
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 11 (1965)

Heft: 2-3: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: REMARQUES CONCERNANT UN PROBLÈME DE
REPRÉSENTATION DES VARIÉTÉS GÉNÉRALISÉES, ET SON
RAPPORT AU MOUVEMENT STATIONNAIRE D'UN FLUIDE

Autor: Young, L. C.

Kapitel: 9. L'ÉQUATION DE CONTINUITÉ DES FLUIDES.

DOI: https://doi.org/10.5169/seals-39977

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-39977
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


220 —

On remarquera sans peine que certaines des inclusions (8.5)
sont strictes, mais il est possible que d'autres se réduisent à des

égalités.
Les mêmes inclusions sont encore valables, si l'on désigne par

les symboles Ad, A, Ag, etc., les classes correspondantes de

variétés de contact d'un système donné d'équations différentielles

de la forme (2.1), ou d'un système analogue A-dimensionnel.
Pour bien comprendre un tel système, et pour bien

comprendre la notion de variété, au sens généralisé que nous utilisons
ici, il faudra avant tout, selon la remarque à la fin du
paragraphe 3, étudier la question de savoir quelles inclusions (8.5)
se réduisent peut-être à des égalités. Par exemple, l'égalité
ôg A-1 dA signifierait, pour les variétés de contact, que toute
solution de frontière A de (2.1) se réduit à une variété de contact,
presque lagrangienne, greffée. Ensuite, pour les inclusions strictes,
on cherchera à caractériser chaque fois les membres de la classe

étroite parmi ceux de la classe large.

9. L'équation de continuité des fluides.

C'est d'abord l'inclusion finale de (8.5) qui nous intéresse.
Se réduirait-elle à une égalité

Pour simplifier, bornons-nous aux variétés généralisées closes

faisant partie des classes considérées. Cette réduction n'est
possible, à vrai dire, que pour k < n, nous y reviendrons après
ce paragraphe. Rappelons qu'une variété généralisée est dite
close, lorsque sa frontière s'annule.

La question que nous nous sommes posée devient la suivante:
une variété généralisée close a-t-elle le même substratum qu'une
variété lagrangienne En d'autres termes: un substratum clos

est-il lagrangien Nous allons donner à cette question une autre
forme, qui nous rapproche encore de la mécanique classique des

fluides.
Nous aurons besoin de quelques notations.
Nous utiliserons pour la multiplication extérieure des multi-

vecteurs le signe X. On définit alors la comultiplication ® par
la formule a ® b (a* X &)*, où l'astérisque désigne la
normale. Rappelons que la normale a* d'un A-vecteur a se définit
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comme un (n — /c)-vecteur de même grandeur, tel que Ton ait

a x a* | a |2. (Il serait plus correct d'écrire au côté gauche

(a X a*)*, car on distingue entre une quantité scalaire, appelée

0-vecteur, et un re-vecteur, qu'on nomme également
pseudoscalaire. La normale d'une quantité scalaire sera pseudo-scalaire,

et vice versa.) Pour le rôle de ces opérations dans la théorie des

variétés généralisées, on consultera [11].
Nous écrirons encore d+/dxet pour le vecteur dont les

composantes sont les opérations de dérivation partielle, agissant

sur ce qui suit, ou sur ce qui précède, le vecteur en question.
Nous poserons

rot ^ ^ x<?' div

où Q désigne une fonction Q (x) dont les valeurs sont des multi-
vecteurs composés. On écrit grad au lieu de rot, si Q se réduit à

une fonction scalaire. On notera la formule

(9.1) div (Q®Q') -)r ® rot Q' 4- (div 0 ® 0},
où Q, 0 désignent des fonctions dont les valeurs sont des multi-
vecteurs composés, et où k' désigne la dimension de 0. En
particulier, si Ton prend pour 0 une fonction scalaire p, on
aura

(9.2) div (p 0 Q ® grad p + p div Q

Rappelons encore une conséquence de la formule (9.1) dans

la théorie des distributions et des courants. Nous désignerons à

cet effet par k la dimension de Q et nous poserons k' k — 1.

Nous supposerons en outre que 0 soit infiniment difïérentiable,
et nous l'identifierons, comme nous l'avons convenu plus haut,
avec une (k — l)-forme g. On peut alors prendre pour Q une
distribution dont les valeurs sont des m ultivecteurs, de sorte

que Q devient un courant T de dimension k. Nous supposerons
encore que l'une des quantités 71, g au moms ait un support
compact. En écrivant S div J7, et en tenant compte du fait
que, dans la théorie des distributions, l'intégrale (sur tout
l'espace) d'une divergence à support compacte s'annule, on
trouve

O T(rot g) + 5(g).
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Ici le symbole rot g est à proprement parler inexact, car c'est

pour la fonction Q' plutôt que pour la forme g que nous avons
défini l'opération rot. Dans la théorie des formes différentielles,
on écrit dg et non rot g. La formule devient

(9.3) 0 T(dg) + S(g);

elle sert de définition pour la fonctionnelle S (g), donc pour le

courant A, puisque g y désigne une (A—1)-forme arbitraire.
D'autre part, dg désigne une forme exacte arbitraire, et la
fonctionnelle T (dg) définit la frontière de T. Ainsi: les
courants T clos sont ceux qui vérifient l'équation S 0, c'est-à-dire

(9.4) div T 0.

Supposons, en particulier, que T soit borné et à support
compact, c'est-à-dire que T soit un substratum. La fonctionnelle
T (/) sera alors de la forme analogue à (3.2)

(9.5) T(f)$ Q{x) f{x) dp,

où Q désigne une fonction dont les valeurs sont des A-vecteurs

composés, que nous supposerons de grandeur unité, et où dp
désigne une mesure. La forme / a été remplacée ici, selon notre
coutume, par la fonction correspondante à valeurs A-vectorielles,
définie par ses coefficients. Or on écrit plutôt, dans la théorie des

distributions, pour dpi, l'expression pdx où dx est la mesure
ordinaire dans l'espace des x, et où p est une distribution que nous
nommerons la densité. On écrira alors T pÇ, ce qui signifie
en effet,

(9.6) T (/) j Q (x) p (x) f (x) dx,

selon les conventions de la théorie des distributions.
En interprétant la fonction Q (x) à valeurs A-vectorielles

comme une généralisation de la vitesse d'un fluide stationnaire
de densité p (x), on voit qu'un substratum clos, c'est-à-dire le
substratum d'une variété généralisée close, vérifie la même

équation de continuité que l'on trouve en mécanique des fluides

pour le cas stationnaire:

(9.7) div (pQ) 0
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Il y a cependant une légère différence. Ici Féquation a un sens

global, et les deux facteurs p et Q sont à prendre ensemble: on

ne les sépare pas comme au côté droit de (9.2) parce que la
multiplication des distributions nécessite quelques précautions. Dans

la mécanique classique des fluides p et Q sont analytiques et ces

précautions deviennent superflues. De plus, Féquation (9.7) a

alors un sens local, et se trouve vérifiée à Fintérieur d'un fluide.
Puisque nous renonçons ici aux hypothèses d'analyticité, la

seule différence qui subsistera concernera ce caractère local.
Nous considérerons donc une famille de substrata qui sera plus
générale que celle des substrata clos; ses membres seront donnés

par les quantités p, Q comme plus haut, mais Féquation de continuité

(9.7) sera supposée vérifiée localement.
On dit qu'une distribution S s'annule dans le voisinage du

point s'il existe une fonction h(x), infiniment différentiable
et non négative, telle que l'on ait h (x) 1 dans un voisinage
de #0, et hS 0. Nous dirons que notre courant T pQ vérifie
(9.7) localement, si sa divergence s'annule au voisinage de tout
point d'un ouvert G, tel que G constitue pour T, c'est-à-dire pour
la mesure définie par p, un support borélien.

Remarquons que de Féquation de continuité (9.7), on peut
déduire d'autres du même genre, par l'intermédiaire de (9.1).
En effet, si l'on remplace dans cette dernière, Q par T7, et
si l'on y choisit pour Q' un multivecteur constant, ou plus
généralement un multivecteur Q' (x) dont la rotation s'annule, on
trouvera

(9.8) div (pe) 0

où v Q (g) Q'. En particulier, si la dimension de Q' est (k — 1

où k est celle de Ç, l'expression v sera un vecteur ordinaire, et
(9.8) se réduit à Féquation de continuité d'un fluide stationnaire
ordinaire.

La question du début de ce paragraphe est devenue la
suivante: un courant de la forme T pQ non lagrangien peut-il
vérifier Féquation de continuité (9.7) Peut-il la vérifier, sinon
globalement, au moins localement Peut-il enfin vérifier Féquation

de continuité ordinaire (9.8) pour ç Q ® et pour
chaque choix constant de Q' de dimension (k— 1)



— 224

Nous retrouvons ainsi, sous des formes plus précises, la
question de la mécanique des fluides dont nous étions partis. A
cet effet, on prendra pour T le substratum d'une variété de

contact.

10. Les directions d'amarrement.

Pour bien comprendre l'équation (9.8), à laquelle nous
sommes aboutis, nous aurons besoin d'un lemme assez simple
sur les multivecteurs quelconques, et ce lemme va dépendre
d'une définition que nous allons illustrer par une image nautique.

Un bateau, qui entre dans un port, ne peut s'amarrer que
dans certaines directions « d'amarrement ». L'ensemble des

directions d'amarrement dépendra évidemment de celui des

jetées non parallèles qu'on aura construit dans le port.
Nous définirons de même les directions d'amarrement d'un

multivecteur quelconque /, et l'ensemble de ces directions
dépendra des multivecteurs simples qui sont nécessaires pour
représenter / comme leur somme.

Si j est un multivecteur simple non nul, on l'exprime comme
produit extérieur de vecteurs / cx X e2 X X vk et l'on
nomme direction d'amarrement de / toute direction qui est celle
d'une combinaison linéaire v S ca à coefficients réels cff,
des vecteurs eCT (er 1, 2, k). Une telle combinaison linéaire
sera elle-même dite vecteur d'amarrement.

Dans le cas général, où j est composé, on dira d'un vecteur e,

ou d'une direction e, que c'est un vecteur, ou une direction,
d'amarrement de /, si pour chaque décomposition / I jv de /
comme une somme de multivecteurs simples /v, qu'on aura
exprimés comme produits extérieurs de vecteurs evl, ev2, evfc,

correspondants, il existe une expression de e comme une combinaison

linéaire e IV}(T cva eV(T, des différents vecteurs eVff.

Nous dirons encore que le multivecteur j est situé dans un
espace 77, où 77 désigne un sous-espace linéaire de l'espace des x,
si 77 comprend des vecteurs eV(T tels que / se laisse exprimer
comme une somme Ijv7 où chaque /v est un produit extérieur
des eVCT correspondants. On voit de suite que les directions
d'amarrement de j sont les directions communes à tous les
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