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On remarquera sans peine que certaines des inclusions (8.5)
sont strictes, mais 1l est possible que d’autres se réduisent & des
égalités.

Les mémes inclusions sont encore valables, si ’on désigne par
les symboles A4,, A, A, etc., les classes correspondantes de
variétés de contact d’un systeme donné d’équations différen-
tielles de la forme (2.1), ou d’un systéeme analogue k-dimensionnel.

Pour bien comprendre un tel systeme, et pour bien com-
prendre la notion de variété, au sens généralisé que nous utilisons
icl, 1l faudra avant tout, selon la remarque & la fin du para-
graphe 3, étudier la question de savoir quelles inclusions (8.5)
se réduisent peut-étre a des égalités. Par exemple, l'égalité
0, = A~' 0A signifierait, pour les variétés de contact, que toute
solution de frontiére A de (2.1) se réduit a une variété de contact,
presque lagrangienne, greffée. Ensuite, pour les inclusions strictes,
on cherchera a caractériser chaque fois les membres de la classe
étroite parmi ceux de la classe large.

9. IEQUATION DE CONTINUITE DES FLUIDES.

(est d’abord l'inclusion finale de (8.5) qui nous intéresse.
Se réduirait-elle a une égalité ?

Pour simplifier, bornons-nous aux variétés généralisées closes
faisant partie des classes considérées. Cette réduction n’est
possible, a vrai dire, que pour £ < n, nous y reviendrons apres
ce paragraphe. Rappelons qu'une variété généralisée est dite
close, lorsque sa frontiere s’annule.

La question que nous nous sommes posée devient la suivante:
une variété généralisée close a-t-elle le méme substratum qu’une
variété lagrangienne ? En d’autres termes: un substratum clos
est-il lagrangien ? Nous allons donner a cette question une autre
forme, qui nous rapproche encore de la mécanique classique des
fluides.

Nous aurons besoin de quelques notations.

Nous utiliserons pour la multiplication extérieure des multi-
vecteurs le signe X. On définit alors la comultiplication @ par
la formule ¢ ® b = (a* X b)*, ou l'astérisque désigne la nor-
male. Rappelons que la normale a* d'un k-vecteur a se définit
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comme un (n — k)-vecteur de méme grandeur, tel que I'on ait
a X a* = |a |2 (Il serait plus correct d’écrire au cOté gauche
(@ X a*)*, car on distingue entre une quantité scalaire, appelée
O-vecteur, et un n-vecteur, qu'on nomme également pseudo-
scalaire. La normale d’une quantité scalaire sera pseudo-scalaire,
et vice versa.) Pour le role de ces opérations dans la théorie des
variétés généralisées, on consultera [11].

Nous écrirons encore d+/dx et d~/0x pour le vecteur dont les
composantes sont les opérations de dérivation partielle, agissant
sur ce qui suit, ou sur ce qui précede, le vecteur en question.

Nous poserons
o+ ' 0
rot 0:5; x(Q, div QzQ@ax,

ot Q désigne une fonction Q () dont les valeurs sont des multi-
vecteurs composés. On écrit grad au lieu de rot, si Q se réduit &
une fonction scalaire. On notera la formule

(9.1) div(Q® Q) =(~)" {Q®rot Q"+ (div ) ® ¢'},

ou Q, Q' désignent des fonctions dont les valeurs sont des multi-
vecteurs composés, et ot £’ désigne la dimension de Q'. En
particulier, si-’'on prend pour @’ une fonction scalaire p, on
aura

(9.2) div (pQ) =0 ® gradp + pdiv(Q

Rappelons encore une conséquence de la formule (9.1) dans

“la théorie des distributions et des courants. Nous désignerons a

cet effet par £ la dimension de Q et nous poserons k" = k — 1.
Nous supposerons en outre que Q' soit infiniment différentiable,
et nous l'identifierons, comme nous ’avons convenu plus haut,
avec une (k— 1)-forme g. On peut alors prendre pour Q une
distribution dont les valeurs sont des multivecteurs, de sorte
que @ devient un courant 7" de dimension k. Nous supposerons
encore que l'une des quantités 7', ¢ au moins ait un support
compact. En éerivant § = div 7', et en tenant compte du fait
que, dans la théorie des distributions, l'intégrale (sur tout
Iespace) d’une divergence & support compacte s’annule, on
trouve

O =T (rotg) + S(g).
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Iei le symbole rot g est a proprement parler inexact, car c’est
pour la fonction Q" plutot que pour la forme g que nous avons
défini I’opération rot. Dans la théorie des formes différentielles,
on écrit dg et non rot g. La formule devient

(9.3) O = T(dg) + S(g);

elle sert de définition pour la fonctionnelle S (g), donc pour le
courant §, puisque g y désigne une (k— 1)-forme arbitraire.
D’autre part, dg désigne une forme exacte arbitraire, et la
fonctionnelle 7' (dg) définit la frontiére de 7. Ainsi: les cou-
rants T clos sont ceux qui vérifient I’équation § = 0, ¢’est-a-dire

(9.4) - div T = 0.

Supposons, en particulier, que 7 soit borné et a support
compact, ¢’est-a-dire que 7" soit un substratum. La fonctionnelle
T (f) sera alors de la forme analogue a (3.2)

(9.5) T(f) = [ Qz) f(x) dp,

ou Q désigne une fonction dont les valeurs sont des k-vecteurs
composés, que nous supposerons de grandeur unité, et ou du
désigne une mesure. L.a forme f a été remplacée ici, selon notre
coutume, par la fonction correspondante & valeurs k-vectorielles,
définie par ses coefficients. Or on écrit plutot, dans la théorie des
distributions, pour du, I'expression pdx ou dx est la mesure ordi-
naire dans ’espace des z, et ou p est une distribution que nous
nommerons la densité. On écrira alors 7' = p(Q, ce qui signifie
en effet,

(9.6) T(f) =[]0 x)p(2)](x)dx,

selon les conventions de la théorie des distributions.

En interprétant la fonction Q () & valeurs Fk-vectorielles
comme une généralisation de la vitesse d’un fluide stationnaire
de densité p (z), on voit qu'un substratum clos, ¢’est-a-dire le
substratum d’une variété généralisée close, vérifie la méme
équation de continuité que I'on trouve en mécanique des fluides
pour le cas stationnaire:

(9.7) div (pQ) =0
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I1 y a cependant une légere différence. Ici ’équation a un sens
global, et les deux facteurs p et Q sont a prendre ensemble: on
ne les sépare pas comme au coté droit de (9.2) parce que la mul-
tiplication des distributions nécessite quelques précautions. Dans
la mécanique classique des fluides p et Q sont analytiques et ces
précautions deviennent superflues. De plus, I'équation (9.7) a
alors un sens local, et se trouve vérifiée & I'intérieur d’un fluide.

Puisque nous renoncons ici aux hypothéses d’analyticité, la
seule différence qui subsistera concernera ce caractére local.
Nous considérerons donc une famille de substrata qui sera plus
générale que celle des substrata clos; ses membres seront donnés
par les quantités p, Q comme plus haut, mais I’équation de conti-
nuité (9.7) sera supposée vérifiée localement.

On dit qu'une distribution § s’annule dans le voisinage du
point z,, s’1l existe une fonction A (), infiniment différentiable
et non négative, telle que 1'on ait & () = 1 dans un voisinage
de zy, et hS = 0. Nous dirons que notre courant 7' = p(Q vérifie
(9.7) localement, si sa divergence s’annule au voisinage de tout
point d’un ouvert G, tel que G constitue pour 7, ¢’est-a-dire pour
la mesure définie par p, un support borélien.

Remarquons que de I'équation de continuité (9.7), on peut
déduire d’autres du méme genre, par l'intermédiaire de (9.1).
En effet, si I'on remplace dans cette derniére, Q par T, et
st on y choisit pour Q" un multivecteur constant, ou plus géné-
ralement un multivecteur Q' () dont la rotation s’annule, on
trouvera

(9.8) div (pe) = 0

ou ¢ = (¢ ® Q'. En particulier, si la dimension de Q" est (k— 1),
ou & est celle de @, 'expression ¢ sera un vecteur ordinaire, et
(9.8) se réduit a I’équation de continuité d’un fluide stationnaire
ordinaire.

La question du début de ce paragraphe est devenue la sui-
vante: un courant de la forme 7' = pQ non lagrangien peut-il
vérifier équation de continuité (9.7) ? Peut-il la vérifier, sinon
globalement, au moins localement ? Peut-il enfin vérifier I'équa-
tion de continuité ordinaire (9.8) pour ¢ = Q ® @', et pour
chaque choix constant de Q' de dimension (k— 1) ?
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Nous retrouvons ainsi, sous des formes plus précises, la
question de la mécanique des fluides dont nous étions partis. A
cet effet, on prendra pour 7' le substratum d’une variété de
contact.

10. LLES DIRECTIONS D’AMARREMENT.

Pour bien comprendre l'équation (9.8), a laquelle nous
sommes aboutis, nous aurons besoin d’un lemme assez simple
sur les multivecteurs quelconques, et ce lemme va dépendre
d’une définition que nous allons illustrer par une image nautique.

Un bateau, qui entre dans un port, ne peut s’amarrer que
dans certaines directions «d’amarrement». I ensemble des
directions d’amarrement dépendra évidemment de celur des
jetées non paralleles qu’on aura construit dans le port.

Nous définirons de méme les directions d’amarrement d’un
multivecteur quelconque j, et l'ensemble de ces directions
dépendra des multivecteurs simples qui sont nécessaires pour
représenter j comme leur somme.

Si j est un multivecteur simple non nul, on 'exprime comme
produit extérieur de vecteurs j = ¢; X ¢y X ... X ¢, et l'on
nomme direction d’amarrement de j toute direction qui est celle
d’une combinaison linéaire ¢ = X ¢, ¢,, a coeflicients réels c,,
des vecteurs ¢, (0 = 1, 2, ..., k). Une telle combinaison linéaire
sera elle-méme dite vecteur d’amarrement.

Dans le cas général, ou j est composé, on dira d’un vecteur ¢,
ou d’une direction ¢, que c’est un vecteur, ou une direction,
d’amarrement de j, st pour chaque décomposition j = 2j, de j
comme une somme de multivecteurs simples j,, qu’on aura
exprimés comme produits extérieurs de vecteurs ¢4, ¢y9, ..vy Oy,
correspondants, 1l existe une expression de ¢ comme une combi-
naison linéaire ¢ = X2, _¢c,, ¢,,, des différents vecteurs ¢,.

Nous dirons encore que le multivecteur j est situé dans un
espace I1, ou IT désigne un sous-espace linéaire de I'espace des z,
si II comprend des vecteurs ¢,, tels que j se laisse exprimer
comme une somme X2j,, ou chaque j, est un produit extérieur
des ¢,, correspondants. On voit de suite que les directions
d’amarrement de ; sont les directions communes & tous les
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