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12. LEs pIMENSIONS k=0 ET £ = n.

Nous allons entamer I’étude de quelques dimensions £ parti-
culieres dans I’espace n-dimensionnel. Nous commencons ici par
k=0 et k = n. Rappelons les conventions qui s’y rapportent.

Un k-vecteur se réduit & une quantité scalaire pour k£ = 0,
pseudo-scalaire pour £ = n. Dans les deux cas, sa direction se
réduit au signe + ou —. Un intégrant f (z, j) quelconque est donc
donné par une paire de fonctions

(12.1) Jo (X)) =flx, +),  fo(x) =S(x —);

il sera linéaire en j si f+ = —f_. Une variété généralisée & sera
donnée par une représentation de la forme

(12.2) L(f) = [feduy + [/-dp_,

ou u,, pu— sont des mesures finies a supports compacts. Remar-
quons que si & ne posséde aucune sous-variété singuliere, les
mesures py et u_ auront des supports boréliens disjoints.

Il y a, cependant, des différences importantes entre les deux
cas k =0 et £ = n. En effet, une quantité pseudo-scalaire se
distingue nettement de la quantité scalaire, & laquelle elle est
normale, par les conventions qui gouvernent la multiplication
extérieure. Il ressort de ces conventions que pour k£ = n, tout
intégrant linéaire est exact, tandis que pour k& = 0 les intégrants
exacts sont les intégrants linéaires constants par rapport & .

Les dimensions k = 0 et & = n difféerent aussi dans la défini-
tion des polytopes, etc. Cela tient & ce que la notion de point,
orienté avec le signe + ou —, est celle de simplex de dimen-
sion 0, tandis qu’elle est toute différente de celle de simplex de
dimension n. On notera qu'un o-polytope avec poids, de dimen-
sion £ = 0, sera défini par une fonctionnelle de la forme

(12.3) Z(f) = Za,fr(x) + 2b,f-(x),

ouna, =20,b, 20,2 (a,+ b)) < oo, Sup |z, | < . Cest le cas
de mesures discrétes dans (12.2). Pour qu'un tel o-polytope avec
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poids ait la méme frontiére qu'une variété généralisée donnée
par (12.2), on aura & poser

(12.4) Jd(u, —p) = E(2, — by) .

Ainsi, pour la dimension k& = 0, toute variété généralisée possede
une frontiére A, puisqu’on peut toujours choisir un o-polytope
avec poids de facon a ce que le c6té droit de (12.4) ait une valeur
donnée. D’ailleurs (12.2) montre déja que, pour la dimension
k = 0, toute variété généralisée s’exprime comme un mélange
de la forme [%#,da, ou chaque %, est un simplex. Dans une
étude compléte des cas d’égalité de (8.5), ce résultat, peu intéres-
sant en lui-méme, pourra éventuellement servir de base & une
démonstration inductive d’un théoréme général. On concoit
aussi une induction descendante possible, en partant du résultat
correspondant pour la dimension £ = n. Nous combinons ces
deux résultats en un seul énoncé:

(12.5) Point de départ: les cas dégénérés k=0 et k=n
dans l’espace n-dimensionnel. Toute variété généralisée de
dimension £ = 0 appartient aux classes A et 4, toute variété
généralisée de dimension k = n et de frontiére A, & la classe
A . Chacune d’elles appartiendra & la classe 4, si elle ne pos-
sede aucune sous-variété singuliéere non nulle.

Démonstration. — Ce qui se rapporte a la dimension k& = 0
se rameéne aux remarques déja faites. Reste & traiter la dimen-
sion £ = n. Soit & une variété généralisée de cette dimension,
et supposons qu’elle possede la méme frontiére qu'un o-polytope
IT avec poids. En changeant d’orientation, on aura un o- poly-
tope IT* avec poids, tel que ¥ + IT* soit clos. Mais alors & ++ IT*
sera singulier, donc & et IT auront le méme substratum. On peut
poser, d’aprés (11.2),

L =2 +2", I =1I+1",

ou Z’, II' sont des variétés singuliéres, et ou £, IT” sont des
variétés généralisées, de méme substratum, qui ne possédent
aucune sous-variété singuliéere non nulle. On en conclut facile-
ment, en utilisant pour £” et II” des représentations du type
(12.2), que £" = 1II", donc que #" € A;, a condition de faire
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appel a la remarque faite apres la formule (12.2), selon laquelle
les mesures p’, p_, qui y paraitront lorsqu’il s’agit de représen-
ter &£”, auront des supports boréliens disjoints. On utilisera
encore cette méme formule pour représenter #’, et I'on décom-
posera les mesures p,, u_ qui y paraitront, chacune en deux
parties, respectivement absolument continue et singuliére par
rapport & la mesure u, ou u_ correspondante. En faisant I’addi-
tion, on trouvera pour ¥ = ¥’ 4+ #” une nouvelle représenta-
tion, d’ou il ressort que £ € A, ce qui complete la démons-
tration de notre énoncé.

13. LA pimENsioN k£ = n — 1.

Nous poursuivons notre étude, mais en improvisant les
démonstrations, qui déja seront trop faibles pour nous livrer
I'égalité vraisemblable A, = 0-' 4. Il nous manque une
méthode générale, 1l nous manque aussi, méme pour k£ = n — 1,
une méthode qui conduirait au résultat le plus précis. Cependant,
comme nous "avons dit dans notre introduction, le résultat que
nous allons démontrer ici, pour k= n-—1, est toujours un
théoréme de nature progressive. Sa démonstration se basera sur
celle que nous avons présentée, 1l y a dix ans, dans les cas n = 2
et n = 3 avec M. FLEmiNG [9, b].

(13.1) Théoréme. — Soit £ une variété généralisée de
dimension n —1 et de frontiere A. Alors £ € A4,.

Pour démontrer ce théoréme, équivalent d’apres (8.5) a
Iégalité A, = 0~ 0A, nous aurons besoin de définitions et de
lemmes auxiliaires.

Un polytope clos 2 sera dit irréductible s’1l ne possede aucune
décomposition # = 2’ + 2", ou 2, #” sont des polytopes clos
non nuls. Une variété généralisée close & sera dite pure, si pour
toute expression ¥ = £’ + £" de & comme la somme de deux
variétés généralisées closes ¥', £”, il existe dans I'intervalle
0 < 0 £ 1 une constante 6, telle que ¥ = 0Z.

Pour abréger, un polytope clos irréductible de dimension
n— 1, et une variété généralisée close pure de la méme dimen-
sion, seront dites, respectivement, polytope typique et variété
typique, lorsqu’elles sont situées dans l'espace n-dimensionnel.
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