des conséquences d’une propriété a premiere vue élémentaire.

Dans le plan, deux faisceaux projectifs de droites engendrent une
conique. Réciproquement, en projetant les points d’une conique a
partir de deux d’entre eux, on obtient deux faisceaux projectifs.

Dualement, les droites de jonction des points correspondants de
deux ponctuelles projectives enveloppent une conique. Réciproque-
ment, les tangentes a une conique déterminent sur deux d’entre elles
des ponctuelles projectives. |
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Considérons dés lors six points sur une conique, 1, 2, 3, 4, 5, 6.
Projetons les points 2346 & partir de 1 sur 34 et & partir de 5 sur 32.
Nous obtenons deux ponctuelles projectives, et méme perspectives
puisque 3 se correspond & lui-méme. Par conséquent, les droites
99" = 12, 4" 4" = 45 et 6’ 6" se coupent en un point, c’est-a-dire:
les trois points 12 — 45, 23 — 56 et 34 — 61 sont sur une droite.
Cest le théoréeme de Pascal.

Steiner ne saurait en rester 1a et il réussit & employer a la fois une
propriété, sa réciproque et la propriété duale dans la méme figure.
En effet, si 'on considére I’hexagone 156" 246’ on voit que les dia-
gonales se coupent en un point P et par conséquent les six droites
sont tangentes & une conique. Or ces six droites constituent les deux
triangles 234 et 561. Par conséquent, deux triangles inscrits & une
conique sont circonserits 8 une autre conique. Ou encore: Si on peut
tracer un triangle inscrit & une conique et circonscrit & une autre, on
peut en tracer une infinité. En disant brievement: si un triangle
inscrit-circonscrit se ferme, tous les autres se ferment, on voit que ’on
a ici un des théorémes de fermeture, leitmotiv de Steiner (fig. b).

Méme alors, le probleme n’était pas encore épuisé pour Steiner,
et une autre partie de son esprit se met en marche, son gotit combina-
toire. En effet, si nous reprenons notre conique, nous voyons que les
mémes raisonnements jouent si nous prenons les six points dans un
autre ordre. 11 doit donc exister plusieurs droites de Pascal. Quelles
sont leurs relations ? Voila bien un probléme que Steiner ne saurait
laisser irrésolu. Kt il montre que I’hexagone mystique se compose par
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permutations de 60 hexagones qui déterminent 60 droites de Pascal.
Ces 60 droites se coupent 3 a 3 en 20 points de Steiner qui, eux, sont
4 & 4 sur 15 autres droites de Steiner, lesquelles se coupent 3 & 3 dans
les 20 points de Steiner. Alors et seulement alors, on peut abandonner
le probléeme, il ne reste probablement plus grand-chose a en tirer.

On comprend pourquoi la Systematische Entwicklung est un
ouvrage fondamental, d’abord a cause des idées de base simples et
géniales, mais aussi a cause de la facon magistrale dont Steiner sait
en jouer. Un des seuls points qui soit aujourd’hui démodé est celui
des éléments imaginaires, dont I’acception est encore un peu flottante
et qul oblige souvent & des distinctions entre ellipse et hyperbole,
entre points réels, confondus ou imaginaires. Steiner écrit méme dans
une lettre & Schléafli qu’il ne comprend pas un mot de ce que Schléfli
lui dit des points communs a tous les cercles. Cela enléve-t-il beaucoup
a 'importance de 'ceuvre ? Je ne crois pas! Avant de quitter ce
livre. rappelons qu’il se termine par une liste de 85 problemes. Un
éleve de Kollros, Karam, leur a consacré une these qui a révélé que
trois des problemes proposés sont toujours irrésolus. Il est peut-étre
permis de les rappeler ici.

70. Quelles sont les propriétés de toutes les quadriques semblables
qui passent par 4 (ou 5) peints de 'espace; quels sont 'enveloppe,
le lieu des centres, le lieu des foyers, ete. ?

76. Le nombre des faces d’un polyvedre étant donné, de quelle nature
peuvent étre ces faces et combien v a-t-il de polyedres diffé-
rents ? Exemple: 1 tétraedre; 2 pentaedres (4 tr., 1 quadr./2 tr.,
3 quadr.); 7 hexaedres (6 tr./5 tr.; 1 pent./4 tr.; 2 quadr./3 tr.;
2 quadr.; 1 pent./2 tr.; 4 quadr./2 tr.; 2 quadr.; 2 pent./6 quadr.).
Etant donné un polvedre convexe quelconque, existe-t-il tou-
jours (ou quand) un polyedre de méme type qui se laisse inscrire
ou circonscrire & une sphere ou a une surface du second degré ?

~1
~1

Il est un peu hasardeux de vouloir dresser I’historique des
recherches ultérieures de Steiner. Il avait sans cesse des quantités de
problemes en téte, et 'esquisse que nous pouvons tenter, si elle ne
correspond pas a la réalité, permettra peut-étre d’imaginer son champ
d’activité.

Ayant en main son prestigieux instrument de la projectivité,
Steiner commence par coordonner toutes les propriétés des coniques
et des quadriques. Il a vite fait le tour des conséquences des faisceaux
de droites; les faisceaux de courbes le meénent aux courbes et aux
surfaces plus générales. Que peut-on bien généraliser ? Dans la
polarité par rapport aux coniques, la polaire d’un point est la droite
qui joint les points de contact des tangentes menées par le pole.
Qu’en est-il pour une courbe quelconque ? D’un point, on peut mener
n (n — 1) tangentes a une courbe d’ordre n. Or les n (n — 1) points
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de contact sont sur une courbe de degré (n — 1). On peut le montrer
en appliquant le principe de continuité de Poncelet. Soient C, la
courbe donnée et C, une courbe obtenue par une similitude de
centre P. Les n? points d’intersection de C, et C, comprennent n points
a Iinfini et n? — n points dans le fini. Parmi le faisceau des courbes
d’ordre n qui passent par ces n? points, celle qui passe par un point
de la droite a I'infini dégénére en cette droite et une courbe d’ordre
n — 1 passant par tous les points dans le fini. Or, quand C, tend vers
C,, les n (n — 1) points base donnent les points de tangence cherchés.
On obtient ainsi la premiére polaire du point P par rapport & la
courbe. La premiére polaire de la premiere polaire est la deuxieme
polaire de P par rapport & la courbe. On peut donc parler de la
ke polaire de P, courbe de degré (n — k), en particulier de la (n — 2)¢
qui est une conique, et de la (n — 1)¢ qui est une droite. On introduit
aussi des polaires mixtes: la k¢ polaire de P par rapport a la j® polaire
de Q est identique a la jé¢ polaire de Q par rapport a la k¢ polaire de P.
En outre, si Q est sur la k¢ polaire de P, la (n — k)¢ polaire de Q passe
par P. Si P décrit une courbe d’ordre r, D7, ’enveloppe de la ¢ polaire
de ses points sera une courbe

[(Dr).\' :An] _ Er(r+‘3:c~3)(n‘x)‘

Toutes ces propriétés se généralisent dans I'espace et permettent de
forger un nouvel instrument d’une puissance remarquable qui sera a
la base des développements de la géométrie algébrique, de I'école
italienne surtout. Steiner a vu bientdt 'importance que présentaient
les polaires pour 1'étude des éléments multiples des courbes et des
surfaces. Par exemple, si la 2¢ polaire de P a un point double en (),
la (n — x)¢ polaire de ( a un point double en P. En particulier, le
lieu des points P dont la (n — 2)¢ polaire est un couple de droites
ou le lieu des points doubles des premieres polaires est une courbe
de degré 3 (n — 2). Le lieu des points dont la premiere polaire a un
point double, ou le lieu des centres des ( n — 2)¢ polaires dégénérées
en deux droites, est une autre courbe de degré 3 (n — 2)2. 11 est juste
qu’on ait associé a ces courbes les noms de géometres fameux et qu'on
les nomme la Hessienne et la Steinerienne.

Il n’est pas dans mon Intention de m’appesantir sur les propriétés
des polaires que vous connaissez mieux que moi. Je préfere m’arréter
un moment sur un travail moins connu, parce que moins riche en
conséquence, mais qui, dans I'esprit de Steiner, devait probablement
faire équilibre a la théorie des polaires. Il s’agit de son étude sur les
courbes a centre. Toute droite par le centre coupe la courbe en des
points symétriques par rapport au centre. Une courbe & centre est
donc de degré pair si elle ne passe pas par le centre; de degré impair
si elle v passe et elle a alors un point d’inflexion en ce point. Consi-
dérons encore une courbe quelconque. Il existe par un point quel-

IEFngeionement mathém . XT fase 9-3 17
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conque 4 n . (n—1) droites qui coupent la courbe en deux points
symétriques par rapport a P. En effet, faisons tourner la courbe de
1800 autour de P. Les deux courbes se coupent en »n2 points, dont »n
sont a l'infini. Les n (n — 1) autres sont deux a deux symétriques
par rapport a P et sont les points d’intersection des droites cherchées.
Le faisceau des courbes d’ordre n qui passent par les n? points en
contient une qui dégéneére en la droite & l'infini et une courbhe de
degré (n-—1) passant par tous les points dans le fini. Cette courbe
est celle que Steiner appelle la premiére polaire intérieure de P par
rapport a la courbe donnée. Il a analysé les relations entre la polaire
normale et la polaire intérieure. Ainsi par exemple, ces deux polaires
se coupent en (n—1) (n — 2) points dans le fini, ces points étant
sur une courbe de degré n — 2. Et Steiner étudie aussi tous les cas
particuliers pour les courbes de 3¢ et 4¢ degré, lorsque le pdle est sur
-la courbe ou en un point particulier. Malheureusement, les propriétés
qui découlent des polaires intérieures ne sont pas aussi intéressantes
que celles des polaires, probablement & cause de leur définition
métrique qui introduit une dissymétrie dans 1’analogie. Je crois
pourtant que cet essai aussi éclaire un des aspects du génie de Steiner.

Mesdames et Messieurs, j’aimerais encore voir brievement avec
vous un des travaux de Steiner; j’aurais pu choisir par exemple le
probléeme des normales abaissées d’un point a une surface ou a une
courbe, ou celul des centres de courbures. Permettez-moi plutot
d’attirer un moment votre attention sur le probleme des surfaces de
troisieme degré. Steiner commence par donner plusieurs fagons d’en-
gendrer la surface du troisieme degré. Tout d’abord, cette §; peut
étre considérée comme la surface générale du faisceau déterminé par
deux triplets de plans quelconques; elle passe donc par les neuf droites
d’intersection des triplets et par un point quelconque. On peut
’engendrer aussi a I'aide de deux faisceaux projectifs: un faisceau
de plans et un faisceau de quadriques. La surface passera alors par
I’axe des plans et par une courbe du quatrieme degré, base de ’autre
faisceau. Ou encore on peut, d’un point quelconque, mener les cones
tangents a un faisceau ponctuel de quadriques. l.es coniques de
contact sont toutes sur une surface du 3¢ degré. Autre méthode
encore: Si I’on considére un réseau de quadriques, les plans polaires
d’un point quelconque P se coupent en un point Q. Si P décrit une
droite, Q décrit une courbe gauche du troisieme degré et, si P décrit
un plan, Q décrit une surface du troisieme degré. Ou encore: Les poles
d’un plan par rapport aux quadriques d'un réseau sont sur une
surface du troisieme degré.

Comme vous le savez, une surface du 3¢ degré contient 27 droites.
On peut les retrouver pour chaque mode de définition et on est
presque surpris que Steiner ne les ait pas découvertes toutes lui-
méme, qu’il lui ait fallu une indication de Cayley pour y arriver. Par
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contre, par un penchant de son esprit que nous avons remarqué plu-
sieurs fois, il 's’efforce ensuite de trouver toutes les relations entre
ces 27 droites. Chacune des droites est coupée par 10 autres. Ces
27 droites se coupent en 135 points et forment 45 triangles. Il y a
donc 45 plans qui sont tangents a la surface en trois points différents.
Ces plans déterminent 240 triedres qui forment 120 couples dont les
droites d’intersection sont sur la surface. Ces 240 triedres ont
720 arétes, donc les 135 points d’intersection des 27 droites sont 3 & 3
sur 720 droites qui se coupent 3 a 3 en 240 points.

Négligeons de nombreuses propriétés de la surface du 3¢ degré,
laissons méme sa Steinerienne et bornons-nous a un seul détail:
Considérons un plan quelconque et cherchons I'enveloppe des
deuxiemes polaires de ses points par rapport a la surface cubique.
Cette surface est du troisieme degré et sa classe est seulement égale
a 4. En effet, I'intersection de trois plans polaires a pour premiere
polaire une quadrique par les trois poles. A la limite, le point de
contact d’un plan polaire avec le lieu cherché a pour premiere polaire
une quadrique tangente au plan considéré. Par conséquent, pour
trouver le degré de la surface cherchée, il suffit de trouver les points
d’une droite dont la premiere polaire touche le plan donné. Ces pre-
mieres polaires forment un faisceau ponctuel de quadriques dont trois
touchent le plan. D’autre part, si 'on considere les plans polaires qui
passent par une droite, on voit que les poles de ces plans doivent étre
sur toutes les premieres polaires des points de la droite, done sur une
courbe du 4¢ degré. Les quatre points d’intersection avec le plan
donné ont pour deuxiemes polaires les quatre plans tangents cherchés.

S’il existe une surface du troisieme degré et de quatrieme classe,
il doit bien exister une surface duale de quatrieme degré et de troi-
sieme classe. Voyons brievement comment on peut arriver a établir
son existence et quelques-unes de ses propriétés.

Rappelons d’abord un théoréme connu: Les sommets des triédres
trirectangles tangents & une sphére sont sur la sphere orthoptique.
Par une projectivité, on arrive au théoreme plus général: Considérons
une conique dans un plan. Par les cotés de ses triangles polaires,
menons les plans tangents a une quadrique quelconque. Les points
d’intersection de ces plans sont sur une quadrique passant par la
conique. Si la quadrique donnée est tangente au plan de la conique,
le lieu dégénere en un plan. Dualement, si, d’un point P d’une qua-
drique quelconque, on projette sur la quadrique les triangles polaires
d’une conique quelconque c, les plans déterminés par les images des
sommets passent tous par un point fixe R. Ce point R se trouve en
particulier sur la droite qui joint P au pole par rapport & ¢ de la droite
d’intersection ¢ du plan de ¢ avec le plan tangent a la quadrique en P.

Considérons ensuite, dans un plan, un faisceau ponctuel de
coniques. -En maintenant la quadrique et le point P fixes, on obtiendra
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pour chaque conique un certain point R,. Comme le faisceau a un
triangle polaire commun, le lieu de R, sera dans le plan déterminé
par les images des sommets de ce triangle. D’autre part, les points R,
s’obtiennent en projetant de P les poles de la droite d’intersection
par rapport & toutes les coniques du faisceau. Or ce lieu est une
conique. Le lieu de R, est donc également une conique.

Finalement, prenons un réseau de coniques. Le lieu de R, est
une surface qui contient une infinité de coniques, engendrées par tous
les faisceaux du réseau.

Dans un plan, il y a certains points A dont les polaires par rapport
& toutes les coniques d’un réseau passent par un méme point B. Le
lieu de ces points A et B est une cubique. En particulier, sur la droite
d’intersection ¢, il y a trois points A, ce qui signifie que le lieu des
poles de ¢t par rapport a tous les faisceaux du réseau se compose de
coniques qui passent toutes par trois points B,, B,, B;. Et par consé-
quent toutes les coniques de la surface cherchée coupent les trois
droites PB,, PB,, PB; qui sont des droites doubles pour la surface,
le point P étant un point triple. On voit ainsi apparaitre les différentes
propriétés de la surface: Tous les plans contenant une conique coupent
encore la surface suivant une deuxieme conique. Des quatre points
d’intersection de ces deux coniques, trois sont sur les droites doubles
et le quatrieme est le point de contact. On peut montrer géométrique-
ment que la surface est de troisieme classe et qu’il s’agit done du pen-
dant de la surface du troisieme degré dont nous parlions; c’est la
célebre surface romaine, la surface de Steiner qui a suscité de nom-
breux travaux a cause de ses propriétés étonnantes.

Pourtant, c’est d’une autre particularité de cette surface dont
j’aimerais vous parler pour finir. Cette surface est appelée surface
romaine parce que Steiner la découvrit lors de son séjour a Rome en
1844%. Or il n’a rien publié a son sujet et I’on n’a trouvé aucune manus-
crit qui s’y rapporte. La seule chose qu'on en connaisse est une cita-
tion de Weierstrass a la fin des (Fuyres complétes de Steiner ou il
rapporte une communication que celui-ci lui avait faite oralement un
an avant sa mort. Steiner semble avoir hésité a publier quoi que ce
soit, car il n’était pas certain que la surface soit bien du quatriéme
degré; il soupgonnait une partie imaginaire, un « Gespenst » comme il
dit lui-méme. Ceci est étonnant, tout comme est étonnant le fait que
Steiner n’ait écrit qu’une seule page, la toute derniere de ses publica-
tions en 1857, a propos de la surface duale du troisieme degré. Si,
de plus, on pense au diagramme des publications de Steiner, bien
mince vers la fin de sa vie, alors qu’il disait n’avoir publié que la
dixieme partie de ses découvertes, le bibliothécaire qui vous parle
ne peut s’empécher d’avoir un certain sentiment d’insatisfaction. Je
n’arrive pas a croire que les Fugres complétes de Steiner soient vrai-
ment completes, malgré les notes posthumes que Geiser y a ajoutées.
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Mon malaise est d’ailleurs encore plus grand depuis que j’ai vu que
certains manuscrits de Steiner regus par I’Ecole polytechnique por-
talent la mention: « nicht aufbewahren » et, depuis que je sais que 'on
a perdu toute trace du manuscrit sur les maximum apres son arrivée
a Berlin.

Mesdames et Messieurs, cela m’incite & terminer par un conseil de
bibliothécaire: Ne détruisez pas les manuscrits de vos découvertes.
D’abord parce qu’ils rendront service au conférencier qui fera votre
éloge cent ans aprés votre mort, mais aussi parce qu’ils constituent
pour I’histoire des sciences des documents irremplagables, pleins d’une
valeur émotive non négligeable. On crée des musées de la technique,
il est temps de penser & un musée des mathématiques. Je crois qu’il
v manquera toujours certains travaux de Steiner, car Steiner est
encore plus grand que «tel qu’en lui-méme enfin, I'éternité I'a
changé ».

Jahressitzung in Ziirich, 10. Oktober 1964

Die Jahresversammlung der SMG fand am 10. Oktober 1964 im
Rahmen derjenigen der Schweizerischen Naturforschenden Gesell-
schaft in Zirich statt. Es wurden 8 wissenschaftliche Vortréige
gehalten, die untenstehend entweder durch ihren Titel oder im
Auszug angegeben sind.

R. Corrman (Geneve): Sur Uitération continue des fonctions réelles.

Soit [ (z) continue, strictement croissante sur [0, a] et telle que
0 <[ (x) <z pour [0, a]. On appelle famille d’itérées de f toute
famille f, (z) de fonctions telle que

Vo, meR,  fi@) =f@) et [ (f, @) =], (@).

La construction d’une telle famille est liée & la résolution de
I'équation fonctionnelle d’Abel:

A(f(2) = A(z) +1;

une famille d’itérées est obtenue en posant

[o () = A7 (4 (x) 4 0) .

[’existence d’une infinité de familles d’itérées d’une fonction
donnée nous conduit a exiger certaines conditions de régularité de
maniére a obtenir 'unicité (voir [17], [2], [3]). Ces conditions de régula-
rité sont données & 'aide de la relation d’équivalence suivante entre
familles d’itérées;
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Définition : Nous dirons que f,(x) ~ g, (x) s’il existe une fone-
tion @(z) telle que

fo' (z) = g(p(x) () et @ () - ao (x -+ 0) (o £ 0) .

Nous dirons qu’une famille d’itérées de f (x) est réguliere relativement
a g _(z) lorsque f_(2) ~ g_(x).

Théoréme : Soit f,_ (x) une famille d’itérées continue et strictement
monotone en g, g (x) une fonction continue et strictement croissante
pour z €[0, a] et telle que 0 < g (x) <z pour z €][0, a].
et soit |

go(x):x7 gn+1(x):g(gn(x))> i’L:O,ii, '—t27

Pour que g (z) possede une famille d’itérées g, ~ f,, il faut et il
suffit que:
g/, (g, () -G (o,2) (n — o0)

pour tout o et z €[0, a] et que G (g, x) soit continue en o et = et
strictement monotone en o.

Il existe alors un o # 0 tel que g, (x) = G (a0, x) et g, (z) est la
seule famille d’itérées de g équivalente & f_.

[1] SzEkERES, G., Acta Math., 100, 1958, p. 203.
[2] J. Austr. Math. Soc. (3), 2, 1962, p. 301.
[3] Corrman, R., Comptes Rendus Acad. Sc. Paris, a paraitre.

R. Coifman
Institut de mathématiques
de ’Université de Geneéve.

J. HErscu (Ziirich): Equations fintes satisfaites par les solutions de
certains problémes aux limites.

1. Si une membrane vibrante, & contour fixé, recouvre un domaine
plan symétrique relativement a 1’axe des x, chacun sait que sa pre-
miere fonction propre u, (z, y) est également symétrique: u, (z, — y)
= Uy (.7/', y) :

Cette propriété se laisse aisément généraliser au cas de plusieurs
symétries consécutives. Considérons, par exemple, la membrane en L
contenant les trois carrés Q, (0 <2 <1,0 <y < 1), 0, (1 <z <2,
0<y<letQ;(0 <z <1, 1 <y<2);atout point P, (x,y) €Q,
nous faisons correspondre ses « symétriques» P, (2 —u=x,y) €0, et
P, (x, 2 —1y) €(Qs; alors la fonction propre fondamentale u, satisfait

uy (Py) = uy (Py) + uy (Py) .
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En effet, la fonction i, (Py) = 1, (P1) — uy (Py) — uy (P;) satisfait
Afiy 4+ Aty = 0 dans Q, et &, = 0 sur le contour de Q,; comme 1,
n’est pas valeur propre de @y, u; = 0 dans ¢,. La méme propriété
est valable pour toute fonction propre u, telle que dun + Intty = 0

avec un A, qui n’est pas valeur propre du carré Q,. St la membrane
considérée est & contour ltbre, on doit construire

w (Py) = u(Py) 4+ u(Py) + u(Ps) .

9. Le méme raisonnement s’applique aux probléemes de Dirichlet
et de Neumann pour I’équation de Poisson. Par exemple, dans le
domaine en I considéré ci-dessus, soit ¢ (z, ¥) la solution du probleme:
Ay = —p (x,y) a Dintérieur et ¢ = f(s) sur le contour; alors

E(Pl) = ¢ (Py) — ¢ (Py) — ¢ (Py)
satisfait

Av (Py) = —[p (Py) —p (Py) —p (P3)]

dans Q, et ¢ = f (s) (lmmédiatement connue) sur le contour de ;. La
résolution de ce probleme dans @, fournit une équation finie pour ¢.

Si, dans le méme domaine, on considere un probléme de Neumann:
Au = —p (z,y), et du/dn = g (s) sur le contour, alors

0 (P) = u(Py) + u(Py) + u(Py)
satisfait

A (P) = —[p (P)) +p (Ps) 4 p (Py)]

dans Q, et du/on — g (s) sur le contour de Q..

Les deux propriétés ci-dessus entrainent la suivante, évidente
directement: Soit w (z) = u + t¢ une fonction analytique dans le
domaine considéré, alors la fonction

W(Py) =i+ 0 = w (Py) + W (Ps) + W (Py)
est analytique dans (.

3. Les remarques qui précedent s’appliquent numériquement aux
équations aux différences, ainsi qu’aux évaluations reposant sur des
principes de variation (Rayleigh, Dirichlet, Thomson): on construira
de préférence des fonctions d’essai satisfaisant les mémes équations
finies (comme on le fait toujours dans le cas d’une simple symétrie !).

4. Un exposé plus général de ces propriétés paraitra (en langue
allemande), avec quelques applications, dans le Journal fiir die reine
und angewandte Mathematik. Cependant, ces propriétés ont un
caractére s1 élémentaire qu’elles sont peut-étre connues et oubliées
depuis des siecles: connaissez-vous un travail qui s’y rapporte ?
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A. Frer (Ziirich): Frete Gruppen und freie Objekte.

Die Begriffe und Bezeichnungen dieser Arbeit findet man in den
Arbeiten « Group-like structures in general categories I, 11, I1I », von
B. Eckmann und P. J. Hilton [1], [2], [3].

Der Begriff der freien Gruppen léasst sich in naheliegender Weise
stark verallgemeinern. Seien € und D zwei Kategorien und 1: D -
ein covarianter Funktor. Wir nennen ein Objekt ¥ e D frei iiber dem
Objekt X e € beziiglich 7, wenn es eine Abbildung ¢ : X - [Y in €
gibt mit der universellen Eigenschaft: zu beliebigem Objekt Z €D
und beliebiger Abbildung X — /7 Z in @ gibt es genau eine Abbil-
dung @: Y - Z in Dmit Id . y=¢

X T —» 1Y Y

g P P

Fig. 1. v v
1z ’ Z
Ist € die Kategorie der Mengen, D diejenige der Gruppen und [ der
« Vergiss »-Funktor, der jeder Gruppe die zugrundeliegende Menge
zuordnet, dann bedeutet diese Definition, dass Y eine freie Gruppe
ist und Y: X — 1Y die Einbettung eines freien Erzeugendensystems.
Das Paar (Y, ), bestehend aus dem Objekt ¥ und der Abbildung
Y: X — 1Y, nennen wir das freie Objekt iiber X.

Freie Objekte haben analoge Eigenschaften wie freie Gruppen;
diese werden in der Arbeit, iiber die wir hier berichten, ausfiithrlich
formuliert. So ist z.B. das frcie Objekt iiber einem bestimmten Objekt,
falls es existiert, bis auf kanonische Aequivalenz eindeutig bestimmt.

Der Begriff der freien Objekte héngt eng zusammen mit dem-
jenigen der adjungierten Funktoren. Es gilt der

SAa1z 1. — Der Funktor [/ besitze einen linksadjungierten /', mit der
adjungierenden Transformation «. Dann hat die natirliche
Transformation , = a (1,5) die Eigenschaft, dass fir jedes
X e @ (FX, yy) frei ist tiber X.

Zu diesem Satz gilt folgende Umkehrung:

Satz 2. — Seien /: D - € und F: € - D covariante Funktoren,
und es gebe eine natiirliche Transformation ,: X — /F X, so dass
fir jedes X e € (F X, y) frei ist iiber X. Dann ist F linksadjun-
giert zu [ mit der adjungierenden Transformation o:

(@) =1® . Yy,, ®ell(FX, 7).
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Von nun an sei D eine M-primitive Kategorie iiber € und /:
D — @ der « Vergiss »-Funktor: dieser ordnet Jedem Objekt (Y, m)
aus D das Objekt Y aus € zu. Ferner nehmen wir an, es existiere ein
zu I linksadjungierter Funktor F: € —D.

Es gilt der

Sat1z 3. — Zu jedem Objekt Y € D gibt es einen Epimorphismus
o: FIY — Y von einem freien Objekt nach Y selbst.

Dieser Satz verallgemeinert den wolhbekannten Satz aus der .
Gruppentheorle wonach jede Gruppe Quotient einer freien ist.

Wenn Y ein Objekt aus D ist, wird fiir jedes A € € durch die
M-Struktur von Y in H (A4, [ Y) eine M-Struktur induziert; wir
bezeichnen sie mit . Im folgenden nehmen wir an, D sei eine
Kategorie mit inversen Produkten, d.h. zu je zwei Objekten aus D
existiere in D ihr inverses Produkt. Dank der induzierten M-Struktur

lasst sich jedem freien Objekt aus D eine M-Struktur geben;
genauer:

Satz 4. — Jedes freie Objekt in D ist ein M-Objekt in D, mit der
M-Struktur pu, die durch Iu. ¥ = (¢; + ¢5) . ¥ definiert wird.
Diese nennen wir die durch  induzierte M-Struktur.

Uber die induzierte M-Struktur lassen sich einige Sitze beweisen,
auf die wir hier jedoch nicht eingehen konnen.

Sei & die vollstindige M- prlmltlve Kategorie iiber D. Die
Zuordnung F: €&, definiert durch FX = (FX, p), wobei u die

durch V, induzierte M-Struktur 1st, und Fgo = I, ist ein covarianter
Funktor. Anderseits gibt es einen covarianten Funktor L: & — &,
der folgenderweise definiert ist: (LY, A,) ist Linksegalisator von fu
und (g; + ¢o): [Y — 1 (Y % Y). Uber dlese beiden Funktoren gilt der

Satz 5. — Der Funktor F ist linksadjungiert zu L. Wenn « die
adjungierende Transformation von F und [/ ist, ist die adjungie-

rende Transformation n: H (ﬁX, Y) - H (X, LY) gegeben durch
(@) = ot (Ay . @), @ € H (X, LY).

Im Falle, wo € die Kategorie der punktierten Mengen und D
diejenige der Gruppen ist, haben Eckmann und Hilton bewiesen, dass
die Kategorien € und & zueinander isomorph sind. In diesem Falle

sind die Funktoren F und L zueinander invers und stellen oben-
genannte Isomorphie her. Dies ist nicht allgemein richtig, wie ein
Gegenbeispiel zeigt. Als nédchstes wollen wir zeigen, was von diesem
Sachverhalt im allgemeinen iibrig bleibt.
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Allgemein gibt es zu jedem X e @ genau eine Abbildung v/y:
X — LFX fiir welche das Diagramm

Vx
X — IFX
+! A
X | FX
Fig. 2. Lﬁx

kommutiert. Sei €’ die volle von L (&) erzeugte Unterkategorie von €,
und & die volle von F (&) erzeugte Unterkategorie von &; F’ und L’
seien die auf €’ und & beschrinkten Funktoren F und L. Es gilt der

Satz 6. — Die Abbildung / sei fiir jedes X € € ein Epimorphismus
fir Abbildungen nach Objekten aus D. Dann sind die Funkto-

ren /' und L’ bis auf kanonische Aequivalenz zueinander invers.

Da F’ und L' nicht im strengen Sinne zueinander invers sind,
kann man nicht von einer Isomorphie im strengen Sinne zwischen ¢’

und D’ sprechen. Die Funktoren F und L’ sind aber, wie man leicht
zeigt, beidseitig zueinander adjungiert, und erhalten deshalb Mono-
morphismen und Epimorphismen, direkte und inverse Produkte sowie

direkte und inverse Limites. Ferner bildet F’ H¢ (X4, X,) einein-

deutig auf He (F' X,, F'X,) ab, und L’ bildet Hs (Y,, Y,) ein-
eindeutig auf He (L' Y, L Y,) ab. Es besteht somit eine gewisse
Isomorphie zwischen € und &'.

Zum Schluss mochten wir noch daraufhinweisen, dass sich die
Begriffe und Sitze, ausser auf das Beispiel, wo € die Kategorie der
punktierten Mengen und D diejenige der Gruppen ist, auf viele
weitere Félle anwenden lassen, von welchen hier nur die folgenden
erwiahnt seien: € punktierte Mengen, D abelsche Gruppen. € Grup-
pen, D abelsche Gruppen. € vollstindig regulire Réume, D topolo-
gische Gruppen (in diesem Falle sind die freien Objekte die freien
topologischen Gruppen).
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Sophie Piccarp (Neuchdtel): Théorie des groupes.

Il s’agit dans ce travail de différentes structures de groupes
abstraits.

La notion de groupe libre se préte a diverses généralisations aux-
quelles on parvient en considérant des ensembles de générateurs de
groupes multiplicatifs liés uniquement par des relations caractéris-
tiques de nature telle que toute relation entre ces générateurs (relation
qui découle des relations caractéristiques et des axiomes de groupe)
est encore de la méme nature.

Soir G un groupe multiplicatif dont 1 est I’élément neutre et soit
A un ensemble d’éléments de G. Une composition finie [ (ay, ..., @,)
d’éléments ay, ..., a, (n =1) de A est un produit de la forme
Jr
lr

f(ay, ..., a,) = @il ai? ... a

oit 7 est un entier =1, ai, ..., ai, sont des éléments pas nécessairement
distincts de Pensemble { ay, ..., @, } et jy, ..., j» sont des entiers quel-
conques.

La réduction de [ basée uniquement sur les axiomes de groupe
consiste, d’une part, a remplacer dans f tout produit a'a™ par al+tm
quel que soit I’élément a de A et quels que soient les entiers m et n et,
d’autre part, & laisser tomber tout facteur de la forme a° a € 4, si
f = a° et de remplacer a® par 1, si f = a°; elle conduit & la forme
réduite de f qui est soit 1 (élément neutre de G), auquel cas on dit

Us

que | est complétement réductible, soit 1) a,! ... @,* ol s est un entier
tel quel =s=r,a,,ed,i=1,...,8a,#a,,,1=12.,s—1
et ¢, ..., ¥s sont des entiers dont aucun n’est nul.

Soit, & présent, £ un entier = 2 donné, fixe, et soit / une compo-
sition finie d’éléments de A. La réduction de f modulo & s’opére en
s’appuyant sur les axiomes de groupe et en réduisant modulo %
Iexposant entier m de tout facteur a™, @ € A4; elle conduit a la forme
réduite modulo % de f qui est soit 1 soit un produit de la forme 1) ou
Pentier vi £ 0 (mod k) et 1 =v =k —1, quel que soit [ =1, ..., s.

Toute égalité qui peut se mettre sous la forme 2)f (aq, ..., a,) = 1
ona, €A, 1=1,..,netouf(a,..,a, est une composition finie des
éléments ay, ..., a, porte le nom de relation entre éléments de A. Tout
ensemble A d’éléments de G est lié par un certain nombre de relations
qui découlent des axiomes de groupe. De telles relations sont appelées
triviales. Le premier membre de toute relation triviale est complete-
ment réductible. Il peut se mettre sous la forme d’un produit de
puissances entiéres d’'un nombre fini d’éléments de A, dont tous les
exposants sont nuls. Tout ensemble A d’éléments de G qui ne sont
liés que par des relations triviales est dit libre ou indépendant.
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Par contre, un ensemble A4 d’éléments de G est dit dépendant ou
lté 1] existe entre des éléments de cet ensemble au moins une relation
non triviale. L’ensemble formé d'un seul élément a de G est libre ou
lié suivant que a est d’ordre infini ou fini. Tout ensemble d’éléments
de G qui comprend au moins un élément d’ordre fini est lié. Une rela-
tion 2) entre éléments de A est dite triviale modulo k o k est un entier
donné =2 si son premier membre est complétement réductible
modulo £. Les éléments de A sont dits lihres ou indépendants modulo k
s’ils ne sont liés que par des relations triviales modulo %. Par contre,
on dira que les éléments de A sont liés ou dépendants modulo % s’il
existe entre ces éléments au moins une relation qui n’est pas triviale
modulo k.

La relation 2) est dite quast triviale (quasi triviale modulo k) si
son premier membre est de degré nul (de degré = 0 (mod k)) par
rapport a tout élément de A. Elle est dite pseudo-triviale (pseudo-
triviale modulo %) si son premier membre est de degré nul (de degré =0
(mod k)) par rapport & I'ensemble des éléments de A. Les éléments
de A sont quasi indépendants (quasi indépendants modulo k) s’ils ne
sont liés que par des relations quasi triviales (quasi triviales modulo %).
Et les éléments de A sont dits pseudo-libres (pseudo-libres modulo %)
si toute relation qui les lie est pseudo-libre (pseudo-libre modulo £).
Une relation qui ne rentre dans aucune des catégories énumérées ci-
dessus est appelée non trigiale au sens strict.

Un groupe multiplicatif G est libre (libre modulo k) sil possede
au moins un ensemble de générateurs appelés générateurs libres (libres
modulo %) qui ne sont liés que par des relations triviales (triviales
modulo k). 11 est quasi libre (quasi libre modulo %) s’il possede au
moins un ensemble de générateurs — dits quast libres (quast libres
modulo k) — qui ne sont liés que par des relations quasi triviales
(quasi triviales modulo k). G est pseudo-libre (pseudo-libre modulo £)
s’1l possede au moins un ensemble de générateurs — dits pseudo-libres
( pseudo-libres modulo k) qui ne sont liés que par des relations pseudo-
triviales (pseudo-triviales modulo k). Le groupe G est [ié si tout
ensemble de ses éléments générateurs est lié par au moins une relation
non triviale. Il est dit [ié au sens strict '1l n’est ni libre, ni quast libre,
ni pseudo-libre, ni libre, quasi libre ou pseudo-libre modulo % quel
que soit 'entier £ == 2.

Un ensemble A de puissance = 2 d’éléments d’un groupe multi-
plicatif G est dit réductible §’il existe au moins un sous-ensemble fini
A* = {ay, ..., &y } de A (m = 2) et un sous-ensemble fini B* de G,
de puissance inférieure a celle de A* et tel que ’ensemble A — A* U B*
engendre, par composition finie, tous les éléments de A. 1l est dit
irréductible dans le cas contraire. Tout groupe multiplicatif qui possede
au moins un ensemble irréductible de générateurs est dit fondamental
et tout ensemble irréductible de générateurs d’un groupe fondamental
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constitue une base de ce groupe. l.es groupes libres, libres modulo £,
quasi libres et quasi libres modulo k, sont tous fondamentaux. Mais
un groupe pseudo-libre n’est pas forcément fondamental. Tout groupe
libre est libre modulo %, quasi libre, quasi libre modulo %, pseudo-
libre et pseudo-libre modulo %, quel que soit ’entier & = 2’ Tout
groupe libre modulo % est quasi libre modulo & et tout groupe de ce
dernier type est pseudo-libre modulo %, mais il existe une infinité de
groupes libres modulo £ qui ne sont pas libres, de groupes quast libres
qui ne sont pas libres et de groupes pseudo-libres qui ne sont pas
quast libres.

Soit E,; [E, 1] {Ey 1} Vensemble de tous les groupes libres

distincts [’ensemble de tous les groupes quasi libres distinets] { I’en-
semble de tous les groupes pseudo-libres distincts }, soit E,; o4«
[Eggrmodr] {Egprmoax) lensemble de tous les groupes distincts
libres modulo % [quasi libres modulo %] { pseudo libres modulo % }
k=2,3,...etsoient Ty = {E;; oar b,k =2,3, ..., Ty = {E, 1 moak }»
k=23 ..Ty ={E, )1 moax }, ¥ = 2,3, ... On peut munir les trois

ensembles, T, T,, Ty d'une structure de treillis en établissant de la
facon suivante un ordre partiel des éléments de ces trois ensembles:

oy
Egrmodar < Egimoar 81 K" = 0 (mod k), auquel cas E,; .4, est un
sous-ensemble de Eg; 45 De méme E, ;o0 < Ej 0 oae et
Byt modr < By pi moar 81 A= 0 (mod £'). Avec cette notion d’ordre

partiel, on obtient trois treillis: celui des ensembles de groupes libres
modulo %, celui des ensembles, de groupes quasi libres modulo % et
celul des ensembles de groupes pseudo libres modulo &, £ = 2, 3, ...
Entre les différents ensembles introduits ci-dessus on a les relations

o0
suivantes: Eg.l. C Eg.q.l. C Eg.p.l. ’ Eg.l. = kQZ EQ.Z.modk? EQ-‘I-I» =
© 0
] 4 = :
k_f__\z Eg.q.l.modk ) Eg.p.l. kQZ Eg.p.l.mod.'c :

Soit, d’autre part, E, , I'ensemble des groupes fondamentaux et
E, . Vensemble des groupes non fondamentaux distincts. On a

E; 41 C Eg p , mais Uintersection de E, ,, avec chacun des ensembles
E,; et E,, . est 7 0.

Soit, & présent, G un groupe abélien et soit A = {ay, ..., @y } un
ensemble fini d’éléments de G. Les éléments de A sont indépendants
(indépendants modulo k) si une relation 3) af' ... af,,m = 1 entre des
¢léments ay, ..., @, de A ne peut avoir lieu que si j; = 0 (j; = 0 (mod k))
quel que soit ¢ = 1, ..., m. Par contre, les éléments de A sont liés
(liés modulo k) s’il existe au moins un systéme d’entiers j,, ..., jm,
dont 'un au moins est = 0 ((mod %)) et pour lequel la relation 3) a
lieu.
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Si des éléments d’un groupe abélien sont liés, ils sont aussi liés
modulo £ pour une infinité de valeurs de I'entier £ = 2.

Et si A est un ensemble infini d’éléments d’un groupe abélien G,
les éléments de A sont indépendants si tout sous-ensemble fini de A
est libre et les éléments de A sont liés s’il existe au moins un sous-
ensemble fini de A formé d’éléments dépendants.

Tout groupe abélien fini ou & un nombre fini de générateurs est
fondamental.

Si un groupe abélien G possede des systemes finis de générateurs,
on définit différentes bases de G. Une base tout court est un ensemble
irréductible quelconque de générateurs de G. Les éléments d’une base
peuvent étre liés. Une base normale de G est un ensemble de généra-
teurs aq, ..., @y, tel que tout élément a de G peut se mettre de facon
unique sous la forme aft ... @’™ ol j; est un entier compris entre 0 et
I'ordre n; de I’élément a;, quel que soit ¢ = 1, ..., m. Une base nor-
male peut étre réductible. On appelle base normale réduite de G une
base normale qui est irréductible et dont les éléments peuvent étre
ordonnés en une suite q,, ..., @, telle que 'ordre de a; est un diviseur
de celui de a;,; quel que soit 1 =1, ..., m — 1.

Si le groupe G est d’ordre infini, il peut ne pas étre fondamental et
par suite il peut étre dépourvu d’ensembles irréductibles de généra-
teurs; une base normale de G est un ensemble A de générateurs de G
tel que tout élément de G peut se mettre de facon unique sous la
forme d’un produit alt ... alm ou ay, ..., 4y sont m =1 éléments dis-
tincts de A et l'entier j; est compris entre 0 et l'ordre n; de qy,
[ =1,..,m. Un groupe abélien d’ordre infini peut étre dépourvu
de bases normales, méme s’il est engendré par un nombre fini d’élé-
ments et, méme s’il posseéde des bases normales, celles-ci peuvent étre
réductibles.

A tout groupe quasi libre modulo %, G, on peut associer un groupe
fondamental abélien I'® qui possede des bases normales et dont
toute base normale est irréductible.

Tout groupe pseudo libre G posséde une infinité de sous-groupes
invariants propres, il est d’ordre infini, chaque élément pseudo-libre
d’un tel groupe est d’ordre infini et tout élément de G possede un
degré fixe par rapport & I’ensemble des éléments de tout ensemble
de générateurs pseudo-libres de G.
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