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T' = pQ, les vecteurs ¢ d’amarrement locals de Q vérifient I’équa-
tion de continuité des fluides. Remarquons encore que I’opération
de comultiplication par un (k— 1)-vecteur constant rappelle
une opération analogue utilisée pour définir les contours d’une
variété généralisée [11].

Permettons-hous, pour terminer ce paragraphe, une obser-
vation, tres heuristique et superficielle, sur la signification de
Iéquation (9.8). Dans cette équation p prend la place d’une
mesure, tandis que ¢ est une fonction a valeurs vectorielles. Avec
des conventions appropriées, on pourra, d’apres (9.2), écrire (9.8)
sous la forme:

(10.2) ¢® grad p+p div ¢ =0.

Elle nous dit que dans la direction ¢, le gradient d’une mesure
se comporte d'une facon relativement réguliere. On peut l'in-
terpréter comme exigeant une espece de continuité absolue dans
la direction ¢. Il est assez plausible que la mesure p, si elle est
absolument continue dans les différentes directions d’amarre-
ment locales, se révélera comme une intégrale multiple par
rapport a ces directions, d’ou 1’on entrevoit que le courant pQ
doit étre lagrangien. Serait-ce la un mirage ? Ou est-ce le germe
d’une démonstration ? C’est au lecteur a y réfléchir.

11. PRINCIPES DE REDUCTION.

Deux variétés généralisées seront dites complémentaires, si
leur somme est close, et si elles possédent deux supports boréliens
disjoints. Une propriété possédée par certaines variétés généra-
lisées sera dite g-additive si une variété généralisée s’exprimant
comme une somme dénombrable X.Z la possede, des que chaque
#, la possede. Enfin une variété généralisée & de dimension %
dans 'espace des x de dimension n, sera dite inductive si la
relation 1= 14 = 0! 04 est valable pourles variétés généralisées
de dimension (£ — 1) dans un espace (n — 1)-dimensionnel.

(11.1)  Principe du o-polytope complémentaire. — Soit & une
variété généralisée de frontiere A et de dimension %k dans Ies-
pace n-dimensionnel ot 0 < k& < n. Alors 1l existe un o-polytope
avec poids, complémentaire a Z.
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Démonstration. — Soit IT* un o-polytope avec poids, qui
posséde la méme frontiére que #. En changeant son orientation,
on obtient un ¢-polytope avec poids IT, tel que & - IT soit fermé.
On peut mettre IT sous la forme d’une somme dénombrable
I=2Xc, 4, ou les ¢, sont réels et positifs, et ou chaque 4,
désigne un simplex. Nous désignons par C, un cone sur la fron-
tiére élémentaire de 4,, et nous supposerons le sommet x, choisi,
par induction, d’une fagon convenable. A cet effet, soit I1,, la
somme des termes de X ¢,, C,, pour v/ <v, et soit u, la mesure
associée comme dans la formule (3.1a), non a &, mais a & + 11,.
On choisira z, de facon a ce que | C, | < 2 | 4, | et que la mesure
i, d’un support de C, ’annule. Ceci est possible, puisqu’on peut
donner & z, un ensemble de positions de la puissance du continu,
qui correspondent & des supports disjoints: ces supports n’auront
donc pas tous des mesures positives. Le o-polytope avec poids,
défini par la somme dénombrable X ¢, €, sera complémentaire
a &, ce qui achéve la démonstration.

(11.2)  Principe de décomposition. — Soit P une propriété
o-additive, et soit £ une variété généralisée. Alors il existe une
décomposition ¥ = ¥’ + £, ou &', ¥ sont des variétés
généralisées telles que &£’ ait la propriété P tandis que £ ne
possede aucune sous-variété non nulle qui ait la propriété P.

Démonstration. (Rappelons qu’on dit de deux variétés géné-
ralisées ¥;, ¥, que ¥, est une sous-variété de &, si la diffé-
rence ¥; — &, est une variété généralisée). — Soit a, le supré-
mum de 'étendue des sous-variétés de & qui possedent la pro-
priété V. Nous désignons par .#; une sous-variété la possédant,
dont 'étendue dépasse 5 a;; une telle sous-variété existe & moins
que a; = 0, et dans ce dernier cas, on pose #; = 0. Générale-
ment, si les sous-variétés ¥, L, ..., £L,_; ont été définies, soit
a, le suprémum de I'étendue des sous-variétés de ¥ — £, — ...
— & ,_1 qui possédent la propriété P, et soit .Z, une telle sous-
variété la possédant, dont I'étendue dépasse % a,, si ¢, = 0 on
pose £, = 0. On trouve sans peine que les expressions &' =3 %,
L' = ¥ — &' désignent toutes deux des sous-variétés de &,
et que &’ possede la propriété P. Il reste & montrer que £” ne
possede aucune sous-variété == 0 ayant la propriété P. Mais si a
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est I’étendue d’une telle sous-variété, on aura, par définition de
a,, @ < a, pour chaque v. D’autre part, la somme X % a, ne peut
dépasser I'étendue de ¥ &, donc celle de &', et par conséquent
cette somme converge. 1l s’en suit que a = 0, ce qui acheve la
démonstration.

(11.3)  Principes de subdivision et de localisation. — (1) Soit
& une variété généralisée inductive de frontiére A ; alors il existe
une subdivision de I’espace n-dimensionnel en cubes Q) congruents,
aussl petits que 'on voudra, tels que, si F' désigne la frontiére
de @, I'intersection ¥ n F s’annule, et que I'intersection & n Q
possede une frontiere A. (i1) De plus, si £ désigne un ensemble
borélien quelconque, l'intersection ¥ n E posséde une fron-
tiere A.

Démonstration. — En ce qui concerne (1), il suffira, par ité-
ration, d’établir Paffirmation correspondante pour une sub-
division en bandes congruentes, orthogonales & une direction
donnée V. Nous nous servirons des mémes symboles Q, F pour
désigner une telle bande et sa frontiére, et nous désignerons
par 2 un o-polytope avec poids complémentaire & . Nous
appellerons niveau d’un point x, et nous désignerons par z (z)
la projection dans la direction V du vecteur z. Nous écrirons IT
pour une certaine famille de sous-espaces équidistants z (x)
= const. On s’arrangera, par une translation dans la direction V
'il le faut, a ce que cette famille remplisse deux conditions que
nous avons introduites ailleurs {11 (6.3)]. Ce sont les suivantes:
a) lintersection de £ avec chaque membre de IT s’annule;
b) lintersection de ¥ + 2 avec le demi-espace au-dessus du
niveau correspondant z (x) = const. a pour périmetre ce que
nous avons appelé le « contour » de £ + £ a ce niveau. Rappe-
lons qu’un tel contour est, par sa définition (loc. cit.), une variété
généralisée close (& — 1) dimensionnelle dans un espace
z (z) = const. de dimension (n — 1), et que, par conséquent,
elle posseéde un substratum A, d’apres notre hypothése inductive
sur &. Il s’en suit aisément® que II divise ’espace en bandes Q
telles que (£ + 2) n Q ait une frontiere A et que la frontiere F
de Q ait une intersection nulle avec & 4 2, et par conséquent

1) On remarque que (£ + 2) n Q ala méme frontiére que le cone de son périmetre.
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avec #. Or la frontiere de £ n Q s’obtient en ajoutant & celle
de (¥ + 2) n Qla frontiére d'un o-polytope avec poids 2* n ¢,
ol #* g'obtient de 2 en changeant Uorientation. Donec & n ¢
a une frontiére A, et (1) est démontré.

Passons & (ii). D’aprés un résultat déja cité [12, Ap. III],
la propriété de posséder une frontiere A est certainement
o-additive. 11 s’ensuit de (i) que £ n E aura une frontiere A
lorsque E est ouvert. En soustrayant de %, on voit qu’il en est
de méme lorsque £ est fermé, done, par addition, lorsque £ est
une réunion dénombrable d’ensembles fermés. Il est clair qu’en
répétant ce raisonnement, on trouvera que £ n k£ posséde, pour
tout E borélien, une frontiere A, ce qui établit (i1).

Ajoutons qu’'un raisonnement du genre utilisé ici montre
qu'une variété généralisée inductive &, dont le substratum
T = pQ vérifie (9.7) localement, posséde une frontiera A. En
désignant par G le méme ouvert que dans la définition de cette
vérification locale, on se base alors sur la remarque sulvante,
dont la démonstration se calque sur celle de [11 (6.3)]: presque
tout cube Q, assez petit et de centre fixe dans G, aura une fron-
tiere élémentaire F, dont le niveau correspond & un contour C
de &, tel que C soit un périmeétre de & n Q.

Remarquons encore que (11.1) et (11.2) permettent de réduire

- la discussion des cas d’égalité dans (8.5) et dans les inclusions

analogues pour les variétés de contact. Par exemple, pour
établir Iégalité Ag; = 0-' 04 pour les variétés de contact, il
suffira de I’établir pour celles qui sont closes. En effet, supposons
quon ait établi ce cas particulier, et soit &% une variété de
contact & frontiere A. Désignons par 2 un o-polytope avec poids,
complémentaire & £, et par £ un support borélien de £ disjoint
d’un support borélien de #. En modifiant notre systéme d’équa-
tions différentielles en dehors de £, on §’arrange a ce que ¥ + 2
soit une variété de contact. Par hypotheése, puisque & + 2
est close, & + 2 sera lagrangienne généralisée. Evidemment
il en sera de méme de son intersection avec K, qui est %. Donc
< est une variété de contact lagrangienne généralisée, pour le

systéme modifié, donc pour le systéme donné, qui n’a pas changé
dans E.
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