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SOCIÉTÉ MATHÉMATIQUE SUISSE

Frühjahrssitzung in Bern, 7. Juni 1964

Am 3. Juni 1964 fand im mathematischen Institut der
Universität Bern die Frühjahrssitzung der Gesellschaft statt. Herr
Dr. J. P. Sydler, Direktor der Bibliothek der ETH, hielt einen
Vortrag über «Aperçus sur la vie et l'œuvre de Jacob Steiner».
Anschliessend begaben sich die Teilnehmer zum gemeinsamen
Mittagessen nach Utzenstorf, dem Geburtsort Jakob Steiners. Zum
Abschluss wurde gemeinsam die J. Steiner-Gedenktafel an der Kirche
besucht.

APERÇUS SUR LA VIE ET SUR L'ŒUVRE
DE JAKOB STEINER

par J.-P. Sydler

Jakob Steiner, dont vous m'avez demandé d'honorer aujourd'hui
la mémoire, est mort il y a un peu plus de cent ans ici, à Berne, le
1er avril 1863. Au lieu de chercher moi-même une épithète élogieuse
pour ce grand savant, permettez-moi de rappeler quelques citations:
Pour Otto Hesse: « Steiner gilt für den ersten Geometer seiner Zeit. »

Geiser dit: «Wenn in einem spätem Zeitalter ein Geometer alle seine
Zeitgenossen und Mitmenschen an Fülle der Erfindungskraft und
Meisterschaft der Darstellung überglänzt, so wird man ihn den
wiedererstandenen Steiner nennen. » Geiser dit encore, à l'exhumation
des restes de Steiner : « Wir haben in ihm den grössten Geometer
unseres Zeitalters besessen, auf dessen Schöpfungen noch künftige
Jahrhunderte in Forschung und Lehre weiterbauen werden. » Quant
à Jakobi, il écrit: « Er hat nicht nur die Synthese gefördert, sondern
auch für alle andere Zweige der Mathematik ein Muster einer
vollkommenen Methode und Durchführung aufgestellt. » Cremona parle
du « Sphinx célèbre » et Klöden, directeur de la Gewerbeschule de

Berlin, ira même jusqu'à écrire: «Es ist in der Tat nicht zuviel
gesagt, wenn man behauptet, dass nach dieser Arbeit der Verlust
der Bücher des Apollonius v. Perga von den Berührungen verschmerzt
werden kann, da hier mehr gegeben wird, als dort verloren. »
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Rappelons enfin que, sur la carte de fête du premier congrès
international de mathématiques à Zurich, on a représenté les portraits des

plus grands mathématiciens suisses des trois siècles passés: les

Bernoulli, Euler et Steiner.
Je ne saurais avoir la prétention de vous montrer en un court

exposé toutes les faces du génie d'un homme qui suscite tant d'éloges
et c'est pourquoi je me bornerai à quelques aperçus de sa vie et de

son œuvre.
Steiner est né le 18 mars 1796 à Uteensdorf, petit village qui nous

est aussi connu grâce à un contemporain de Steiner, Albert Bitzius,
dit Jérémias Gotthelf. Steiner est né dans une famille de condition
modeste et son éducation fut très rudimentaire. A 14 ans, il savait
à peine lire et écrire; par contre, il montrait une disposition très nette
pour le calcul et organisa même un petit commerce, en faisant de tête
les tractations des paysans au marché. En 1814, malgré l'opposition
de ses parents, il se rend à Yverdon où Pestalozzi l'accepte gratuitement

dans son institut. Steiner se met au travail avec une espèce de
fureur. Les cours de mathématiques de Maurer et de Leuzinger
l'enthousiasment. Bützberger a tracé un portrait du jeune Steiner de ces
années: on le voit se battre avec les polygones, en étudier toutes les

propriétés,. intersections, rapports, points singuliers. Au bout de

cinq semaines, il résoud les problèmes désignés comme difficiles. Tout
ne vient d'ailleurs pas par inspiration, comme le révèle sa remarque:
«Gefunden Samstag den 10. Christmonat 1814, 3 + 3+4 St. daran
gesucht, des Nachts um 1 Uhr gefunden. » Cette obstination porte
ses fruits. Après un an et demi, il est engagé comme maître de
mathématiques à l'institut. Trois ans plus tard, en 1818, il part pour Heidelberg

avec un bon certificat de Pestalozzi. 11 y reste cinq semestres,
donnant des leçons particulières pour payer ses études à l'université.
Tout à coup, un peu trop précipitamment, il part pour Berlin où un
ami lui a conseillé de se présenter pour une place au Gymnase Werden.
Mais il lui faut d'abord subir les examens habituels. Si son travail de
mathématiques est très bien noté, les remarques de Hegel sur celui
de philosophie sont déplorables. Il est cependant autorisé à donner
provisoirement des cours de mathématiques aux degrés inférieurs,
après a\oir passé un examen oral où sa précision est louée, mais où
on constate beaucoup de lacunes, même en mathématiques. Pourtant,
dix-huit mois plus tard, il est congédié, car on ne peut pas lui confier
l'enseignement d'une autre discipline. Il doit alors donner des leçons
particulières pour subsister. Il passe d'ailleurs pour un excellent
professeur privé et compte parmi ses élèves le prince Auguste et le fils
de Wilhelm von Humboldt. Steiner se plaint de ne pouvoir consacrer
tout le temps qu'il désire à ses recherches. Cependant ses travaux de
géométrie commencent à faire parler de lui, puisque Grelle se décide
en 1826 à publier son Journal für die reine und angewandte Mathematik,
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certain qu'il est de pouvoir compter sur les contributions de deux
savants: Steiner et Abel. Autre circonstance heureuse: On crée en 1826
la Gewerbeschule de Berlin et le directeur Klöden, partisan des
méthodes de Pestalozzi, fait engager Steiner. Son enseignement est
certainement excellent, mais son caractère laisse parfois à désirer.
Klöden doit le prier, en 1831, «de ne pas employer d'expressions
grossières, de ne pas se laisser aller à la colère, car il nuit ainsi à la
réputation de l'école ».

Nous voici arrivés en 1832, l'année où Steiner publie sa «

Systematische Entwicklung » et nous nous trouvons au tournant de sa vie.
Les événements s'enchaînent favorablement. En 1834, il est nommé
professeur extraordinaire à l'Université de Berlin, poste qu'il occupera
jusqu'à sa mort. En 1833 déjà, l'Université de Königsberg lui décerne
le titre de docteur h. c. ; en 1834 il devient membre de l'Académie
des sciences de Berlin; en 1853, membre correspondant de l'Accademia
dei Lincei, puis en 1854, membre correspondant de l'Académie des
sciences de Paris.

Si sa renommée est assurée, il n'en a pas moins à faire face à
d'autres soucis. Comme tout professeur, il combat pour améliorer sa

situation, mais ne sera jamais nommé professeur ordinaire. Et surtout,
sa santé laisse à désirer. En 1833 déjà, il doit demander deux mois
de congé pour se remettre et plus tard, toujours plus fréquemment,
il s'arrêtera pendant un semestre, si bien que sa vie se passera à

Berlin durant l'hiver et de ville d'eau en ville de cure durant l'été:
Vichy, Bad Gastein, Righi. Il revient de plus en plus souvent à Berne
ou il retrouve Schläfli et où il est même question pour lui d'une chaire
à l'université. Il s'éteint à Berne le 1er avril 1863.

Telle fut, brièvement décrite, la vie de Steiner. Il nous faut
encore voir un peu son caractère.

Son don le plus remarquable fut probablement sa vision de

l'espace. Il devait se représenter les figures avec une précision et une
plasticité incroyables et réussir à en déduire toutes sortes de

conséquences. Souvent, dans sa correspondance avec Schläfli, il note qu'il
n'a pas encore une vue très nette de certaines propriétés. Il ne s'agit
pas de relations simples; cela concerne les genres de contact de cônes
en des points multiples ou les relations entre les tangentes de courbes
compliquées. Il est une phrase touchante de Steiner malade qui se

rapporte à cette vision. Il se plaint à Schläfli de sa fatigue et dit qu'il
s'endort « lorsqu'il ferme les yeux pour voir ». Cette visualisation a
évidemment ses dangers et ses limites. Steiner en était conscient et
c'est pourquoi il soumettait volontiers ses résultats au contrôle des

analystes, à Jakobi par exemple, à Schläfli surtout. Dans
l'introduction à son mémoire sur les maxima, il écrit d'ailleurs:

« Séduits par la facilité que donne le calcul pour résoudre
certaines classes de questions relatives aux maxima et minima, quelques
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géomètres ont même conseillé l'abandon entier de la synthèse pour
se livrer uniquement à la voie plus facile de l'analyse... Nous croyons
que les deux méthodes, bien loin de s'exclure et de se repousser
mutuellement, sont au contraire indispensables pour vaincre les

grandes difficultés de la matière et conduire ainsi à la solution des

nombreux problèmes qui restent encore à traiter; une fois le but
atteint, il sera toujours temps de comparer entre elles ces deux
méthodes et les services qu'elles auront pu rendre. »

Non seulement il sent parfois la nécessité d'étayer ses résultats

par des démonstrations plus sûres, mais il doute même que ses résultats

soient justes. Il termine par exemple son travail sur les courbes
à centres par les mots suivants:

« Ich will hier noch bemerken, dass ich einige in dieser Abhandlung
aufgestellten Sätze nicht genügend bewiesen habe, sodass dieselben

möglicherweise fehlerhaft sein können. Sollte dies der Fall sein, so

mag die Neuheit und Schwierigkeit des Gegenstandes, zumal im
Vergleich mit der von mir befolgten synthetischen Betrachtungsweise,

mich einigermaassen entschuldigen. »

Mais si Steiner n'aime pas l'analyse, il semble adorer l'analyse
combinatoire. Gela lui est peut-être resté de l'enseignement qu'il reçut
à Yverdon, où on lui apprit à voir tous les détails des problèmes.
Un exemple caractéristique apparaît dans son article sur les courbes
du quatrième degré. Les 28 tangentes doubles peuvent être classées
4 à 4 en 315 groupes, de telle sorte que les 8 points de contact sont
sur une conique. Les 378 points d'intersection de ces tangentes
constituent 63 groupes de 6 points situés sur une conique. A chaque
point d'intersection P correspondent deux points Q et R, intersection
des cordes de contact. Les 18 points P, Q, R d'un même groupe sont
sur une cubique. Chacune des 63 cubiques coupe la courbe de base
en 12 points. Ces 756 points sont les points de contact des coniques
surosculatrices qui touchent encore la courbe en un autre point.
Et Steiner continue encore. J'avoue que cette débauche de résultats
a un certain inconvénient: ils sont si touffus qu'on en oublie parfois
la simplicité de leur origine et la lecture de certaines pages de Steiner
en devient assez ardue.

Et pourtant ce besoin de synthèse est fondamental chez Steiner.
Il écrit dans son curriculum vitae:

« Schon als Schüler drang sich mir, nachdem ich mehrere
Lehrbücher der Geometrie kennen gelernt, die Zufälligkeit der Ordnung
auf, die aus dem Bedürfnis des Zusammenhanges der einzelnen Sätze
als Solcher entsprang; ich fand darin etwas Willkürliches, dass man
die Notwendigkeit der Wissenschaft aus ihrem materiellen Inhalt
nachwies, statt dass nach einem mich dunkel belebenden Gefühl die
ganze Manifaltigkeit der Materie aus einer allgemeinen Einheit
derselben folgen und demgemäss erschöpft werden müsste...
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» Als Lehrer stellte ich mir daher die Aufgabe, womöglich eine
jede Desziplin nur als Resultate der Entwicklung dieses einzigen
Gedankens an ihrem Orte heraustreten zu lassen. »

Et c'est vraiment toute sa vie qu'il consacrera à cette recherche
de synthèse.

Mesdames et Messieurs, laissez-moi relever aussi un côté négatif
du caractère de Steiner, qui touche d'ailleurs plus à la morale qu'à
la science, mais qui déçoit un peu, comme toujours lorsque l'on cons-

200-

400-

TVBLIEES
?AR AH

Mo mo ' *a'3o

Fig. 1.

a

bid

g

Ux UacL
J8SO

m
isTâjlazz

täte qu'un génie est aussi un homme et qu'il a aussi ses défauts.
J'aimerais parler de sa susceptibilité et de son comportement avec
les découvertes des autres. En effet, il a souvent eu des démêlés avec
d'autres savants auxquels il reprochait de ne pas assez reconnaître ses
mérites. Il est probable que la brouille qu'il eut avec Schläfli ait eu
la même origine. Par contre, lui-même oublie assez souvent de citer
ses sources. Par exemple, on lit dans une de ses notes de 1853 : « Ein
Engländer (Gayley) soll gefunden haben, dass /3 im Allgemeinen
27 Geraden enthält. » Une autre remarque montre aussi clairement
qu'il connaissait les travaux de Sylvester et de Gayley, mais on ne
trouve aucune citation dans le travail sur les surfaces du 3e degré
qu'il publie l'année suivante. Il est certain aussi que Jakobi lui fit
connaître les ouvrages de Poncelet. Ailleurs encore, Steiner indique
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les relations de Pliicker pour les courbes et s'en attribue la paternité.
Il est possible que, dans la fièvre de ses découvertes, il ait effectivement

oublié que certaines idées n'étaient pas de lui et il est fort
possible qu'il les ait redécouvertes lui-même. Même en écartant tous
les cas où un doute subsiste, l'œuvre originale de Steiner reste
immense. Pour en avoir une idée, dessinons peut-être le diagramme de

ses publications (fig. 1).
Sa première œuvre mûre pour la publication n'est peut-être pas

une œuvre transcendante, mais elle est remarquable. Il s'agit de son

Allgemeine Theorie über das Berühren und Schneiden der Kreise und
der Kugeln. Gomme vous le savez, cet ouvrage a eu une histoire
étrange. Steiner en écrivit le manuscrit durant les années 1823-26.
Or elle ne fut publiée qu'en 1931 par Fueter et Gonseth, lorsque l'on
eut mis en valeur les papiers retrouvés à Berne. Autre singularité:
Le titre original en était : Das Schneiden (mit Einschluss der Berührung)
der Kreise in der Ebene, das Schneiden der Kugeln im Baume, und das
Schneiden der Kreise auf der Kugelfläche. Mais dans le livre publié,
on ne trouve plus trace du chapitre sur le contact des cercles sur la
sphère. Cependant, il semble que Mlle Jegher ait trouvé des fragments
de cette partie manquante parmi les documents de l'Institut de

mathématiques de Berne. Il est donc pensable qu'on ne connaisse

pas tout F œuvre de Steiner et c'est là un point sur lequel nous
reviendrons.

Dans son étude des cercles, Steiner part des propriétés les plus
élémentaires, des axes de même puissance et des points de similitude;
le contact est considéré comme cas particulier de la section sous un
certain angle. Par une progression sûre, on arrive à toutes les
propriétés des cercles et des sphères et l'ouvrage s'achève par 106 exercices

qui traitent tous les cas possibles pour 1, 2,..., 8 sphères soumises
à certaines conditions. L'ensemble donne une impression d'équilibre,
d'ordre étonnant, qui suggère vraiment l'idée d'un schéma général
dont tout découle, au point que Gonseth a pu émettre l'hypothèse
que Steiner a employé, plus ou moins consciemment, le modèle
obtenu en projetant le plan sur la sphère et en remplaçant les cercles

par leur pôle par rapport à cette sphère. Gela expliquerait aussi pourquoi

il a fait disparaître le chapitre des cercles sur la sphère, trop
révélateur de sa méthode. N'oublions pas que fleurissait alors la mode
des énigmes posées aux autres savants. On retrouve d'ailleurs dans
toute l'œuvre de Steiner quantité de problèmes ou de théorèmes dont
on ne sait pas très bien s'il les a résolus ou seulement proposés.

Puisque nous parlons des cercles, citons brièvement une autre
publication de Steiner, la deuxième qui ait paru dans le Journal de
Grelle et qui porte le titre modeste de « Einige geometrische Betrachtungen

». Steiner y résoud différents problèmes sur les cercles, en
particulier le problème de Pappus qui établit des relations entre les

L'Enseignement mathém., t. XI, fasc. 2-3. 16
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rayons des cercles en chaîne inscrits entre deux cercles, et surtout le
problème de Malfatti: Trouver trois cercles tangents deux à deux et
dont chacun touche deux côtés d'un triangle donné (fig. 2). Non
seulement Steiner résoud le problème avec tous ses cas particuliers, mais
il le généralise en le transportant dans l'espace: Trouver sur une
quadrique trois coniques tangentes deux à deux entre elles et
tangentes chacune à deux de trois coniques données. Là encore, on peut
se demander s'il n'a pas employé son modèle de la sphère. Ce que
nous pouvons aussi souligner dans cette publication, c'est le besoin
que Steiner avait d'établir des relations entre des propriétés à
première vue indépendantes. Relevons aussi une citation de l'introduction:
« Der Verfasser pflegt in der Regel nicht eher über eine Aufgabe oder
über einen Gegenstand weiter nachzulesen, bevor er nicht selbst eine
Auflösung oder Sätze darüber gefunden hat, um alsdann seine Resul¬

tate mit den schon vorhandenen zu vergleichen. » On comprend que,
avec une telle disposition d'esprit, Steiner n'ait pas manqué d'avoir
des difficultés de priorité avec d'autres savants.

Avant d'aborder les découvertes fondamentales de Steiner,
penchons-nous encore un moment sur un autre de ses grands thèmes,
celui des extrêmes. Faisons un saut dans le temps et voyons un peu
l'ouvrage: Ueber Maximum und Minimum bei den Figuren in der

Ebene, auf der Kugelfläche und im Räume überhaupt. Tout d'abord,
un détail bibliographique. La première partie fut traduite et publiée
en français dans le Journal de mathématiques de Liouville après avoir
été présentée en 1841 à l'Académie des sciences de Paris, puis les deux
parties parurent, en français toujours, dans le Journal de Grelle en
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1842 et ne furent publiées en allemand que dans les Œuvres complètes,

d'après le manuscrit original, en 1882. C'est à ce moment d'ailleurs

que le manuscrit semble avoir disparu, probablement dans la corbeille
à papier de la rédaction. Nous ne voulons pas nous appesantir sur
la rigueur axiomatique des démonstrations de Steiner. Il semble que,

presque toujours, il admette l'existence du maximum. Par contre, il
s'efforce de trouver plusieurs méthodes pour arriver aux résultats.
Prenons par exemple le cas des figures de périmètre donné dont l'aire

doit être maximale. Une telle figure doit d'abord être convexe. Si A
et B sont les points qui divisent le pourtour en deux longueurs égales,
la droite AB doit couper la surface en deux figures de même aire,
sinon, par symétrie, on obtiendrait une surface plus grande. Soit D
un point sur l'arc AB. L'angle ADB doit être droit, sinon le triangle
ADB pourrait être transformé en un triangle rectangle, de surface
plus grande, sur les côtés duquel on pourrait accoler les parties de
surface sous-tendues par AD et DB. Par conséquent, la surface
cherchée est un cercle.

Autre méthode: En partant de considérations simples sur les
triangles, on montre que, si les côtés d'un polygone, sauf la base, sont
donnés, l'aire est un maximum si tous les sommets sont sur un cercle
centré au milieu de la base. Et on retrouve le cercle en remplaçant
dans le cas précédent un triangle par un polygone.

Ou encore: La ligne de longueur donnée qui joint deux points des
côtés d'un angle et qui délimite une surface d'aire maximum est un
arc de cercle centré à l'intersection des droites. En effet, cette ligne
doit être convexe et symétrique par rapport à la bissectrice des deux
droites, puis symétriques par rapport à toutes les autres bissectrices

Fig. 3.
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des demi-angles formés. C'est donc un arc de cercle. Et de là, Steiner
se permet de passer directement au cercle, sans trop se préoccuper
de ce qui se passe lorsque l'angle des droites est plus grand que n.

Sa méthode la plus connue est celle de la symétrisation qu'il donne
comme nouvelle possibilité de démonstration. Considérons dans un
triangle par exemple tous les segments contenus dans le triangle et
parallèles à une direction fixe. Déplaçons ces segments sur leurs
droites de façon à ce que leurs extrémités soient symétriques par

Fig. 4.

rapport à un axe qui leur est perpendiculaire. Le quadrilatère obtenu
a même surface, mais son périmètre est plus petit. En répétant la
construction pour des directions quelconques, on voit que la figure
de périmètre donné et de surface maximale est celle qui a autant
d'axes de symétrie que l'on désire (fig. 3).

Steiner emploie aussi cette dernière méthode dans le cas de l'espace,
en indiquant d'ailleurs une deuxième méthode, sur laquelle je ne veux
pas insister. Il s'intéresse aussi aux problèmes de maximum relatifs
aux pyramides, aux cylindres et, de plus, à tous les problèmes compliqués

suscités par des conditions supplémentaires, comme celui de

trouver la figure de périmètre donné et d'aire maximale tracée sur
une surface et inscrite à un certain nombre de courbes données. En
particulier, pour qu'un polygone inscrit à une courbe soit extrême,
il faut que la tangente en chaque sommet soit parallèle à la diagonale
qui joint les sommets voisins.

Nous avons un peu insisté sur cette question des maxima d'abord
parce qu'elle montre bien l'imagination de Steiner, sa fantaisie pour
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trouver les méthodes qu'il faut pour établir les propriétés qu'il veut
démontrer. Mais aussi parce que très souvent il a repris ce thème,

pourrait-on dire. Dans de nombreux théorèmes, il recherche s'il n'y
a pas encore en plus un extrême à faire apparaître. Ainsi, par exemple,

il montre que, par tout point D d'une ellipse, passent trois cercles

oscillateurs à l'ellipse en A, B, C. Les points A, B, G, D sont sur un
cercle, mais de plus, le triangle ABC est un triangle inscrit d'aire
maximale (fig. 4).

Il est temps de nous intéresser maintenant au chef-d'œuvre de

Steiner. C'est en 1832 que paraît son livre de 230 pages sur la
Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von

einander, 1. Theil. L'ouvrage devait compter cinq parties, seule la

première a été rédigée par Steiner. Par contre, il en a fait le sujet
de nombreux cours à Berlin et a préparé plusieurs notes sur les

« Populäre Kegelschnitte » qui devaient prendre place dans cet
ensemble. Heureusement, deux de ses élèves en ont publié en 1867

des parties, d'après des manuscrits ou d'après les leçons. Geiser a

donné: Die Theorie der Kegelschnitte in elementarer Darstellung et
Schröter: Die Theorie der Kegelschnitte gestützt auf projektive
Eigenschaften, 560 pages qui correspondent au cinquième chapitre
de la Systematische Entwicklung. Nous pouvons donc avoir une bonne
idée de l'ensemble et assez bien cerner les intentions de Steiner.

Pour faire ressortir l'importance de cet ouvrage, il convient de

brosser à grands traits le tableau de la situation de la géométrie au
début du xixe siècle.

On peut distinguer deux aspects de la géométrie: la géométrie
synthétique et la géométrie analytique. La géométrie synthétique
considère les objets pour eux-mêmes, dans l'espace, et cherche leurs
propriétés en se basant sur une sorte de réalisation, parfois uniquement

imaginative, mais qui suppose une certaine visualisation ou
représentation des figures. Cette vision permet ensuite d'appliquer
le raisonnement logique aux endroits les plus favorables, ce qui révèle
de nouvelles propriétés, une nouvelle vision, etc. La géométrie
analytique, elle, remplace les objets par des coordonnées et des
paramètres; ce remplaçant de l'objet est porté dans le domaine du calcul
où il est soumis à des opérations logiques dont on tire les conséquences
et ces conséquences sont finalement retraduites pour ainsi dire dans
le langage géométrique. La géométrie fut d'abord essentiellement
synthétique, mais il semble qu'Apollonius ait fait quelques essais de
géométrie analytique. Nouveaux essais timides 2000 ans plus tard
avec Viète, Descartes, Fermât. Mais le grand essor de la géométrie
analytique a lieu après la découverte du calcul infinitésimal par
Newton et Leibnitz et c'est son âge d'or, dominé entre autres par
Euler et Clairaut. Nous arrivons ainsi à la fin du xvnie siècle, où
Monge écrit son Application de Vanalyse à la géométrie. Or c'est ce
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même Monge qui publie peu après ses Leçons de géométrie descriptive
qui vont provoquer un renouveau de la géométrie synthétique. Le
dessin, les projections, permettent de nouveau de raisonner sur des

objets vus, et de nombreux savants abandonnent la géométrie
analytique pour se tourner vers la géométrie synthétique. En 1822 paraît
le Traité des propriétés projectives des figures de Poncelet. En 1824, Pon-
celet présente à l'Académie des sciences de Paris son Mémoire sur la
théorie générale des polaires réciproques qui est publié partiellement en
1826 et in extenso en 1829. Dans ces ouvrages, il étudie les propriétés
des figures qui restent invariantes par une projection centrale, le

rapport anharmonique en particulier. Pour lui, la dualité découle
essentiellement de la polarité par rapport aux coniques. Relevons
encore son principe de continuité, qui attribue les mêmes propriétés
à deux figures générales qui se transforment l'une dans l'autre de

façon continue, et son introduction de certains éléments imaginaires,
comme par exemple les points cycliques des cercles.

On a ainsi une idée de la géométrie vers 1820-1830 et l'on voit
ce que Steiner pouvait avoir appris lorsqu'il rédigeait son Entwicklung.
Qu'a-t-il apporté de nouveau Il définit d'abord les formes
fondamentales dont il va se servir: ponctuelles, faisceaux de droites, de

coniques. Entre ces éléments intervient d'abord une correspondance
biunivoque spéciale, la perspectivité, ce qui oblige à considérer les
éléments à l'infini. On passe de là à la correspondance biunivoque
générale, la projectivité entre les formes fondamentales, dont la
dualité de Poncelet n'est plus qu'un cas particulier. Et surtout, les
formes projectives dans un même espace engendrent des courbes et
des surfaces et une quantité de propriétés découlent soudain d'un
principe simple. Un grand nombre de théorèmes qui semblaient ne
posséder aucune relation entre eux viennent s'ordonner dans une
vaste structure organique. La géométrie projective semble actuellement

si simple et si claire qu'on en oublie un peu l'effet qu'eut sa

découverte. Il faut reconnaître que Steiner sut en tirer immédiatement

un nombre incroyable de conséquences, si bien que l'on désigna
les faisceaux projectifs comme la «machine à vapeur » de Steiner. Je

ne vais pas me permettre de parler plus longuement de géométrie
projective à des mathématiciens chevronnés. Je voudrais pourtant
citer un seul exemple simple, qui montre la virtuosité de Steiner dans la
recherche des conséquences d'une propriété à première vue élémentaire.

Dans le plan, deux faisceaux projectifs de droites engendrent une
conique. Réciproquement, en projetant les points d'une conique à

partir de deux d'entre eux, on obtient deux faisceaux projectifs.
Dualement, les droites de jonction des points correspondants de

deux ponctuelles projectives enveloppent une conique. Réciproquement,

les tangentes à une conique déterminent sur deux d'entre elles
des ponctuelles projectives.
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Considérons dès lors six points sur une conique, 1, 2, 3, 4, 5, 6.

Projetons les points 2346 à partir de 1 sur 34 et à partir de 5 sur 32.

Nous obtenons deux ponctuelles projectives, et même perspectives
puisque 3 se correspond à lui-même. Par conséquent, les droites
2' 2" 12, 4' 4" 45 et 6' 6" se coupent en un point, c'est-à-dire:
les trois points 12 — 45, 23 —• 56 et 34 —- 61 sont sur une droite.
C'est le théorème de Pascal.

Steiner ne saurait en rester là et il réussit à employer à la fois une
propriété, sa réciproque et la propriété duale dans la même figure.
En effet, si l'on considère l'hexagone 156" 246', on voit que les
diagonales se coupent en un point P et par conséquent les six droites
sont tangentes à une conique. Or ces six droites constituent les deux
triangles 234 et 561. Par conséquent, deux triangles inscrits à une
conique sont circonscrits à une autre conique. Ou encore: Si on peut
tracer un triangle inscrit à une conique et circonscrit à une autre, on
peut en tracer une infinité. En disant brièvement: si un triangle
inscrit-circonscrit se ferme, tous les autres se ferment, on voit que l'on
a ici un des théorèmes de fermeture, leitmotiv de Steiner (fig. 5).

Même alors, le problème n'était pas encore épuisé pour Steiner,
et une autre partie de son esprit se met en marche, son goût combina-
toire. En effet, si nous reprenons notre conique, nous voyons que les
mêmes raisonnements jouent si nous prenons les six points dans un
autre ordre. Il doit donc exister plusieurs droites de Pascal. Quelles
sont leurs relations Voilà bien un problème que Steiner ne saurait
laisser irrésolu. Et il montre que l'hexagone mystique se compose par

\ £

Flg. 5.
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permutations de 60 hexagones qui déterminent 60 droites de Pascal.
Ces 60 droites se coupent 3 à 3 en 20 points de Steiner qui, eux, sont
4 à 4 sur 15 autres droites de Steiner, lesquelles se coupent 3 à 3 dans
les 20 points de Steiner. Alors et seulement alors, on peut abandonner
le problème, il ne reste probablement plus grand-chose à en tirer.

On comprend pourquoi la Systematische Entwicklung est un
ouvrage fondamental, d'abord à cause des idées de base simples et
géniales, mais aussi à cause de la façon magistrale dont Steiner sait
en jouer. Un des seuls points qui soit aujourd'hui démodé est celui
des éléments imaginaires, dont l'acception est encore un peu flottante
et qui oblige souvent à des distinctions entre ellipse et hyperbole,
entre points réels, confondus ou imaginaires. Steiner écrit même dans
une lettre à Schläfli qu'il ne comprend pas un mot de ce que Schläfli
lui dit des points communs à tous les cercles. Cela enlève-t-il beaucoup
à l'importance de l'œuvre Je ne crois pas Avant de quitter ce
livre, rappelons qu'il se termine par une liste de 85 problèmes. Un
élève de Kollros, Karam, leur a consacré une thèse qui a révélé que
trois des problèmes proposés sont toujours irrésolus. Il est peut-être
permis de les rappeler ici.

70. Quelles sont les propriétés de toutes les quadriques semblables
qui passent par 4 (ou 5) points de l'espace; quels sont l'enveloppe,
le lieu des centres, le lieu des foyers, etc.

76. Le nombre des faces d'un polyèdre étant donné, de quelle nature
peuvent être ces faces et combien y a-t-il de polyèdres différents

Exemple: 1 tétraèdre; 2 pentaèdres (4 tr., 1 quadr./2 tr.,
3 quadr.); 7 hexaèdres (6 tr./5 tr.; 1 pent./4 tr.; 2 quadr./3 tr.;
2 quadr. ; 1 pent./2 tr. ; 4 quadr./2 tr. ; 2 quadr. ; 2 pent./6 quadr.).

77. Etant donné un polyèdre convexe quelconque, existe-t-il tou¬
jours (ou quand) un polyèdre de même type qui se laisse inscrire
ou circonscrire à une sphère ou à une surface du second degré

Il est un peu hasardeux de vouloir dresser l'historique des
recherches ultérieures de Steiner. Il avait sans cesse des quantités de

problèmes en tête, et l'esquisse que nous pouvons tenter, si elle ne
correspond pas à la réalité, permettra peut-être d'imaginer son champ
d'activité.

Ayant en main son prestigieux instrument de la projectivité,
Steiner commence par coordonner toutes les propriétés des coniques
et des quadriques. Il a vite fait le tour des conséquences des faisceaux
de droites; les faisceaux de courbes le mènent aux courbes et aux
surfaces plus générales. Que peut-on bien généraliser Dans la
polarité par rapport aux coniques, la polaire d'un point est la droite
qui joint les points de contact des tangentes menées par le pôle.
Qu'en est-il pour une courbe quelconque D'un point, on peut mener
n (n — 1) tangentes à une courbe d'ordre n. Or les n (n — 1) points
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de contact sont sur une courbe de degré (n — 1). On peut le montrer
en appliquant le principe de continuité de Poncelet. Soient C1 la

courbe donnée et C2 une courbe obtenue par une similitude de

centre P. Les n2 points d'intersection de 6\ et C2 comprennent n points
à l'infini et n2 — n points dans le fini. Parmi le faisceau des courbes

d'ordre n qui passent par ces n2 points, celle qui passe par un point
de la droite à l'infini dégénère en cette droite et une courbe d'ordre
n — 1 passant par tous les points dans le fini. Or, quand C2 tend vers

Li, les n (n — 1) points base donnent les points de tangence cherchés.

On obtient ainsi la première polaire du point P par rapport à la
courbe. La première polaire de la première polaire est la deuxième

polaire de P par rapport à la courbe. On peut donc parler de la
ke polaire de P, courbe de degré (n — £), en particulier de la (n — 2)e

qui est une conique, et de la {n — l)e qui est une droite. On introduit
aussi des polaires mixtes: la ke polaire de P par rapport à la je polaire
de Q est identique à la je polaire de Q par rapport à la ke polaire de P.
En outre, si Q est sur la ke polaire de i3, la (n — k)e polaire de 0 passe

par P. Si P décrit une courbe d'ordre ?\ Dr, l'enveloppe de la xe polaire
de ses points sera une courbe

l(D\ : On] - £r(r+-v—3)(/i-.v)
<

Toutes ces propriétés se généralisent dans l'espace et permettent de

forger un nouvel instrument d'une puissance remarquable qui sera à

la base des développements de la géométrie algébrique, de l'école
italienne surtout. Steiner a vu bientôt l'importance que présentaient
les polaires pour l'étude des éléments multiples des courbes et des
surfaces. Par exemple, si la xe polaire de P a un point double en Q,
la (n — x)e polaire de Q a un point double en P. En particulier, le
lieu des points P dont la (n — 2)e polaire est un couple de droites
ou le lieu des points doubles des premières polaires est une courbe
de degré 3 (72 — 2). Le lieu des points dont la première polaire a un
point double, ou le lieu des centres des 11 — 2)e polaires dégénérées
en deux droites, est une autre courbe de degré 3 (n — 2)2. Il est juste
qu'on ait associé à ces courbes les noms de géomètres fameux et qu'on
les nomme la Hessienne et la Steinerienne.

Il n'est pas dans mon intention de m'appesantir sur les propriétés
des polaires que vous connaissez mieux que moi. Je préfère m'arrêter
un moment sur un travail moins connu, parce que moins riche en
conséquence, mais qui, dans l'esprit de Steiner, devait probablement
faire équilibre à la théorie des polaires. Il s'agit de son étude sur les
courbes à centre. Toute droite par le centre coupe la courbe en des
points symétriques par rapport au centre. Une courbe à centre est
donc de degré pair si elle ne passe pas par le centre; de degré impair
si elle y passe et elle a alors un point d'inflexion en ce point.
Considérons encore une courbe quelconque. Il existe par un point quel-

I .'VnsPM'tii'mfMil Timlin«» I. \' T fnsn 17
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conque \ n (n — 1) droites qui coupent la courbe en deux points
symétriques par rapport à P. En effet, faisons tourner la courbe de
180° autour de P. Les deux courbes se coupent en n2 points, dont n
sont à l'infini. Les n(n — 1) autres sont deux à deux symétriques
par rapport à P et sont les points d'intersection des droites cherchées.
Le faisceau des courbes d'ordre n qui passent par les n2 points en
contient une qui dégénère en la droite à l'infini et une courbe de
degré (n-—1) passant par tous les points dans le fini. Cette courbe
est celle que Steiner appelle la première polaire intérieure de P par
rapport à la courbe donnée. Il a analysé les relations entre la polaire
normale et la polaire intérieure. Ainsi par exemple, ces deux polaires
se coupent en (n — 1) (n — 2) points dans le fini, ces points étant
sur une courbe de degré n — 2. Et Steiner étudie aussi tous les cas
particuliers pour les courbes de 3e et 4e degré, lorsque le pôle est sur
la courbe ou en un point particulier. Malheureusement, les propriétés
qui découlent des polaires intérieures ne sont pas aussi intéressantes
que celles des polaires, probablement à cause de leur définition
métrique qui introduit une dissymétrie dans l'analogie. Je crois
pourtant que cet essai aussi éclaire un des aspects du génie de Steiner.

Mesdames et Messieurs, j'aimerais encore voir brièvement avec
vous un des travaux de Steiner; j'aurais pu choisir par exemple le
problème des normales abaissées d'un point à une surface ou à une
courbe, ou celui des centres de courbures. Permettez-moi plutôt
d'attirer un moment votre attention sur le problème des surfaces de
troisième degré. Steiner commence par donner plusieurs façons
d'engendrer la surface du troisième degré. Tout d'abord, cette Ss peut
être considérée comme la surface générale du faisceau déterminé par
deux triplets de plans quelconques; elle passe donc par les neuf droites
d'intersection des triplets et par un point quelconque. On peut
l'engendrer aussi à l'aide de deux faisceaux projectifs: un faisceau
de plans et un faisceau de quadriques. La surface passera alors par
l'axe des plans et par une courbe du quatrième degré, base de l'autre
faisceau. Ou encore on peut, d'un point quelconque, mener les cônes

tangents à un faisceau ponctuel de quadriques. Les coniques de

contact sont toutes sur une surface du 3e degré. Autre méthode
encore: Si l'on considère un réseau de quadriques, les plans polaires
d'un point quelconque P se coupent en un point Q. Si P décrit une
droite, Q décrit une courbe gauche du troisième degré et, si P décrit
un plan, Q décrit une surface du troisième degré. Ou encore: Les pôles
d'un plan par rapport aux quadriques d'un réseau sont sur une
surface du troisième degré.

Comme vous le savez, une surface du 3e degré contient 27 droites.
On peut les retrouver pour chaque mode de définition et on est

presque surpris que Steiner ne les ait pas découvertes toutes lui-
même, qu'il lui ait fallu une indication de Cayley pour y arriver. Par
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contre, par un penchant de son esprit que nous avons remarqué
plusieurs fois, il 's'efforce ensuite de trouver toutes les relations entre
ces 27 droites. Chacune des droites est coupée par 10 autres. Ces

27 droites se coupent en 135 points et forment 45 triangles. Il y a

donc 45 plans qui sont tangents à la surface en trois points différents.
Ces plans déterminent 240 trièdres qui forment 120 couples dont les

droites d'intersection sont sur la surface. Ces 240 trièdres ont
720 arêtes, donc les 135 points d'intersection des 27 droites sont 3 à 3

sur 720 droites qui se coupent 3 à 3 en 240 points.
Négligeons de nombreuses propriétés de la surface du 3e degré,

laissons même sa Steinerienne et bornons-nous à un seul détail:
Considérons un plan quelconque et cherchons l'enveloppe des

deuxièmes polaires de ses points par rapport à la surface cubique.
Cette surface est du troisième degré et sa classe est seulement égale
à 4. En effet, l'intersection de trois plans polaires a pour première
polaire une quadrique par les trois pôles. A la limite, le point de

contact d'un plan polaire avec le lieu cherché a pour première polaire
une quadrique tangente au plan considéré. Par conséquent, pour
trouver le degré de la surface cherchée, il suffît de trouver les points
d'une droite dont la première polaire touche le plan donné. Ces
premières polaires forment un faisceau ponctuel de quadriques dont trois
touchent le plan. D'autre part, si l'on considère les plans polaires qui
passent par une droite, on voit que les pôles de ces plans doivent être
sur toutes les premières polaires des points de la droite, donc sur une
courbe du 4e degré. Les quatre points d'intersection avec le plan
donné ont pour deuxièmes polaires les quatre plans tangents cherchés.

S'il existe une surface du troisième degré et de quatrième classe,
il doit bien exister une surface duale de quatrième degré et de
troisième classe. Voyons brièvement comment on peut arriver à établir
son existence et quelques-unes de ses propriétés.

Rappelons d'abord un théorème connu: Les sommets des trièdres
trirectangles tangents à une sphère sont sur la sphère orthoptique.
Par une projectivité, on arrive au théorème plus général: Considérons
une conique dans un plan. Par les côtés de ses triangles polaires,
menons les plans tangents à une quadrique quelconque. Les points
d'intersection de ces plans sont sur une quadrique passant par la
conique. Si la quadrique donnée est tangente au plan de la conique,
le lieu dégénère en un plan. Dualement, si, d'un point P d'une
quadrique quelconque, on projette sur la quadrique les triangles polaires
d'une conique quelconque c, les plans déterminés par les images des
sommets passent tous par un point fixe R. Ce point R se trouve en
particulier sur la droite qui joint P au pôle par rapport à c de la droite
d'intersection t du plan de c avec le plan tangent à la quadrique en P.

Considérons ensuite, dans un plan, un faisceau ponctuel de
coniques. En maintenant la quadrique et le point P fixes, on obtiendra
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pour chaque conique un certain point Rc. Gomme le faisceau a un
triangle polaire commun, le lieu de Rc sera dans le plan déterminé
par les images des sommets de ce triangle. D'autre part, les points Rc
s'obtiennent en projetant de P les pôles de la droite d'intersection
par rapport à toutes les coniques du faisceau. Or ce lieu est une
conique. Le lieu de Rc est donc également une conique.

Finalement, prenons un réseau de coniques. Le lieu de Rc est
une surface qui contient une infinité de coniques, engendrées par tous
les faisceaux du réseau.

Dans un plan, il y a certains points A dont les polaires par rapport
à toutes les coniques d'un réseau passent par un même point R. Le
lieu de ces points A et R est une cubique. En particulier, sur la droite
d'intersection t, il y a trois points A, ce qui signifie que le lieu des

pôles de t par rapport à tous les faisceaux du réseau se compose de

coniques qui passent toutes par trois points B2l Bz. Et par conséquent

toutes les coniques de la surface cherchée coupent les trois
droites PBXl PB2l PBZ qui sont des droites doubles pour la surface,
le point P étant un point triple. On voit ainsi apparaître les différentes
propriétés de la surface: Tous les plans contenant une conique coupent
encore la surface suivant une deuxième conique. Des quatre points
d'intersection de ces deux coniques, trois sont sur les droites doubles
et le quatrième est le point de contact. On peut montrer géométriquement

que la surface est de troisième classe et qu'il s'agit donc du
pendant de la surface du troisième degré dont nous parlions; c'est la
célèbre surface romaine, la surface de Steiner qui a suscité de
nombreux travaux à cause de ses propriétés étonnantes.

Pourtant, c'est d'une autre particularité de cette surface dont
j'aimerais vous parler pour finir. Cette surface est appelée surface
romaine parce que Steiner la découvrit lors de son séjour à Rome en
1844. Or il n'a rien publié à son sujet et l'on n'a trouvé aucune manuscrit

qui s'y rapporte. La seule chose qu'on en connaisse est une citation

de Weierstrass à la fin des Œuvres complètes de Steiner où il
rapporte une communication que celui-ci lui avait faite oralement un
an avant sa mort. Steiner semble avoir hésité à publier quoi que ce

soit, car il n'était pas certain que la surface soit bien du quatrième
degré; il soupçonnait une partie imaginaire, un « Gespenst » comme il
dit lui-même. Ceci est étonnant, tout comme est étonnant le fait que
Steiner n'ait écrit qu'une seule page, la toute dernière de ses publications

en 1857, à propos de la surface duale du troisième degré. Si,
de plus, on pense au diagramme des publications de Steiner, bien
mince vers la fin de sa vie, alors qu'il disait n'avoir publié que la
dixième partie de ses découvertes, le bibliothécaire qui vous parle
ne peut s'empêcher d'avoir un certain sentiment d'insatisfaction. Je
n'arrive pas à croire que les Œuvres complètes de Steiner soient
vraiment complètes, malgré les notes posthumes que Geiser y a ajoutées.
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Mon malaise est d'ailleurs encore plus grand depuis que j'ai vu que
certains manuscrits de Steiner reçus par l'Ecole polytechnique
portaient la mention: « nicht aufbewahren » et, depuis que je sais que l'on
a perdu toute trace du manuscrit sur les maximum après son arrivée
à Berlin.

Mesdames et Messieurs, cela m'incite à terminer par un conseil de

bibliothécaire: Ne détruisez pas les manuscrits de vos découvertes.
D'abord parce qu'ils rendront service au conférencier qui fera votre
éloge cent ans après votre mort, mais aussi parce qu'ils constituent
pour l'histoire des sciences des documents irremplaçables, pleins d'une
valeur émotive non négligeable. On crée des musées de la technique,
il est temps de penser à un musée des mathématiques. Je crois qu'il
y manquera toujours certains travaux de Steiner, car Steiner est
encore plus grand que «tel qu'en lui-même enfin, l'éternité l'a
changé ».

Jahressitzung in Zürich, 10. Oktober 1964

Die Jahresversammlung der SMG fand am 10. Oktober 1964 im
Rahmen derjenigen der Schweizerischen Naturforschenden Gesellschaft

in Zürich statt. Es wurden 8 wissenschaftliche Vorträge
gehalten, die untenstehend entweder durch ihren Titel oder im
Auszug angegeben sind.

R. Coifman (Genève): Sur Vitêration continue des fonctions réelles.

Soit / (x) continue, strictement croissante sur [0, a] et telle que
0 < / (x) < x pour x e [0, a]. On appelle famille d'itérées de / toute
famille fa {x) de fonctions telle que

Y<7,/i69î, fi(T)^f(x)etf0(fß(x)) «= fa + ß(x)

La construction d'une telle famille est liée à la résolution de
l'équation fonctionnelle d'Abel:

A (/ [x))A (x) + 1 ;

une famille d'itérées est obtenue en posant

la('') ~A((x) -f- (j)

L'existence d'une infinité de familles d'itérées d'une fonction
donnée nous conduit à exiger certaines conditions de régularité de
manière à obtenir l'unicité (voir [1], [2], [3]). Ces conditions de régularité

sont données à l'aide de la relation d'équivalence suivante entre
familles d'itérées;
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Définition: Nous dirons que fa(x) s'il existe une fonction

cp(x) telle que

fa (x)g<p(X) (x)et V (x)-> + 0) (a#0).
Nous dirons qu'une famille d'itérées de / (x) est régulière relativement
à g„(x) lorsque fa (x) ~ ga (x).

Théorème : Soit fa (x) une famille d'itérées continue et strictement
monotone en g, g (x) une fonction continue et strictement croissante

pour x e [0, a] et telle que 0 < g {x) < x pour x e [0, a].
et soit

g0 (x) x,gn+ 1 (x) g (gn(x))0, ± 1, ± 2,

Pour que g (x) possède une famille d'itérées ga ** fa1 il faut et il
suffit que:

ë-n (L (gn (X))G X) (R 00)

pour tout a et x e [0, a] et que G (cr, x) soit continue en g et x et
strictement monotone en g.

Il existe alors un a ^ 0 tel que gG (x) — G (oc g, x) et ga (x) est la
seule famille d'itérées de g équivalente à fa.

[1] Szekeres, G., Acta Math., 100, 1958, p. 203.
[2] J. Austr. Math. Soc. (3), 2, 1962, p. 301.
[3] Coifman, R., Comptes Rendus Acad. Se. Paris, à paraître.

R. Coifman
Institut de mathématiques
de l'Université de Genève.

J. Hersch (Zürich): Equations finies satisfaites par les solutions de

certains problèmes aux limites.

1. Si une membrane vibrante, à contour fixé, recouvre un domaine
plan symétrique relativement à l'axe des x, chacun sait que sa
première fonction propre ux (x, y) est également symétrique: ux (x, — y)

ut(x,y).
^

Cette propriété se laisse aisément généraliser au cas de plusieurs
symétries consécutives. Considérons, par exemple, la membrane en L
contenant les trois carrés Q± (0 < x < 1, 0 < y < 1), Q2 (1 < x < 2,
0 < y < 1) et Q3 (0 < x < 1, 1 < y < 2) ; à tout point P1 (x, y) e
nous faisons correspondre ses « symétriques » P2 (2 — x, y) e Q2 et
P3 (x, 2 — y) e Q3; alors la fonction propre fondamentale u± satisfait

Ui (Pi) «= Ui (P2) + ux (JP8)
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En effet, la fonction u1 (Px) ux (Px) — ux (Ps) — ux {P3) satisfait

Aih + X^h 0 dans Qx et ux 0 sur le contour de Qx\ comme A,

n'est pas valeur propre de Qx, ux 0 dans Qx. La même propriété
est valable pour toute fonction propre un telle que Aun + An un =** 9

avec un An qui n'est pas valeur propre du carré Qv Si la membrane
considérée est à contour libre, on doit construire

u (P1) ^ 11 (i>0 + u (P2) + 11 (Ps)

2. Le même raisonnement s'applique aux problèmes de Dirichlet
et de Neumann pour l'équation de Poisson. Par exemple, dans le

domaine en L considéré ci-dessus, soit v (x, y) la solution du problème:
Av —p (x, y) à l'intérieur et v — / (5) sur le contour; alors

(Px) v (Pt) — C (P2) — C (Ps)
satisfait

Aï (Px) — [p (Px) — P (P*) —P (Ps)]

dans Qxet v f (s) (immédiatement connue) sur le contour de Qx. La
résolution de ce problème dans Qx fournit une équation finie pour v.

Si, dans le même domaine, on considère un problème de Neumann:
Au —p (x, y), et dujdn g (s) sur le contour, alors

u (Px) u (Px) + u (P2) + u (Ps)
satisfait

A u (P,) — [p (i\) + p 2) + p (i>,)]

dans Qx et ôu/dn — g (s) sur le contour de Qx.

Les deux propriétés ci-dessus entraînent la suivante, évidente
directement : Soit # (z) u 4- iv une fonction analytique dans le
domaine considéré, alors la fonction

w (Px) u + iï — w (Px) + w (P2) + w (Ps)

est analytique dans Qx.

3. Les remarques qui précèdent s'appliquent numériquement aux
équations aux différences, ainsi qu'aux évaluations reposant sur des

principes de variation (Rayleigh, Dirichlet, Thomson): on construira
de préférence des fonctions d'essai satisfaisant les mêmes équations
finies (comme on le fait toujours dans le cas d'une simple symétrie î).

4. Un exposé plus général de ces propriétés paraîtra (en langue
allemande), avec quelques applications, dans le Journal für die reine
und angewandte Mathematik. Cependant, ces propriétés ont un
caractère si élémentaire qu'elles sont peut-être connues et oubliées
depuis des siècles: connaissez-vous un travail qui s'y rapporte
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A. Frei (Zürich): Freie Gruppen und freie Objekte.

Die Begriffe und Bezeichnungen dieser Arbeit findet man in den
Arbeiten « Group-like structures in general categories I, II, III », von
B. Eckmann und P. J. Hilton [1], [2], [3].

Der Begriff der freien Gruppen lässt sich in naheliegender Weise
stark verallgemeinern. Seien (£ und X) zwei Kategorien und I : X) -> (£

ein covarianter Funktor. Wir nennen ein Objekt 7 e X) frei über dem
Objekt X e (£ bezüglich /, wenn es eine Abbildung if/ : X -+ IY in <£

gibt mit der universellen Eigenschaft: zu beliebigem Objekt Z e V
und beliebiger Abbildung X -» 1 Z in (£ gibt es genau eine Abbildung

0: Y -> Z in X) mit IP if/ -- cp

Fig. 1.

Ist £ die Kategorie der Mengen, X) diejenige der Gruppen und / der
« Vergiss »-Funktor, der jeder Gruppe die zugrundeliegende Menge
zuordnet, dann bedeutet diese Definition, dass Y eine freie Gruppe
ist und if/: X -> IY die Einbettung eines freien Erzeugendensystems.
Das Paar (7, \j/), bestehend aus dem Objekt 7 und der Abbildung
if/: X ->/7, nennen wir das freie Objekt über A.

Freie Objekte haben analoge Eigenschaften wie freie Gruppen;
diese werden in der Arbeit, über die wir hier berichten, ausführlich
formuliert. So ist z.B. das freie Objekt über einem bestimmten Objekt,
falls es existiert, bis auf kanonische Aequivalenz eindeutig bestimmt.

Der Begriff der freien Objekte hängt eng zusammen mit
demjenigen der adjungierten Funktoren. Es gilt der

Satz 1. — Der Funktor / besitze einen linksadjungierten F, mit der
adjungierenden Transformation oc. Dann hat die natürliche
Transformation \f/x oc (1**) die Eigenschaft, dass für jedes
X e £ (FX, \j/x) frei ist über X.

Zu diesem Satz gilt folgende Umkehrung:
Satz 2. — Seien 1: X) ->£ und F: £ X) covariante Funktoren,

und es gebe eine natürliche Transformation if/x: X -> IFX, so dass
für jedes Ie£ (FX, \j/x) frei ist über X. Dann ist F linksadjun-
giert zu / mit der adjungierenden Transformation oc:

oc: (P) ^ IP. ij/x 0 e II (FX, Z)



— 261 —

Von nun an sei X) eine M-primitive Kategorie über £ und /:
X) ->£ der « Vergiss »-Funktor : dieser ordnet jedem Objekt (7, m)

aus X) das Objekt Y aus £ zu. Ferner nehmen wir an, es existiere ein

zu I linksadjungierter Funktor F: £ X).

Es gilt der

Satz 3. — Zu jedem Objekt Y e X) gibt es einen Epimorphismus
o: FI Y -> Y von einem freien Objekt nach Y selbst.

Dieser Satz verallgemeinert den wohlbekannten Satz aus der

Gruppentheorie, wonach jede Gruppe Quotient einer freien ist.
Wenn Y ein Objekt aus D ist, wird für jedes i e£ durch die

Tf-Struktur von Y in H (A, I Y) eine M-Struktur induziert; wir
bezeichnen sie mit +. Im folgenden nehmen wir an, X) sei eine

Kategorie mit inversen Produkten, d.h. zu je zwei Objekten aus X)

existiere in X) ihr inverses Produkt. Dank der induzierten Tf-Struktur
lässt sich jedem freien Objekt aus X) eine df-Struktur geben;

genauer:

Satz 4. — Jedes freie Objekt in X) ist ein Tf-Objekt in X), mit der

df-Struktur fi, die durch Iji \j/ t* (qx + g2) • ^ definiert wird.
Diese nennen wir die durch xf/ induzierte Tf-Struktur.

Über die induzierte Tf-Struktur lassen sich einige Sätze beweisen,
auf die wir hier jedoch nicht eingehen können.

Sei S die vollständige df-primitive Kategorie über D. Die

Zuordnung F: £ <§, definiert durch FX (FX, p), wobei fi die

durch \j/x induzierte df-Struktur ist, und Fcp F(p, ist ein covarianter
Funktor. Anderseits gibt es einen covarianten Funktor L\ & ^ £,
der folgenderweise definiert ist: L F, /r) ist Linksegalisator von //i
und (g1 + q2): IY -> / Y * Y). Über diese beiden Funktoren gilt der

Satz 5. — Der Funktor F ist linksadjungiert zu L. Wenn a die
adjungierende Transformation von F und I ist, ist die adjungie-
rende Transformation H (FX, Y) -> H (X, LY) gegeben durch
y1 (cp) ^ a1 (Ay cp), cp e H (V, LY).

Im Falle, wo £ die Kategorie der punktierten Mengen und X)

diejenige der Gruppen ist, haben Eckmann und Hilton bewiesen, dass
die Kategorien £ und & zueinander isomorph sind. In diesem Falle
sind die Funktoren F und L zueinander invers und stellen
obengenannte Isomorphic her. Dies ist nicht allgemein richtig, wie ein
Gegenbeispiel zeigt. Als nächstes wollen wir zeigen, was von diesem
Sachverhalt im allgemeinen übrig bleibt.
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Allgemein gibt es zu jedem X e £ genau eine Abbildung ij/x:
X LEX für welche das Diagramm

kommutiert. Sei £' die volle von L {&) erzeugte Unterkategorie von £,
und & die volle von F (£) erzeugte Unterkategorie von <§; F' und IJ
seien die auf £' und &' beschränkten Funktoren F und L. Es gilt der

Satz 6. — Die Abbildung x//x sei für jedes Ie£ ein Epimorphismus
für Abbildungen nach Objekten aus 2. Dann sind die Funktoren

F' und U bis auf kanonische Aequivalenz zueinander invers.

Da Ff und L' nicht im strengen Sinne zueinander invers sind,
kann man nicht von einer Isomorphie im strengen Sinne zwischen £'
und 2' sprechen. Die Funktoren F' und L' sind aber, wie man leicht
zeigt, beidseitig zueinander adjungiert, und erhalten deshalb Mono-
morphismen und Epimorphismen, direkte und inverse Produkte sowie

direkte und inverse Limites. Ferner bildet Fr II^ (Xlf X2) eineindeutig

auf (Ff X1? F'X2) ab, und L' bildet Hsf Fi, F2)
eineindeutig auf //(£' (L' F1? L' F2) ab. Es besteht somit eine gewisse
Isomorphie zwischen (£' und <§\

Zum Schluss möchten wir noch daraufhinweisen, dass sich die
Begriffe und Sätze, ausser auf das Beispiel, wo (£ die Kategorie der
punktierten Mengen und 2 diejenige der Gruppen ist, auf viele
weitere Fälle anwenden lassen, von welchen hier nur die folgenden
erwähnt seien: £ punktierte Mengen, 2 abelsche Gruppen. £ Gruppen,

2 abelsche Gruppen. £ vollständig reguläre Räume, 2 topolo-
gische Gruppen (in diesem Falle sind die freien Objekte die freien
topologischen Gruppen).
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Sophie PiccARD (Neuchâtel): Théorie des groupes.

Il s'agit dans ce travail de différentes structures de groupes
abstraits.

La notion de groupe libre se prête à diverses généralisations
auxquelles on parvient en considérant des ensembles de générateurs de

groupes multiplicatifs liés uniquement par des relations caractéristiques

de nature telle que toute relation entre ces générateur^ (relation
qui découle des relations caractéristiques et des axiomes de groupe)
est encore de la même nature.

Soir G un groupe multiplicatif dont 1 est l'élément neutre et soit
A un ensemble d'éléments de G. Une composition finie / (a1? an)

d'éléments öq, an (n ^ 1) de A est un produit de la forme

/ (a1? an) ail ah -
où r est un entier ïfa 1, ai1..., mr sont des éléments pas nécessairement

distincts de l'ensemble {au an) et jr sont des entiers

quelconques.

La réduction de / basée uniquement sur les axiomes de groupe
consiste, d'une part, à remplacer dans / tout produit alam par al+m

quel que soit l'élément a de A et quels que soient les entiers m et n et,
d'autre part, à laisser tomber tout facteur de la forme a0, a g A, si

/ a0, et de remplacer a0 par 1, si / a0; elle conduit à la forme
réduite de / qui est soit 1 (élément neutre de G), auquel cas on dit
que / est complètement réductible, soit 1) al1 uvuss où 5 est un entier

tel que 1 ^5 ^ r, au. eA,i l, 5, au. ^ aUi + 1->
i U 1

et tq, cs sont des entiers dont aucun n'est nul.
Soit, à présent, k un entier 2 donné, fixe, et soit / une composition

finie d'éléments de A. La réduction de / modulo k s'opère en

s'appuyant sur les axiomes de groupe et en réduisant modulo k
l'exposant entier m de tout facteur am, a e A ; elle conduit à la forme
réduite modulo k de f qui est soit 1 soit un produit de la forme 1) où
l'entier vi 0 (mod k) et 1 ^ k — 1, quel que soit l =» 1, s.

Toute égalité qui peut se mettre sous la forme 2)/ (öq, an) 1

où ai ei, i 1, n et où / (oq, an) est une composition finie des
éléments ûq, an porte le nom de relation entre éléments de A. Tout
ensemble A d'éléments de G est lié par un certain nombre de relations
qui découlent des axiomes de groupe. De telles relations sont appelées
triviales. Le premier membre de toute relation triviale est complètement

réductible. Il peut se mettre sous la forme d'un produit de
puissances entières d'un nombre fini d'éléments de A, dont tous les

exposants sont nuls. Tout ensemble A d'éléments de G qui ne sont
liés que par des relations triviales est dit libre ou indépendant.



— 264 —

Par contre, un ensemble A d'éléments de G est dit dépendant ou
lié s'il existe entre des éléments de cet ensemble au moins une relation
non triviale. L'ensemble formé d'un seul élément a de G est libre ou
lié suivant que a est d'ordre infini ou fini. Tout ensemble d'éléments
de G qui comprend au moins un élément d'ordre fini est lié. Une relation

2) entre éléments de A est dite triviale modulo k où /c est un entier
donné ^ 2, si son premier membre est complètement réductible
modulo k. Les éléments de A sont dits libres ou indépendants modulo k
s'ils ne sont liés que par des relations triviales modulo k. Par contre,
on dira que les éléments de A sont liés ou dépendants modulo k s'il
existe entre ces éléments au moins une relation qui n'est pas triviale
modulo k.

La relation 2) est dite quasi triviale (quasi triviale modulo k) si

son premier membre est de degré nul (de degré s 0 (mod k)) par
rapport à tout élément de A. Elle est dite psendo-triviale (pseudotriviale

modulo k) si son premier membre est de degré nul (de degré 0

(mod k)) par rapport à l'ensemble des éléments de A. Les éléments
de A sont quasi indépendants (quasi indépendants modulo k) s'ils ne
sont liés que par des relations quasi triviales (quasi triviales modulo k).
Et les éléments de A sont dits pseudo-libres (pseudo-libres modulo k)
si toute relation qui les lie est pseudo-libre (pseudo-libre modulo k).
Une relation qui ne rentre dans aucune des catégories énumérées ci-
dessus est appelée non triviale au sens strict.

Un groupe multiplicatif G est libre (libre modulo k) s'il possède
au moins un ensemble de générateurs appelés générateurs libres (libres
modulo k) qui ne sont liés que par des relations triviales (triviales
modulo k). Il est quasi libre (quasi libre modulo k) s'il possède au
moins un ensemble de générateurs — dits quasi libres (quasi libres
modulo k) — qui ne sont liés que par des relations quasi triviales
(quasi triviales modulo k). G est pseudo-libre (pseudo-libre modulo k)
s'il possède au moins un ensemble de générateurs — dits pseudo-libres
(pseudo-libres modulo k) qui ne sont liés que par des relations
pseudotriviales (pseudo-triviales modulo k). Le groupe G est lié si tout
ensemble de ses éléments générateurs est lié par au moins une relation
non triviale. Il est dit lié au sens strict s'il n'est ni libre, ni quasi libre,
ni pseudo-libre, ni libre, quasi libre ou pseudo-libre modulo k quel
que soit l'entier k 2.

Un ensemble A de puissance ^ 2 d'éléments d'un groupe
multiplicatif G est dit réductible s'il existe au moins un sous-ensemble fini
A* { a1? am } de A (m ^ 2) et un sous-ensemble fini B* de U,
de puissance inférieure à celle de A* et tel que l'ensemble A — A*
engendre, par composition finie, tous les éléments de A. Il est dit
irréductible dans le cas contraire. Tout groupe multiplicatif qui possède
au moins un ensemble irréductible de générateurs est dit fondamental
et tout ensemble irréductible de générateurs d'un groupe fondamental
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constitue une base de ce groupe. Les groupes libres, libres modulo A,

quasi libres et quasi libres modulo k, sont tous fondamentaux. Mais
un groupe pseudo-libre n'est pas forcément fondamental. Tout groupe
libre est libre modulo A, quasi libre, quasi libre modulo A, pseudolibre

et pseudo-libre modulo A, quel que soit l'entier k 2' Tout
groupe libre modulo k est quasi libre modulo k et tout groupe de ce
dernier type est pseudo-libre modulo A, mais il existe une infinité de

groupes libres modulo A qui ne sont pas libres, de groupes quasi libres
qui ne sont pas libres et de groupes pseudo-libres qui ne sont pas
quasi libres.

Soit Egj [E£ ] { Eg p l } l'ensemble de tous les groupes libres
distincts [l'ensemble de tous les groupes quasi libres distincts] {
l'ensemble de tous les groupes pseudo-libres distincts}, soit Eglmodk
U^g.q.i. mod k] {Eg.p.i.modk} l'ensemble de tous les groupes distincts
libres modulo A [quasi libres modulo A] { pseudo libres modulo A }
A — 2, 3,... et soient T± { E^Lmodfc}, A =2, 3, ...,T2 { E^J>modfe},
A =» 2, 3, T3 { Eg p Lmodk }, A 2, 3, On peut munir les trois
ensembles, Tx T2, T3 d'une structure de treillis en établissant de la
façon suivante un ordre partiel des éléments de ces trois ensembles:
Egf.z. mod k < Eg.Lmoék' si k' 0 (mod k)i auquel cas E^Lmod/f est un
sous-ensemble de E9.,.modr. De même E k- et
E^.p.z. mod k Eg.p.i.modk' si A 0 (mod k'). Avec cette notion d'ordre
partiel, on obtient trois treillis: celui des ensembles de groupes libres
modulo A, celui des ensembles, de groupes quasi libres modulo A et
celui des ensembles de groupes pseudo libres modulo A, A 2, 3,
Entre les différents ensembles introduits ci-dessus on a les relations

00

suivantes : E„, C E„ „ 7 C E„ „, E n E Eg.l. ^ g.q.l. g.p.l. ^g.l. ^g.l. mod k y ^g.q.l.
00 00

kQ2 Eg.q.i.modk ' ~~ kQ2 ^g.p.l. mod k •

Soit, d'autre part, Eg f l'ensemble des groupes fondamentaux et

Eg n f l'ensemble des groupes non fondamentaux distincts. On a
E j C E r mais l'intersection de Ea avec chacun des ensembles

Egj. et Egn f est ^ 0.

Soit, à présent, G un groupe abélien et soit A {%,..., am } un
ensemble fini d'éléments de G. Les éléments de A sont indépendants
(indépendants modulo k) si une relation 3) a{x aJmm 1 entre des
éléments aly arn de /l ne peut avoir lieu que si jL 0 (/f 0 (mod A))
quel que soit i 1, m. Par contre, les éléments de A sont liés
(liés modulo A) s'il existe au moins un système d'entiers j\, /m,
dont l'un au moins est yÉ 0 ((mod A)) et pour lequel la relation 3) a
lieu.
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Si des éléments d'un groupe abélien sont liés, ils sont aussi liés
modulo k pour une infinité de valeurs de l'entier k 2.

Et si A est un ensemble infini d'éléments d'un groupe abélien G,
les éléments de A sont indépendants si tout sous-ensemble fini de A
est libre et les éléments de A sont liés s'il existe au moins un sous-
ensemble fini de A formé d'éléments dépendants.

Tout groupe abélien fini ou à un nombre fini de générateurs est
fondamental.

Si un groupe abélien G possède des systèmes finis de générateurs,
on définit différentes bases de G. Une base tout court est un ensemble
irréductible quelconque de générateurs de G. Les éléments d'une base

peuvent être liés. Une base normale de G est un ensemble de générateurs

oq, am, tel que tout élément a de G peut se mettre de façon
unique sous la forme aj1 où ji est un entier compris entre 0 et
l'ordre nt de l'élément ai, quel que soit i 1, m. Une base
normale peut être réductible. On appelle base normale réduite de G une
base normale qui est irréductible et dont les éléments peuvent être
ordonnés en une suite al3 am, telle que l'ordre de ai est un diviseur
de celui de ai+i quel que soit i 1, m — 1.

Si le groupe G est d'ordre infini, il peut ne pas être fondamental et

par suite il peut être dépourvu d'ensembles irréductibles de générateurs;

une base normale de G est un ensemble A de générateurs de G

tel que tout élément de G peut se mettre de façon unique sous la
forme d'un produit a"i1 où ûq, am sont m ^ 1 éléments
distincts de A et l'entier ji est compris entre 0 et l'ordre nt de ai,
l 1, m. Un groupe abélien d'ordre infini peut être dépourvu
de bases normales, même s'il est engendré par un nombre fini
d'éléments et, même s'il possède des bases normales, celles-ci peuvent être
réductibles.

A tout groupe quasi libre modulo k, G, on peut associer un groupe
fondamental abélien qui possède des bases normales et dont
toute base normale est irréductible.

Tout groupe pseudo libre G possède une infinité de sous-groupes
invariants propres, il est d'ordre infini, chaque élément pseudo-libre
d'un tel groupe est d'ordre infini et tout élément de G possède un
degré fixe par rapport à l'ensemble des éléments de tout ensemble
de générateurs pseudo-libres de G.
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