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En prenant une sous-suite de v, on trouve donc que notre varieté
typique se décompose en deux parties closes, données par les
limites de ¢, 2, et ¢, 2,, et situées de part et d’autre de II. I’une
d’elles sera donc nulle, ce qui n’est possible, IT étant arbitraire,
que si notre variété typique a pour support un seul point.

Du résultat ainsi démontré, il s’en suit, d’apres (13.4), que:

(13.6) Théoréme. — Toute variété généralisée close, de
dimension n — 1 dans V'espace n-dimensionnel, s’exprime sous
la forme d’un mélange (¥, da ot chaque %, est une variété
greffée close.

A proprement parler, ce quon déduit par la voie indiquée,
¢’est que la variété en question s’exprime comme la somme d’un
tel mélange et d’une variété singuliere. Mais cela revient au
méme, puisqu'une variété singuliére est elle-méme une variété
grefiée.

Du théoréme (13.6), on passe maintenant au théoreme (13.1),
en raisonnant tout comme a la fin du paragraphe 11. Le
théoréme (13.1) est donc établi, lul aussi.

14. LA DIMENSION k = 1.

Nous avons laissé pour la fin le cas, intéressant pour la méca-
nique des fluides, ou la dimension de nos variétés est kb = 1.
Comme nous 'avons remarqué dans introduction, ce cas n’a été
traité précédemment que pour n = 2, quand il se réduit a celui
que nous venons de discuter. Or, déja pour n = 3, la voie suivie
ne s’applique plus lorsque £ = 1. En effet, 'énoncé analogue a
(13.6) est faux, comme il ressort d’un exemple tres simple, du
a M. E. Bishop.

On soumet & une rotation, croissante de 0 & 27, un cercle
donné, par rapport & un axe, dans son plan, qui ne le coupe pas.
Les positions successives 0 du cercle engendrent un tore O, et
nous désignons par ¢ (z) une direction qui, pour x € @, est tan-
gente & O au point z, et qui y fait un angle constant, irrationnel
a m, avec la position du cercle 6 passant par le méme point. Nous
définissons

Z(f) = Jof[x,v(x)]da,
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ou da désigne la mesure 2-dimensionnelle. Soit ¢ I'aire de O, et
soit C (¢) 'arc de longueur ¢ d’une courbe sur @, qui posséde un
point initial fixe donné, et qui vérifie 'équation différentielle
z' = ¢ (z). On trouve que

Z(f) =1im™ e /.0 ()] ds .

t— oo

ol ds est la longueur d’arc élémentaire sur C (¢). On en tire aisé-
ment que & (f)’= 0 pour tout f exact, donc que Z est close.
En outre, il est évident que % n’est pas identiquement nulle. Si
I’énoncé analogue a (13.6) était exact, on en conclurait que
¥ = [%,d, oules &, seraient des courbes closes rectifiables,
vérifiant comme & I'équation différentielle 2" = ¢ (z), et situées
sur @. Or 1l n’existe sur @ aucune courbe close rectifiable, véri-
flant cette équation différentielle.

(14.1)  Théoréme. — Soit & une variété généralisée de dimen-
sion £ = 1 et de frontiéere A dans l’espace n-dimensionnel. Alors
L e, |

Nous aurons besoin du lemme suivant:

(14.2) Lemme. — Soit &% une variété généralisée close de
dimension k& =1, telle que | ¥ | = 1. Alors il existe une suite
de polygones clos 2, (v=1, 2, ...), et d’entiers positifs corres-
pondants /V, qui tendent vers l'infini, telle que I'on ait

¥ =lim 2 N,.

V= oo

Démonstration du lemme (14.2). — On peut supposer, sans
restreindre la généralité, que £ estsituée dans un cube unité, que
nous supposerons fixe dans la suite. Toutes les constructions
que nous allons faire se passeront dans le méme cube. En faisant
appel & un résultat indépendant de la dimension %, et que nous
avons déja utilisé dans le paragraphe précédent[12, (1.1) Th. A],
on peut écrire ¥ = lim %,, ou chaque %, est une variété
close se réduisant a un polygone avec poids, c¢’est-a-dire a une
somme finie de segments orientés avec des poids correspon-
dants. D’apreés la topologie combinatoire, chaque %, s’exprime
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encore [4, (3.3) lemma], comme une combinaison lineaire, a
coefficients positifs, de polygones clos ordinaires,

My

— &,
L= ¢, Py,
p=1

On peut s’arranger, sans changer la limite des &£, a ce que
les coefficients de chacune de ces combinaisons linéaires soient
rationnels et de méme dénominateur N,. On peut évidemment
supposer [V, aussi grand que ’on voudra: nous supposerons donc
que N, =v M,, ou M, est le nombre des termes de notre combi-
naison linéaire.

Quant aux numérateurs des coefficients rationnels c¢,, de
cette combinaison linéaire, nous les supprimerons en remplacant
chaque polygone clos 2,,(p =1,2,..., M,) par un multiple
correspondant, qui sera encore un polygone clos ordinaire. En
désignant ce dernier par le méme symbole, on aura donc

M,y

¢, = Y 2,IN, .

7.
p=1

[ci on peut s’arranger, sans changer la limite des &, a ce
que la somme au coté droit se réduise a un seul terme. [I suffit
de faire des polygones 2,,(p =1, 2, ..., M) un seul polygone
clos 2,, en ajoutant M, paires de segments opposés, de longueur
=< 1, qui relient un polygone au suivant. On aura ajouté ainsi
a &, de cette facon une variété singuliere dont I’étendue ne
dépasse pas 2M ,/N,, ce qui tend vers zéro.

Ainsi ¥ = lim 2,/NV,, ce qui acheve la démonstration.

Démonstration du théoréme (14.1). — D’aprés le raisonne-
ment de la fin du paragraphe 11, on peut se borner, comme pour
la dimension £ = n — 1, au cas ou & est close. On peut supposer
de plus que | Z | =1, donc qu’elle vérifie les hypothéses du
lemme (14.2). On a dans ce cas

# = lim 2N, ,

et puisqu’il s’en suit que lim | 2, |/[N, = | £ | =1, on peut
s’arranger a ce que | 2, | = N,. A cet effet, on remplace d’abord
N, par le plus petit entier supérieur ou égal a | 2, |, et on ajoute
ensuite & 2, une paire de segments opposés s'il le faut.
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En divisant maintenant 2, en IV, parties de méme longueur,
qui seront des polygones ordinaires, c’est-a-dire des courbes
polygonales & deux extrémités, de longueur unité, on trouve
ainsl que & est limite d’une combinaison convexe de polygones
ordinaires de longueur unité. Ces derniers seront en outre situés
dans un cube fixe.

La limite que nous utilisons ici est la limite faible. Cepen-
dant, en ce qui concerne les suites convergentes, elle est équiva-
lente & la notion de limite qu’on dérive d’une métrique, nommsée
métrique de McShane [6, p. 534]. On peut donc faire appel & un
théoreme général sur les ensembles convexes dans les espaces
métriques compacts [14, prop. 7, p. 87]. Tout comme dans une
situation analogue [10, (4.1) (a), p. 6], on trouve que £ s’ex-
prime comme un mélange | %, da, ou chaque &, est limite d’un
polygone ordinaire correspondant @, de longueur unité, situé
dans un cube fixe.

Or les limites de tels polygones @, nous les connaissons depuis
longtemps: ce sont les courbes généralisées de la méme longueur,
dans le cube en question.

A wvrai dire, il faut y ajouter les limites concentrées en un seul
point: c’est-a-dire les variétés singulieres de longueur unité
concentrées en un point du cube. De toute facon, les limites de
nos polygones Q seront des variétés greffées de dimension £ = 1.

Ainsi % est un mélange de ces dernieres, ¢’est-a-dire &£ € 4.
Le théoreme est démontré.
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