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LA VIE ET L'ŒUVRE D'ÉMILE BOREL

par Maurice Fréchet

INTRODUCTION

Les lignes qui vont suivre n'ont pas été seulement écrites en

hommage d'un confrère à un savant disparu qui fut, à la fois, un

grand mathématicien s'intéressant à toutes les formes de la pensée,

un grand organisateur et un homme d'action.
Cette notice me permet aussi de témoigner publiquement de ma

reconnaissance et de mon affection pour l'un de mes deux grands maîtres.
De même que Monsieur Hadamard m'avait distingué déjà

parmi mes camarades de lycée, et par la suite m'encouragea et

m'aida de ses conseils à me consacrer aux mathématiques, de même,

Emile Borel, en me confiant le soin, alors que j'étais étudiant, de

rédiger un de ses cours, me fit entrer dans le cercle des écrivains
mathématiciens. Plus encore, en m'appelant, beaucoup plus tard,
à venir à Paris le seconder dans son enseignement de Calcul des

Probabilités, Emile Borel me prouva son estime, comme, d'ailleurs,
en bien d'autres circonstances.

Je lui en suis d'autant plus reconnaissant que nos tendances

générales, en mathématiques, étaient assez différentes. Alors que,
souvent, j'ai cherché les traits communs à plusieurs théories pour en
déduire une théorie générale qui englobait les précédentes, Borel, par
une étude attentive et méticuleuse de cas particuliers y trouvait la
nécessité d'introduire des notions nouvelles dont la portée dépassait
singulièrement ces cas particuliers. Ceci explique, peut-être, que
Borel a toujours donné une préférence exclusive aux méthodes
constructives 1) plus instructives et les seules utilisables, d'ailleurs,
daas les applications, aZors que j'ai fréquemment employé les
méthodes descriptives 2) souvent plus simples dans les théories.

Nous préciserons le sens et la portée de ces expressions dans la deuxième partie
de cette notice.

2) Nous préciserons le sens et la portée de ces expressions dans la deuxième partie
de cette notice.
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Dans la citation de la p. 8, Monsieur Louis de Broglie
observe chez Borel, « une réelle compréhension des opinions d'autrui

». Je pourrais en donner deux exemples personnels où nous
avions émis des appréciations opposées. En ces deux circonstances,
Borel m'a répondu avec sa vivacité et sa franchise habituelles. Mais
nos relations n'en ont pas été altérées le moins du monde.

Je considère comme le plus grand honneur de ma vie d'avoir
été élu deux fois comme successeur d'un aussi illustre savant : d'abord
à sa chaire de la Faculté des Sciences, puis dans son fauteuil de

VAcadémie des Sciences.

Cette notice comprendra trois parties intitulées:

La vie et l'action sociale d'Emile Borel,
Les tendances générales de l'œuvre scientifique d'Emile Borelx),
Exposé plus technique de l'œuvre scientifique d'Emile Borel.

Ainsi la lecture en sera facilitée à un plus large public, la
première partie s'adressant à tout homme cultivé, la seconde

aux philosophes de la science, comme aux mathématiciens, la
dernière ne pouvant intéresser que ceux qui ont une culture
mathématique assez poussée, (sans être nécessairement des

mathématiciens de profession).
Il sera intéressant pour le lecteur de connaître des vues

exprimées de façons différentes, quoique, en généra] concordantes,

sur h œuvre et la vie d'Emile Borel, en consultant
les excellentes Notices qui lui ont été consacrées (dans Tordre

chronologique), par MM. Paul Montel 2) Louis de Broglie 3)

Charles Maurain 4) et E. F. Collingwood5) (les seules d'ailleurs,
parvenues à ma connaissance 6).

Monsieur Louis de Broglie, limité par le temps pour une
lecture orale, avait émis le vœu dans sa Notice, que son résumé

Cette partie a déjà été publiée dans la Revue Philosophique, tome CLI, 1961

p. 397-416.
2) C. R., t. 242, 1956, p. 845-850.
3) Notices et Discours, Académie des Sciences, tome 4, 1957, p. 1-24.
4) Bulletin de l'Association amicale de Secours des anciens élèves de l'Ecole

Normale Supérieure, 1 957, p. 29-32.
s) Journal of the London Mathematical Society, 1959, p. 488-512. Nous n'en avons

eu connaissance qu'après avoir écrit la Seconde et presque terminé la Troisième Partie
de cette Notice (avant d'écrire la Première Partie).

6) Nous avons nous-mêmes publié une première, mais très courte notice dans la
Revue Philosophique, t. CXLVI, 1956, p. 158-160.
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des travaux scientifiques de Borel soit suivi d'une analyse plus
étendue. C'est ce que nous avons fait dans la Deuxième et
Troisième Partie de notre présente Notice.

Par contre, il nous avait d'abord semblé que pour la vie et
l'œuvre sociale de Borel, nous pourrions être beaucoup plus bref
en renvoyant pour plus de détail aux Notices indiquées plus haut.
Les faits matériels seront donc résumés ici, un lecteur qui désirerait

plus de détails pouvant se reporter aux Notices précédentes.
Mais, à comprimer les Notices précédentes, notre Première

Partie courait le risque d'apparaître un peu sèche.

Heureusement, Madame Marguerite Borel a bien voulu, et

nous l'en remercions vivement, nous communiquer quelques
souvenirs inédits qui rendront à notre exposé, un peu de chaleur
humaine.
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PREMIÈRE PARTIE

LA VIE ET L'ACTION SOCIALE D'ÉMILE BOREL

La jeunesse

Emile Borel est né le 7 janvier 1871 à Saint-Affrique dans

l'Aveyron, seize ans et quatorze ans après ses deux sœurs.
Ce fut un enfant prodige. Saint-Affrique citait encore ses mots

d'enfant en 1924. Plus tard, encore tout enfant, il lisait des livres
de mathématiques. Des collègues de son père, croyant qu'il se

vantait, apportèrent un ouvrage de Lefébure de Fourcy à ce

gamin qui savait à peine lire. Il leur montra qu'il comprenait
parfaitement ce dont il s'agissait.

Non seulement les mathématiques, mais toute «mécanique »

l'intéressait et il fallait qu'il en comprenne « le système ».

Il fit ensuite ses études primaires à l'école privée dirigée par
son père, pasteur à Saint-Affrique, puis, à onze ans, poursuivit
ses études au Lycée de Montauban. Enfin, quelques années

après, il vint à Paris en qualité de boursier au Collège Sainte-
Barbe et suivit les cours du Lycée Louis-le-Grand pour la
préparation à l'Ecole Normale Supérieure. Il le fit si bien qu'à dix-
huit ans, il obtenait le premier prix au Concours général et était
reçu premier à la fois à l'Ecole Polytechnique et à l'Ecole
Normale.

Il fut aussitôt sollicité de choisir l'Ecole Polytechnique. On
vint même à Saint-Affrique pour exposer au père de Borel qu'en
sortant de cette Ecole, Borel était assuré de trouver une situation
brillante dans l'industrie et de pouvoir choisir, pour l'épouser,
une riche héritière.

D'accord avec son père, Borel refusa. Ses conversations
précédentes avec le grand mathématicien Darboux lui avaient
fait comprendre qu'au sortir de l'Ecole normale, il pourrait
se livrer à la recherche (en partie, grâce aux longues vacances
d'été accordées par l'Université). D'autre part, il ne voulait pas,
en entrant à l'Ecole polytechnique être astreint ensuite aux
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servitudes mondaines, d'autant qu'il ne tenait pas au luxe.
Enfin, il tenait avant tout à choisir une compagne dans un
milieu intellectuel peu fortuné où elle aurait appris à apprécier
la même échelle de valeurs que lui.

Nous allons voir que l'idéal qu'il s'était fixé, il allait bientôt
l'atteindre et même le dépasser.

A partir de sa sortie de l'Ecole normale, il n'allait pas cesser
de se livrer avec un éclatant succès à ses recherches.

Il était naturellement entré en contact avec le grand
mathématicien Appell et avait eu ainsi l'occasion de rencontrer la
fille aînée de celui-ci, Marguerite. Quoique l'aînée, elle était
encore bien jeune. Mais, elle aussi, manifestait de bonne heure

une vive intelligence qui avait attiré l'attention de Borel. Un
jour, ayant sans doute des visées sur elle, il lui demanda son âge

et fut surpris d'apprendre qu'elle n'avait que seize ans. C'était
décidément trop tôt. Mais un peu plus tard, bien que de treize
ans plus âgé qu'elle, il la demanda en mariage, et sa demande
fut agréée.

Ainsi, se réalisa une union où les dons complémentaires
de l'un et de l'autre allaient réagir heureusement.

Mme Marguerite Borel allait bientôt, sous le pseudonyme
de Camille Marbo (Mar-bor), se faire connaître par ses romans et

exercer pendant plusieurs années une action efficace comme
présidente de la Société des Gens de Lettres.

De son côté, déjà au Collège Sainte-Barbe, Borel avait
rencontré les plus brillants élèves des lycées provinciaux, d'origines
ou de fortunes modestes. C'est ainsi que Borel y avait fait la
connaissance d'Emile Herriot, futur président du Conseil, de

Marcel Schwöb et d'autres, qui l'avaient habitué à vivre dans

un milieu de haute tension littéraire et intellectuelle (en même

temps qu'assez bohème et très gai).
Plus tard, les relations de Borel et de sa femme avec les

milieux scientifiques, puis avec les milieux littéraires, amenaient
le couple Borel à connaître et fréquenter « l'intelligentsia » de

l'époque. En particulier, Borel et sa femme se rendaient chaque
semaine et passaient une partie de l'été chez l'historien Charles

Seignobos où ils avaient l'occasion de rencontrer des journalistes,
des diplomates et des hommes politiques.
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L'amitié de Borel avec Paul Painlevé, futur président du

Conseil, allait contribuer à faire entrer Borel dans la vie politique.
(Ils furent entre autres, toute leur vie, les amis intimes de Jean

Perrin, Paul Langevin, Charles Maurain, camarades ou voisins

de promotion de Borel à PEcole normale). Charles Seignobos,

comme Emile Borel, adorait les échanges d'idées mais
n'admettait pas «le verbiage inutile», et sa devise était: «Pas de zèle.

Pas de politesse conventionnelle. Pas de discours ».

Emile Borel dut beaucoup à ce milieu et à ce climat. Il
n'hésitait pas à sacrifier une partie du temps qu'il consacrait

aux recherches, quand il s'agissait pour lui d'entrer en contact
avec une personnalité éminente, digne de son intérêt. C'est

ainsi qu'il déjeuna, pendant plusieurs années, régulièrement,
en tête à tête avec Paul Valéry, à la «Maison des X», pour
parler mathématiques « sans mondains et sans femme » disait
Paul Valéry.

« Partout, Emile Borel, doué d'un esprit extraordinairement
vif, cueillait des enseignements, une documentation sur les

situations politiques, littéraires, économiques, sociales du
moment.»

« Borel se tient au courant de tout » disaient alors ses amis.
Mais, il n'aimait pas « le monde » tout court, qu'il continuait

à trouver creux et qui lui, le trouvait solennel et ennuyeux, et
non pas « brillant causeur » comme certains de ses confrères
scientifiques.

C'est probablement sa fréquentation d'un cercle très étendu
d'intellectuels, connus dans des domaines divers, qui l'amena à

risquer une aventure. Bénéficiaire du Prix Petit d'Ormoy de
10.000 francs (francs de l'époque), il eut l'audace et le désintéressement

d'utiliser cet argent (en 1906) pour fonder une noavelle
revue « La Revue du Mois ».

Il était, en effet, au moins assuré de trouver, pour cette
revue, des auteurs compétents, parmi les intellectuels 'qu'il
avait appris à connaître et à estimer.

La Revue du Mois se fit vite remarquer et apprécier et c'est
seulement la guerre de 14-18 qui, après en avoir entraîné la
cessation momentanée, fut la cause de difficultés financières
contraignant Borel à arrêter la publication de sa revue.
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Pendant cette même guerre (de 1914-18), alors que Madame
Borel s'occupait avec dévouement, comme directrice, de l'hôpital
de l'Ecole Normale, son mari s'occupa du service des inventions
créé par Paul Painlevé et créa les « Sections de repérage par le

son », qui rendirent de grands services aux armées ; il commanda
l'une de ces sections. Dans une autre était avec d'autres
normaliens son neveu et fils adoptif, Fernand Lebeau, élève à

l'Ecole Normale. Celui-ci, ayant demandé à partir sur le front,
y fut tué. Borel qui l'aimait beaucoup, décida de le remplacer,
mais eut à faire de nombreuses démarches pour obtenir d'être
envoyé sur le front. « Je tiens à me battre » disait-il. « Il obtint
d'être nommé commandant d'une batterie d'artillerie lourde qui
circula de la Somme aux Flandres, subit de nombreuses pertes
et valut à son chef deux très belles citations.»

L'homme

Nous allons maintenant essayer de tracer un portrait de

Borel lui-même. Afin que ce portrait soit le moins subjectif
possible, nous rassemblerons et nous confronterons les portraits
qu'en ont faits quelques-uns de ceux qui l'ont approché de

près.
Quand j'étais étudiant, Borel était assez corpulent et portait

une large barbe noire. Plus tard, la corpulence a disparu et la
barbe devenue grisonnante, s'est trouvée réduite à une barbiche.
La photographie de Borel, prise à l'âge mûr et qui figure en tête
du volume « Selecta », est d'une remarquable ressemblance.
Elle respire l'intelligence. Et le regard scrutateur de Borel
accentue l'impression d'autorité.

La constitution de Borel était robuste et c'est elle qui lui a

permis d'atteindre 85 ans d'âge, malgré son emprisonnement

par la Gestapo, plus tard, une fièvre dans les Indes, et enfin une
chute dans le bateau qui le ramenait du Brésil quelques mois
avant sa mort. Un collègue américain m'a dit « Borel était très

fort; quand j'avais une trentaine d'années, je me trouvais
participer avec lui à un Congrès tenu au bord de la mer. Nous
étions alors convenus de faire ensemble un peu de natation.
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Nous partons ensemble du rivage. Je nage quelque temps et je

m'aperçois que je ne vois Borel (plus âgé que moi d'une dizaine

d'années au moins), ni derrière moi, comme je m'y attendais, ni
à droite, ni à gauche; il avait en effet, pris sur moi une forte

avance ».

M. Collingwood complète ainsi ce portrait: « My recollection
of his lectures is of a tall, commanding figure, the handsome

head with thick hair and close-clipped beard, once black but now
grizzled, the eyes alight ...»

Ailleurs, il écrit de Borel « In appearance and manner, he was

tall, dignified and distinguished and looked the parts he had

played.»
M. Maurain écrit «Lorsque j'entrai à l'Ecole Normale en

1890, je la trouvais toute remplie de la renommée d'Emile
Borel la réputation, le prestige de Borel nous en
imposaient mais c'est lui qui vint gentiment à nous et qui, par
des conversations familières, nous aida plus qu'aucun autre à

prendre pied. Borel était très fidèle à ses amitiés. D'aucuns ont
qualifié sa physionomie de froide l'aspect sous lequel je
cherche le plus volontiers à me rappeler son souvenir est celui
de sa figure épanouie quand il accourait annoncer à un ami
quelques bonnes nouvelles.»

Plus tard, quand j'étais un de ses étudiants, il était encore
simple et familier.

Il est cependant de fait que sa notoriété croissante l'avait
amené ensuite à défendre les minutes de son temps et à écarter
les importuns. Il était ainsi devenu distant. M. Louis de Broglie
écrit « Certains, cependant, lui ont reproché d'avoir un abord un
peu rude qu'accentuait encore une manière de parler assez sèche.
Mais cette rudesse n'était qu'une apparence. Tous ceux qui l'ont
connu savent que, derrière elle, se cachait une grande pondération,

une réelle compréhension des opinions d'autrui et le plus
souvent une véritable bienveillance ».

M. Collingwood écrit de son côté: « Si comme homme public,
il est devenu moins accessible qu'il ne l'avait été aux mathématiciens

considérés isolément, en compensation, il a pu rendre
service aux mathématiques et à la science, en général, grâce à

sa position publique et à son influence ».
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Dans le même ordre d'idées, M. Maurain écrit « Et ce serait
parler trop incomplètement de Borel que de taire certaines

apparences qui l'ont desservi. Originaire d'une contrée de climat
rude, il en avait dans l'aspect conservé quelque empreinte.
D'ailleurs, d'une intelligence très vive, saisissant tout de «suite

l'intérêt et le fond d'un problème, il lui arrivait d'être agacé par
les lenteurs ou les insuffisances d'une conversation ou d'une
discussion et de le manifester. Pourtant, quelle était sa bonté
foncière et comme il savait être généreux et patient jusque dans
les petites choses ».

Et M. Maurain cite, en exemple, comment Borel « de première
force aux échecs, ne dédaignait pas d'accepter des partenaires
novices saluant leurs bons coups, les guidant sans en avoir
l'air. ...»

Il est très intéressant de constater la concordance de ces

opinions avec celle de M. Collingwood, en partie citée plus haut,
où il exprime sous une forme très vivante, que je risquerais de

trahir en la traduisant, l'impression que fit Borel sur M. Collingwood,

alors étudiant à Paris.
« My recollection of his lectures, always to a crowded audience

in one of the large amphitheaters of the Sorbonne, moving
deliberately in front of the long black board and returning now
and then to the desk to glance at the half sheet of paper which
was all that convention of the rules allowed for notes. The

manner was magisterial but the style vivid and even racy;
phrases which fell from him then remain with me to this day.
The lecture closed with discreet applause. It was always a stimulating

experience. He could appear formidable, no doubt. But
I also remember the kindness with which, as a young foreigner,
I was welcomed in his appartment in the rue du Bac and
the help and advice for my stay in Paris which I received
there.

The impression of intellectual power and authority was,
none the less, strong ».

Mieux encore que les collègues de Borel, Madame Borel a pu
connaître les sentiments profonds de son mari. Ecoutons-la :

«Toute sa vie, Emile Borel conserva le goût des «conversations

sans prétention qui signifient quelque chose ».
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Par contraste, quand il allait « dans le monde » il se taisait

volontiers, disant ensuite «Pourquoi est-ce que j'aurais parlé.
Je n'avais rien à dire. On faisait du bruit pour rien ».

De là sa réputation méritée de sauvagerie, dont ses amis et

ses camarades riaient »...
«Curieux dans presque tous les domaines, toujours avide de

comprendre, ami fidèle et sûr, il dédaignait l'approbation des

indifférents, s'irritait des flatteries et des compliments, de sorte

qu'il rebutait parfois ceux qui n'étaient pas capables de

l'apprécier.

La vie est trop courte, disait-il, pour que l'on fasse des efforts
inutiles pour plaire à des gens que l'on n'intéresse pas et qui ne

vous intéressent pas non plus.
Emile Borel, en résumé, ne voulut jamais s'adapter à ce qu'il

nommait « les milieux parisiens ».

Emile Borel, avant tout, comme disent ses compatriotes
aveyronnais, était « un homme juste ».

En même temps que juste, il était bon, mais sans phrase et

sans emphase. Il rayonnait quand il avait pu aider quelqu'un ou
voir quelqu'un d'heureux.

Il ignora toujours la jalousie, fut joyeux des succès de ses

amis autant que des siens, fit tout pour les amener ».

« Il aimait les paysans aveyronnais dont il avait beaucoup
de traits de caractère, franc, rude et courageux ».

Le père et le beau-frère de Borel étaient des pasteurs
protestants. Madame Borel écrit encore:
« De ses parents, Emile Börel, hérita: une rigueur d'esprit toute
protestante le dédain des richesses et de la vie luxueuse
une horreur de l'hypocrisie et de tout mensonge, même bénin».

Toute sa vie, Emile Borel n'entreprit jamais une action sans
la suivre jusqu'au bout, dans ses détails, si infime qu'elle puisse
paraître aux observateurs extérieurs.

Il était incapable de faire une promesse qu'il ne se sentait pas
sûr de tenir. Il disait aux gens qui, lorsqu'il était homme politique,
lui demandaient une recommandation ou une aide « Je ne ferai
rien pour vous. Je ne serais pas certain de ne pas faire tort à

quelqu'un d'autre ». Ou bien s'il disait « Comptez sur moi », il se

dépensait sans compter, heureux quand il avait obtenu un
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résultat favorable, pension, bourse, réparation d'un tort,
nomination qui lui semblait équitable.

Et il lui était réellement indifférent que l'on dise que c'est
à lui que l'on devait le succès « C'est le résultat qui me fait plaisir,
non pas la reconnaissance ».

Emile Borel avait exprimé le désir formel d'être inhumé,
près de ses parents, dans le cimetière protestant de Saint-Affrique.

S'il demanda, malgré ses idées non religieuses, une brève
cérémonie au Temple Réformé de Saint-Affrique, c'est, suivant
ses propres termes « Parce qu'il me semble que je dois cela à la
mémoire de mes parents ».

La politique

A partir de son départ de Lille à 26 ans, Borel n'a cessé

d'habiter Paris. Mais il n'a jamais oublié son pays natal, où il
revenait régulièrement. Estimé de ses concitoyens, connu par
son talent d'organisateur, il avait été élu maire de Saint-Affrique
à 56 ans. Un peu avant, à 55 ans, il s'était présenté aux élections

pour le Conseil général du département de l'Aveyron, et avait
été élu.

Sauf l'interruption du règne de Pétain, il conserva ces deux
fonctions presque jusqu'à sa mort. Mais il ne s'agissait là que
d'intérêts locaux.

Son amitié constante avec Paul Painlevé, futur président du
Conseil, le conduisit à s'intéresser à la politique nationale. Car,
à ses dons de mathématicien, s'ajoutait un vif intérêt pour les

questions sociales. Il fut ainsi élu député de l'Aveyron en 1924

et, à partir de là, siégea pendant 12 ans au Parlement.
On y avait remarqué sa connaissance des hommes et des

choses et il y acquit peu à peu une grande influence. C'est ainsi

qu'il devint président de la commission des affaires alsaciennes

et vice-président de la commission parlementaire la plus importante,

celle des finances. Il fut même ministre de la marine
pendant les quelques mois que dura un cabinet présidé par
Painlevé et participa ainsi à une croisière de la flotte française.
Il n'était d'ailleurs pas inconnu dans la maison, ayant eu,
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auparavant, l'occasion de rencontrer des officiers de tout grade,

pendant les périodes annuelles où il faisait partie du jury d'entrée
à l'Ecole navale.

Pendant son séjour au Parlement, Borel eut plusieurs fois la
satisfaction de faire adopter des mesures favorables à la recherche

scientifique. Indépendamment, l'influence qu'il avait acquise en

dehors du cercle étroit des mathématiciens lui a permis d'aider
puissamment à la création de l'Institut Henri Poincaré (dont il est

question, p, 14) et du Centre national de la recherche scientifique.
A partir de 1936, il se retira de la vie politique.
La guerre vint. Une organisation des Recherches utiles à la

Défense nationale, préparée en temps de paix, entra en action.
La direction de l'une de ses cellules, qui faisait usage des sciences

exactes, fut confiée à Borel. Sous son impulsion, des recherches
furent entreprises qui auraient abouti à d'importants résultats
si l'armistice n'était venu briser son effort.

Borel ayant atteint l'âge de la retraite, un jubilé fut organisé
en janvier 1940, avec grand succès, pendant « la drôle de guerre »,

succès qui eût rassemblé un plus grand nombre de participants,
n'eussent été les événements.

Bien qu'ayant cessé de s'occuper de politique active, Borel
y fut douloureusement associé, peu de temps après, en 1941.
Les Allemands, probablement dans le but de lancer un avertissement,

ont incarcéré en 1941, quatre membres âgés de l'Académie
des sciences, dont ils soupçonnaient, d'ailleurs avec raison, les
sentiments défavorables. Maintenus en prison, à Fresnes, sans
savoir pour quels motifs, pendant un mois, ces quatre membres,
dont Borel, occupaient des cellules étroites sans chauffage. La
santé de Borel, pourtant partiellement recouvrée quelque temps
après, s'est toujours ressentie de cette épreuve subie à 70 ans.
Il gagna, dès qu'il le put, l'Aveyron, où il participa à des actions
clandestines qui lui valurent la Médaille de la Résistance.

L'enseignement

Nous reviendrons en seconde partie sur la façon dont Borel
comprenait l'enseignement. De toute façon, il est certain qu'il
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aimait l'enseignement, qu'il s'intéressait à ses élèves et qu'il a
souvent bataillé pour rendre l'enseignement plus profitable, à

tous les degrés. C'est ainsi, qu'il n'a pas dédaigné de créer une
collection d'ouvrage de mathématiques pour l'enseignement
secondaire. Il y essayait d'accroître le recours à l'intuition et
en même temps de l'imprégner (dans la mesure du raisonnable)
de l'esprit des mathématiques modernes. C'est cette disposition
d'esprit qui l'inclina à accepter la direction des études scientifiques

à l'Ecole normale supérieure. C'était là une lourde charge
et on pourrait penser qu'il a regretté de réduire ainsi le temps
consacré à ses brillantes recherches. Il n'en a pas été ainsi.
Borel lui-même décrit sa nomination comme un honneur immérité

qui était l'événement le plus important survenu dans sa

carrière jusqu'à cette nomination. Et il déclara même que les

quatre années qu'il consacra avant la guerre de 1914 à cette
direction (et où il se dévoua sans limite à assurer une aide morale
et matérielle à ses élèves, tout en veillant à leurs progrès
scientifiques), furent les plus heureuses de sa vie.

Retraçons rapidement sa carrière de professeur.
Borel avait été nommé (exceptionnellement, avant sa thèse,

à 22 ans) maître de conférences à la Faculté des sciences de Lille,
puis à 26 ans, maître de conférences à l'Ecole normale
supérieure. (Il allait rester presque toute sa vie, lié d'une façon ou
d'une autre à cette Ecole où il était entré à 18 ans). En 1909, la
Faculté des sciences de Paris créait une nouvelle chaire, celle
de Théorie des fonctions, où Borel fut nommé professeur. En
1919, le décès de Boussinesq rendait vacante la chaire de Calcul
des probabilités et de physique mathématique.

Cette vacance survenait au moment où, déjà depuis quelques
années, Borel s'était intéressé de plus en plus à ces deux
disciplines. Il demanda donc et obtint d'être transféré dans cette chaire.

A la fin de 1928 (grâce en partie à l'action de Borel) avait été

créé l'Institut Henri Poincaré consacré aux mêmes deux
disciplines. Cette création réalisait le vœu de Borel de rénover et

d'amplifier en France l'enseignement de ces mêmes disciplines
et le nombre et la valeur des recherches qui y sont consacrées.

C'est pourquoi Borel demanda et obtint la création d'une
maîtrise de conférences de Calcul des probabilités qu'il nous fit
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l'honneur de nous faire confier, et aussi d'une chaire et d'une

maîtrise de conférences de Théories physiques.
Avant ces créations, les auditeurs de Borel, devaient aux

examens correspondants, faire preuve de connaissances étendues,

correspondant au titre de la chaire.
Nous fîmes valoir à Borel que c'était demander aux candidats

un effort de mémoire considérable et puisque la création de la
maîtrise de conférences se prêtait à une nouvelle répartition du

programme, Borel, sur notre proposition, accepta de scinder le

diplôme en trois options: Calcul des probabilités, compléments
théoriques (de calcul des probabilités), physique mathématique.

Les programmes purent ainsi être allégés, pour la première
option et approfondis pour la seconde (qui attirait les meilleurs

étudiants).
C'est pendant son séjour à l'Ecole normale qu'éclata

«l'affaire Curie». Madame Curie traquée par une horde de

journalistes, fut abritée chez Monsieur et Madame Borel. M. Steeg,
le ministre, ayant annoncé à Borel qu'il serait révoqué s'il
gardait madame Curie dans un appartement de l'Etat, alors

qu'un scandale menaçait d'éclater, Emile Borel répondit: «Si
je suis révoqué pour avoir servi une cause juste, j'en serai fier ».

Le ministre n'insista pas. Pour la gloire de la France, madame
Curie garda son poste, un instant fortement menacé.

UEnseignement de Borel ne s'arrêtait pas aux frontières.
On l'appelait à l'étranger, de toutes parts, pour y faire des

conférences. Borel accepta souvent ces appels et, fréquemment
aussi, participa à des congrès scientifiques internationaux.
C'est ainsi que devenu grand voyageur, il a visité tous les pays
d'Europe sans exception et qu'il a porté la bonne parole
mathématique en Egypte, au Liban, en Perse et jusqu'en Chine, où,
en 1920, il accompagnait Paul Painlevé (grand mathématicien
et ancien président du Conseil) et où il resta cinq mois. (Nous
avons entendu une conférence de Painlevé sur ce voyage, où, en
passant, il notait ce détail pittoresque: une bataille entre deux
armées chinoises faisant rage sur le parcours de son train, les
deux généraux chinois qui se combattaient, prenant en considération

le grand rôle politique et la renommée scientifique de Painlevé,
sont convenus de faire trêve, pour laisser passer son train!)
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Un peu plus tard, en 1922 et 1929, Borel visite l'Argentine,
l'Uruguay, et le Brésil. En 1951, il visite les Indes et en 1955 à

l'âge de 84 ans, il déclare à sa femme « Ce sera mon dernier voyage
mais je veux encore aller au Brésil où aura lieu un Congrès de

statistique ». C'était malheureusement, en effet, son dernier

voyage; car ayant fait une chute en bateau, celle-ci touchant son

système circulatoire contribua certainement à hâter sa fin. Il
s'éteignit doucement le 3 février 1956, un peu après son 85ème

anniversaire.

Les publications

Même dans cette première partie qui s'adresse au grand
public, il nous a paru nécessaire de donner une idée de l'évolution
scientifique de Borel: ce sont ses travaux scientifiques, après
tout, qui l'ont rendu célèbre.

Nous allons donc nous efforcer de donner un aperçu de l'activité

scientifique de Borel, sans entrer nulle part dans les détails
techniques, réservés à la deuxième et surtout à la troisième partie.

Il nous arrivera cependant d'employer des mots techniques,
parfois inconnus du lecteur; mais ces mots ne sont là que comme
sont les noms, sans signification immédiate, de localités dans une
carte géographique. Ils servent simplement de repères distinctifs.
Chaque lecteur pourra, je crois, suivre l'évolution de Borel sans
chercher à comprendre tous ces mots techniques.

Les publications de Borel sont au nombre de plus de trois
cents parmi lesquelles trente-cinq sont des livres dont certains
ont eu plusieurs éditions.

Nous analyserons dans la deuxième et troisième partie, ses

mémoires originaux consacrés aux mathématiques pures et
appliquées. Mais il a écrit en outre une cinquantaine d'articles
consacrés à la philosophie et à l'histoire des sciences, à la
psychologie et à l'économie politique, etc.

Nous croyons qu'il sera possible de les réunir en un volume

qui sera assuré de trouver des lecteurs 1.

i) Ce vœu est en eours de réalisation grâce à la générosité et à la compréhension
de la maison Gauthier-Villars qui rassemblera ces articles sous le titre: «Emile Borel,
philosophe et homme d'action ».
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Enfin, à partir du moment où Borel est entré dans la politique
il écrivait, chaque semaine, un article dans un journal quotidien.
Nous nous bornerons ici à parler des livres de Borel.

Après sa thèse, en 1893, son premier livre « Leçons sur la
théorie des fonctions » date de 1898. Il en publia plusieurs autres

sur des sujets connexes, mais c'est seulement en 1904 que Borel

conçut le projet ambitieux mais magnifiquement réalisé, d'une

grande « Collection de monographies sur la théorie des fonctions

». Il en fut d'abord le seul auteur, mais bientôt, il réussit
à obtenir la collaboration de nombreux mathématiciens français
et étrangers, de sorte que la collection atteignit le nombre de

cinquante volumes dont dix par Borel lui-même. S'il a pu réaliser

une telle production, en moins de vingt-cinq ans, en même temps
qu'il procédait à ses profondes recherches et à son enseignement,
c'est probablement parce que, à l'exemple de Poincaré, il se

contentait de développer oralement le sujet de chaque livre dans

un de ses cours et de laisser le soin de le rédiger à l'un de ses

auditeurs. Il a montré, en même temps, comme il savait bien
juger les jeunes, puisque la plupart de ses collaborateurs, choisis

parmi de simples étudiants, sont devenus des professeurs
d'université (la majorité d'entre eux à Paris).

Répétons, à peu près, une observation de M. Collingwood
« Borel a rendu un important service aux mathématiques en
présentant, grâce à cette collection, une synthèse des plus récents
travaux sur l'application de la théorie des ensembles à la théorie
des fonctions, à une époque où ces idées n'étaient pas encore très
répandues. Cette collection reste un des principaux monuments
mathématiques de cette époque ».

Sa complétion marque un changement définitif dans l'objet des

méditations de Borel, changement d'ailleurs précédé par une
époque de transition. Borel s'était attaqué au calcul des
probabilités dès 1905 et s'y était intéressé de plus en plus. Ceci le
conduisit à dresser un nouveau plan non moins ambitieux et non
moins bien réalisé que le précédent. Il le précise en ces termes
« Coordonner l'ensemble considérable de recherches faites dans
ces cinquante dernières années sur les probabilités et leur
application, me paraît une tâche indispensable, qui doit être accomplie
dans la patrie de Pascal, de Laplace et de Poincaré. Je voudrais

T/Ensp.iffnfvmp.n t m a t.h 6m f XT fncp 1
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essayer d'apporter à cette tâche une contribution aussi étendue

que mes forces me le permettront » C'est ainsi que fut conçue la
création du fameux « Traité de calcul des probabilités et de ses

applications ». Comme pour la collection mentionnée plus haut,
l'entreprise s'est développée graduellement, se présentant
d'abord avec trois volumes écrits par Borel et parus en 1925,
1926; puis des volumes écrits par d'autres auteurs et finissant

par deux volumes écrits encore par Borel lui-même et constituant
les fascicules 2 et 3 du quatrième et dernier tome.

Après avoir présenté ainsi une synthèse magistrale de l'état,
à cette époque, du calcul des probabilités et de ses nombreuses

applications, Borel eut l'idée de prolonger son traité, pour tenir
compte des recherches ultérieures par une « Collection de

monographies sur le calcul des probabilités ». Le deuxième fascicule
de cette collection intitulé « La théorie mathématique du bridge
à la portée de tous » a été écrit par Borel avec la collaboration
de A. Chéron, un spécialiste du bridge, (Depuis la mort de Borel,
la collection a été interrompue, il y aurait intérêt à en reprendre
la publication.)

Depuis quelque temps, Borel s'intéressait aussi à la physique
mathématique et il publiait en 1914, un volume intitulé «

Introduction géométrique à quelques théories physiques», puis en 1925
le fascicule 3 du tome II de son traité du calcul des probabilités
sous le titre « Mécanique statistique classique ».

C'est alors qu'il ouvre à son activité un nouveau champ en
créant la « Bibliothèque d'éducation par la science » destinée à

rassembler des ouvrages de vulgarisation et à laquelle d'autres
savants ont coopéré. Certains des volumes écrits par Borel sont
de niveau élémentaire comme « Algèbre et géométrie du second

degré », d'autres, au contraire, s'adressent aux mathématiciens
professionnels, mais aussi à un public plus large, accoutumé

cependant aux abstractions mathématiques.
C'est le cas des « Eléments de la théorie des ensembles » qui

renferme même les quatre toutes nouvelles et remarquables définitions

non équivalentes de la raréfaction d'un ensemble, définitions

qui permettent une classification des 'ensembles « de mesure
nulle » sur laquelle nous reviendrons en troisième partie.

En dehors des collections dirigées par lui, Borel a écrit de
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nombreux ouvrages, la plupart de vulgarisation, mais à un
niveau élevé et où il a su entraîner et captiver le lecteur. Tels

sont: «Le jeu, la chance et les théorie scientifiques modernes »,

« L'évolution de la Mécanique », etc.

Les honneurs

Un de mes amis, devenu grand financier, me disait en parlant
des intellectuels « Nous avons l'argent, vous avez les honneurs ».

S'il est bien vrai que Borel a toujours mené une vie modeste

quand on la compare à celle des grands capitaines d'industrie,
on doit reconnaître que les honneurs ne lui ont pas manqué,
et en même temps qu'il les méritait pleinement.

C'étaient d'abord des honneurs croissant avec sa réputation
scientifique. Ancien président de la Société mathématique de

France, de la Société statistique de Paris, membre du Conseil
de l'Université de Paris, du Conseil supérieur de l'instruction
publique et de sa section permanente, il devenait aussi et restait
jusqu'à la fin de sa vie, président de l'Association amicale de

secours des anciens élèves de l'Ecole normale supérieure. Il
avait aussi été élu vice-président du Conseil international des

unions scientifiques et membre d'honneur de l'Institut
International de statistique.

Encore jeune, Borel avait reçu successivement en 1898, 1901 r

1904, plusieurs des prix les plus importants de l'Académie
dessciences. En 1919, la section de géométrie l'avait présenté en
première ligne.

Cependant l'Académie avait élu Goursat. Mais en 1921?
Borel entrait à l'Académie des sciences et il en devenait en 1934,

pour un an suivant l'usage, président non seulement de cette
Académie, mais, en même temps, président de l'Institut de
France.

Il était docteur honoris causa de plusieurs universités étrangères

et membre étranger de plusieurs académies nationales.
En 1955, le Centre national de la recherche scientifique

décernait pour la première fois une médaille d'or et l'attribuait
à Borel. D'autre part, Borel recevait la croix de guerre pour ses-
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services sur le front dans la première guerre, et la médaille de la
résistance avec rosette pour son action de résistant pendant la
seconde.

Sa notoriété scientifique d'abord, puis l'importance de son
rôle politique lui faisaient gravir successivement tous les échelons
dans l'ordre de la Légion d'honneur et il atteignait ainsi finalement,

vers 1950, la dignité de grand-croix. Il faisait aussi partie
du Conseil de cet ordre, qui accordait un grand crédit à ses

interventions.

Vues générales sur l'homme et son oeuvre

Ici encore, nous confronterons quelques appréciations
diverses et on sera frappé de leur accord.

Madame Borel écrit: «Emile Borel fut un fervent de la
science, un homme épris de justice, désireux de servir, à travers
la France, l'humanité ».

D'après M. Collingwood, parlant de Borel: «With his death,
one of the great figures in modern mathematics and a commanding

personality passes from the scene ».

Nous avions déjà écrit en 1956: «Emile Borel n'est plus.
Un grand vide est laissé dans le monde mathématique et dans le
monde en général ».

M. Montel précise: «Les succès et les honneurs n'ont jamais
altéré en lui (Borel) une droiture inflexible, une sécurité absolue
dans l'amitié, une générosité discrète, une profonde bonté qui
se voilait parfois d'une apparente rudesse.

La pensée d'Emile Borel continuera longtemps à exercer son
influence sur la recherche, comme la lumière de ces astres éteints
continue à se propager dans l'espace. Si l'évocation de cette forme
d'immortalité ne peut atténuer notre tristesse, elle l'enveloppe
au moins d'une sereine clarté!»

M. Louis de Broglie écrit à la fin de sa Notice:
« Chez Emile Bore], l'intelligence et la volonté étaient comme

le physique particulièrement robustes et cette triple robustesse

lui a permis, au cours d'une longue existence, de mener de front,
constamment et presque sans fatigue et sans défaillances, des
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œuvres de l'esprit élevées et difficiles, des activités diverses, et
des travaux d'administration et d'organisation souvent lourds
et pénibles. Tous ceux qui ont approché l'illustre mathématicien
ont pu reconnaître ses qualités exceptionnelles de penseur et de

savant et ses dons, non moins exceptionnels d'animateur.
Personne n'a contesté la droiture et l'intégrité de son caractère.

Peut-être lui a'-t-on reproché d'avoir parfois, au cours de sa

carrière, cédé à l'ambition: mais l'ambition n'est-elle pas un
penchant naturel et même légitime, chez un homme qui, se

sentant fort intellectuellement, moralement et physiquement,
désire prendre sur ses épaules nn fardeau qu'il se sent capable
de supporter en assumant des fonctions qui lui permettraient de

donner toute sa mesure? Tout bien pesé, Borel avait droit à tout
notre respect, à toute notre admiration et à toute notre estime ».

Après ces magnifiques éloges, qui ne souscrirait aux dernières
lignes des réflexions suivantes par lesquelles M. Maurain terminait

sa Notice:
« Depuis longtemps (Borel) habitait rue Froidevaux un petit

appartement, où on le trouvait entouré de livres, de revues, de

papiers de toutes sortes. Il a vécu là des jours calmes, près d'une
compagne souriante, attentive et dévouée; il s'y plaisait.

Pourquoi ne dirais-je pas qu'il m'est arrivé, montant l'escalier
un peu raide, de songer à sa vie si pleine de travail et de penser
à tout ce qu'il a fait pour la science et pour le pays et de
rapprocher la modestie de ce sympathique asile et la grandeur de
celui dont la vieillesse s'y abritait ».



DEUXIÈME PARTIE

LES TENDANCES GÉNÉRALES

DE L'ŒUVRE SCIENTIFIQUE D'ÉMILE BOREL1

Nous commencerons par des généralités d'ordre philosophique,

en essayant de dégager les tendances générales des

travaux d'Emile Borel.
Dans toute cette partie, où nous ferons beaucoup de citations

de Borel ou de ses commentateurs, nous nous efforcerons de

grouper, à chaque fois, ces citations autour d'une idee centrale,
sans nous soucier de leur ordre chronologique ou typographique.
Les citations de Borel seront imprimées en petits caractères.

Disons d'abord que Borel a exercé son esprit inventif sur
toutes les Mathématiques pures (Arithmétique, Algèbre, Analyse,

Géométrie, Calcul des probabilités), et sur beaucoup de

leurs applications, entre autres: Mécanique, Physique
mathématique, Statistique, Econométrie. Il s'est aussi prononcé
souvent sur plusieurs points relevant de la Philosophie des sciences

et de la Pédagogie. Dans tous ces domaines, ses « travaux abondent

», dit feu Carleman, « en idées originales et fécondes ».

Son influence sur le progrès des sciences ne s'est pas exercée

seulement par ses découvertes, mais aussi par son enseignement,

par ses livres et par les contacts personnels stimulants qu'il a eu

avec ses confrères, ses collègues (Français et étrangers), et
surtout avec les jeunes, en particulier, pendant les années 1910-

1920, où il a exercé les fonctions de sous-directeur de l'Ecole
normale supérieure.

Mode d'exposition

Le mode d'exposition de Borel dans ses cours ou ses

publications se distingue nettement de ceux de nombreux
mathématiciens.

i) Paru clans la Revue Philosophique, tome CEI, 1961, p. 397-416.
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A tel point, que ce fait a frappé indépendamment trois des

orateurs qui ont parlé au jubilé de Borel (un mathématicien,
M. Ville; un physicien, feu Bruhat; un homme politique, feu

Delbos). Ils le font ressortir en termes différents mais qui se

renforcent par leur concordance dans le fond des idées. Nous en

citerons quelques phrases, en prenant la liberté d'entremêler les

citations pour juxtaposer les considérations de même nature.
Pour commencer, un tableau des méthodes courantes:

«Vous savez combien les leçons de mathématiques spéciales

sont précautionneuses... Pour [garder les élèves] de l'erreur, [ils
sont] instruits avec une discipline prudente mais un peu étçoite. »

«L'élève a l'impression d'avancer entre deux barrières, qui
sont des garde-fous comme on le découvre par la suite. »

Même passant du lycée à l'Université, beaucoup d'exposés
« donnent bien l'idée de la parfaite clarté des mathématiques,
mais d'une clarté qui était obtenue parce que tout était éclairé

jusqu'au dernier détail, de sorte que, suivant le principe bien
connu des éclairagistes, les reliefs et les obstacles disparaissent ».

— Et d'autre part, « aussitôt un résultat trouvé, les nécessités
de l'exposition font [souvent] que les idées s'intervertissent, se

mettent dans un ordre nouveau, plus logique, plus clair, plus
élégant », mais « ce qui est gagné en esthétique est quelquefois
perdu en force». « De plus, on risque de fermer aux autres la
voie par où l'on est passé soi-même.» «Ceux qui se sont
entretenus avec des mathématiciens ont remarqué parfois la
différence entre la manière dont ils s'expriment dans les livres
ou les cours et celle dont ils développent leurs idées dans une
conversation privée »..., il leur « faut recourir à des raisonnements
plus vivants, plus intuitifs ».

« Pour pouvoir manipuler [les êtres mathématiques] sans
s'astreindre à en connaître toutes les propriétés, il est nécessaire
de parvenir à en avoir une notion intuitive, à se familiariser avec
leur physionomie... » «[Leurs] propriétés essentielles ne sont pas
forcément celles, en nombre minimum, d'où toutes les autres se
déduisent logiquement. Ce sont plutôt celles qui suggèrent à

l'esprit les considérations qui, par une voie naturelle, permettent
de compléter l'esquisse faite sommairement mais d'une manière
expressive. Cette connaissance génératrice d'intuitions, une
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simple suite de définitions, théorèmes et démonstrations ne la
donne qu'indirectement; une telle succession offre plutôt le

spectacle d'une lutte pied à pied entre l'auteur qui affirme et le
lecteur qui doute, ce dernier obligé de reculer pas à pas et, poussé
dans son dernier retranchement, forcé de capituler. »

Vient maintenant la description de la méthode didactique,
toute différente, d'Emile Borel. « Dans ses conférences, au
contraire, comme dans ses travaux, c'est à ce qui est réellement
fondamental qu'il s'attachait; i] savait faire comprendre quels
étaient les caractères essentiels des théories qu'il exposait, il
savait faire admettre qu'il ne fallait pas se perdre dans des

démonstrations accessoires, » Et d'autre part, « dans les ouvrages
et aussi dans l'enseignement oral de M. Borel, nous avons
reconnu la méthode d'exposition des grands mathématiciens
français dont il continue la tradition... Souffrir sans dommage
d'être exposée comme elle a été conçue, voilà un trait de la
pensée d'un grand savant; Emile Borel nous en a fourni un
exemple parfait ».

Un homme politique, feu Delbos, a su, à son tour, célébrer
l'excellence didactique de Borel:

« Cette tendance, on l'aperçoit jusque dans ses œuvres les

plus abstraites, on la reconnaît à cette lucidité qui éclaire le cœur
même des problèmes, à sa façon de les réduire à l'essentiel, à cet

équilibre souverain qui caractérise ses solutions et leur donne une
valeur largement humaine... » Dans son ouvrage Valeur pratique
et philosophie des probabilités, « apparaît, dans toute sa plénitude,
cette union de l'intelligence et du bon sens qui règne sur toute
son œuvre, cette force tranquille et cette simplicité qui sont les

fruits de longues réflexions ».

Bases concrètes des mathématiques

Le même commentateur a discerné la direction que Borel
assignait aux Mathématiques. Dans ses œuvres, il voit « une
tendance irrésistible et croissante vers le réel, vers le concret,
une poussée intérieure qui a orienté Emile Borel vers la Physique
mathématique, vers la Théorie des probabilités qui l'ont con-
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duit dans un domaine où j'ai eu la joie de l'apprécier avec une

moins grande incompétence, celui de l'action civique et

politique ».

Un autre commentateur précise ainsi cette tendance: «Les

Mathématiques doivent avoir une base solide dans la nature
concrète et dans la nature humaine: elles idéalisent des choses

sensibles ou des faits psychologiques. Borel a toujours insisté sur
la nécessité de ne pas perdre de vue le réel: vous savez combien

il était attaché aux notions de constructivité, d'êtres accessibles

au calcul; il ne refusait pas de s'intéresser à des notions qui
perdent le contact avec le concret, maix exigeait qu'il en soit fait
expressément mention... » « Il savait, dans les raisonnements les

plus abstraits de l'Analyse, rappeler comment ces raisonnements

expriment des réalités, comment, par suite, ils nous aident à

comprendre la réalité physique. Gomme le mathématicien, le
physicien trouve dans son œuvre la réponse à bien des questions
fondamentales. »

Comment mieux compléter ces analyses des tendances générales

de Borel que par les quelques phrases suivantes où il les

résume lui-même et, où en avançant dans ses recherches et ses

réflexions, il leur donne plus de portée et plus de force.

Je dois, d'ailleurs, avouer que j'ai été tout d'abord, comme beaucoup

de jeunes mathématiciens, séduit par les théories [abstraites]
de Cantor; je ne le regrette pas, car c'est là une discipline qui assouplit
singulièrement l'esprit. Mais j'ai toujours pensé que ces études
abstraites ne devaient pas être une fin en soi, mais seulement un
moyen.

La tendance générale de mes recherches et de mes ouvrages
d'enseignement est la suivante: «Je tâche d'y montrer que les
Mathématiques ne sont pas un jeu purement abstrait de l'esprit,
mais sont, au contraire, en étroite connexion avec la réalité concrète».

C'est l'étude des phénomènes physiques qui suggéra les notions
de continuité, de dérivée, d'intégrale, d'équation différentielle, de
vecteur et de calcul vectoriel. Et ces notions, par un juste retour,
font partie du bagage scientifique nécessaire à tout physicien; c'est
à travers elles qu'il interprète les résultats de ses expériences. Il n'y a
évidemment rien de mystérieux dans le fait que les théories
mathématiques construites sur le modèle de certains phénomènes aient pu
être développées et fournir le modèle d'autres phénomènes; ce fait
est néanmoins digne de retenir notre attention car il comporte une
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conséquence pratique importante: si de nouveaux phénomènes
physiques suggèrent des modèles mathématiques nouveaux, les
mathématiciens devront s'attacher à l'étude de ces modèles nouveaux
et de leurs généralisations avec l'espoir légitime que les nouvelles
théories mathématiques ainsi constituées se montreront fécondes
en fournissant à leur tour aux physiciens des formes de pensée utiles.
En d'autres termes, à l'évolution de la Physique doit correspondre
une évolution des Mathématiques qui, sans abandonner bien entendu
l'étude des théories classiques et éprouvées, doivent se développer
en tenant compte des résultats de l'expérience.

C'est toujours au contact de la Nature que l'Analyse mathématique

s'est renouvelée; ce n'est que grâce à ce contact permanent
qu'elle a pu échapper au danger de devenir un pur symbolisme, tournant

en rond sur lui-même.

On nous permettra d'ajouter que, bien après la publication
de ces lignes mais bien avant que nous les ayons lues, nous avions
soutenu plusieurs fois, un point de vue analogue (avec quelques
compléments).

C'est ainsi que (pour montrer que les Mathématiques « ne sont

pas un jeu purement abstrait de l'esprit» et que «les études
abstraites ne devraient pas être une fin en soi»), nous avions
cité l'exemple de la notion de « moment d'un vecteur». Au lieu
de sa définition classique, un mathématicien pourrait définir un
moment différent, avec une autre direction et une autre intensité
et il pourrait en étudier les propriétés. Mais ce serait bien un
pur jeu de l'esprit, sans autre portée que de donner matière à des

problèmes d'examens. Alors qu'au contraire, la notion classique
de moment est le résultat d'une longue évolution, d'une patiente
élaboration qui ont finalement permis d'obtenir ce merveilleux
résultat: on peut remplacer tout système de forces appliquées à

un corps solide par un système composé seulement d'une force
et d'un couple.

En soutenant aussi avec Emile Borel que les notions
mathématiques vraiment nouvelles et importantes sont suggérées par
les problèmes que pose la Nature, nous avions admis cependant

que d'autres notions ont été forgées artificiellement mais utilement

par les mathématiciens pour harmoniser, généraliser,
simplifier les résultats acquis. Il y a bien là un développement des

mathématiques qui est autonome, mais c'est un développement
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partiel en vue de simples commodités non absolument nécessaires.

D'ailleurs, Bore! lui-même laisse entrevoir ce second aspect
de l'élaboration mathématique, à la fin du passage suivant:

Je pense que ce court exposé de mes plus récents travaux de
Calcul des Probabilités et de Physique mathématique aura mis en
évidence l'esprit qui s'en dégage et qui apparaîtrait nettement à leur
lecture: ne considérer jamais la science mathématique que comme
l'auxiliaire de la physique; faciliter la discussion des théories émises

par les physiciens, mais n'empiéter jamais sur le domaine réservé
à l'expérience, qui doit toujours décider en dernier ressort. C'est
seulement en simplifiant l'exposition mathématique et la dégageant
d'un appareil parfois superflu et inutilement encombrant que l'on
facilitera la confrontation avec l'expérience, de théories qui sont
souvent difficilement accessibles à un trop grand nombre de
chercheurs de laboratoire.

Après avoir ainsi défini le but de la mathématique, Borel met
en opposition la recherche des difficultés et celle de la simplicité.

C'est grâce à l'étude des théories physiques que l'on peut éviter
certains des défauts que risque d'entraîner avec elle une tendance
trop grande à l'abstraction 1) ; la joie intellectuelle que l'on a à vaincre
un obstacle jusque-là insurmonté donne, en effet, la tentation de
rechercher les difficultés pour le seul plaisir de les vaincre; je crois
avoir donné assez d'exemples de solutions difficiles, parfois vainement
cherchées auparavant, pour pouvoir dire qu'à mon sens, ce n'est pas
cette recherche de la difficulté qui est le but le plus élevé de la science
mathématique, mais bien plutôt la simplicité des résultats et des
méthodes 2).

Eléments calculables ou effectivement définis

De plus en plus, dans les mathématiques modernes, on met en
opposition les définitions constructives et les définitions descrip-

1) Il est pourtant certain que la tendance actuelle des mathématiciens est d'aller
toujours vers une plus grande abstraction. Elle n'offre de danger que si — comme
malheureusement cela arrive — elle élimine l'intuition et n'a d'autre but qu'elle-même.
Ce sont là quelques-uns des défauts visés par Borel.

2) M. Paul Lévy pourrait témoigner combien souvent dans nos conversations
privées — qui m'ont si souvent été utiles — j'ai souligné la même thèse. J'y ajoutais
qu'une chose m'enchante particulièrement, c'est la solution simple d'un problème.
important en soi, mais qu'on n'avait pas songé à poser.
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tives. Dans les premières, on indique comment former, comment
construire l'élément: nombre, figure, fonction, que l'on veut
définir. Dans les secondes, on n'essaie pas de déterminer
complètement les éléments que l'on considère, on se contente de

supposer qu'ils vérifient certaines conditions.
Les dernières définitions ont le grand avantage de simplifier

souvent les raisonnements et généralement de leur donner une
portée plus générale.

Les premières sont indispensables pour passer de la théorie aux
applications et même elles permettent, auparavant, de s'assurer de

l'existence et, éventuellement, de l'unicité de l'élément à définir.
Borel préférait ces définitions constructives et i] a beaucoup

contribué à leur étude générale en utilisant et précisant les

notions «d'éléments calculables» et «d'éléments effectivement
définis». C'est le sujet des citations suivantes:

J'espère avoir montré que le point de vue que j'ai adopté et qui
consiste, en somme, à considérer que, pour les fonctions comme pour
les êtres vivants, les réalisés sont autrement intéressants que les

possibles, a été fécond en résultats. Ce point de vue était celui d'Her-
mite, qui le qualifiait de réaliste: pour lui, l'observation des faits
analytiques était la source la plus féconde des découvertes
mathématiques; dans un de ses derniers écrits, M. Poincaré a fait observer
avec beaucoup de finesse et quelque subtilité, qu'on pourrait aussi
bien qualifier d'idéaliste, ce point de vue pragmatique, car les êtres
mathématiques que nous étudions ne sont réels pour nous que parce
qu'ils ont été pensés par nous; leur réalité vient donc de notre esprit.
Mais la démonstration importe peu...

On est ainsi conduit... à prendre une position en quelque sorte
intermédiaire entre les géomètres disposés à ne considérer que les
« bonnes » fonctions et ceux qui auraient pu être tentés de croire que
ces « bonnes » fonctions ne sont qu'un cas extrêmement particulier
des fonctions «générales». Nous savons d'une manière précise que
ni les uns, ni les autres n'ont tout à fait tort; au point de vue abstrait
de Dirichlet ou de Riemann, les fonctions totalement discontinues
sont, en effet, les plus générales; il n'en est pas de même si l'on se

borne aux fonctions que l'on peut effectivement définir (même si
l'on prend le mot définir dans le sens le plus large possible).

Borel dit ailleurs:

Si des fonctions qui peuvent être définies analytiquement «sont
compliquées » (discontinues), elles ne sont, en général, pas calculables,
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c'est-à-dire que la connaissance numérique approchée de la variable
n'entraîne pas la connaissance numérique approchée de la fonction:
le fait d'être calculable est, semble-t-il, la condition indispensable

pour qu'une fonction puisse être utilisée dans les applications.
Au point de vue abstrait, si l'on admet que toute théorie humaine

doit s'exprimer, en dernière analyse, au moyen d'un nombre fini
relativement petit de données, il semble difficile de nier la possibilité
de constituer entièrement la théorie sans faire intervenir d'hypothèses
impliquant l'existence d'éléments dont le nombre dépasse ce que
l'imagination de l'homme peut concevoir.

Il est clair que tous les éléments analytiques, nombres ou
fonctions, qui peuvent être effectivement définis, sont en infinité
dénombrable... Par effectivement définis, on doit entendre: définis au

moyen ddun nombre fini de mots, et il est clair que les éléments pour
lesquels le nombre de mots nécessaires à la définition est extrêmement
grand devront être regardés comme ayant une probabilité extrêmement

petite.

Il est clair que l'idéal de Borel serait que dans toute démonstration,

dans toute définition n'intervienne (explicitement ou

implicitement) qu'un nombre fini de mots.
Mais c'est un idéal lointain et Borel reconnaît l'avantage

actuel de la notion de l'infini ; comme le montre le passage suivant :

C'est fréquemment une simplification en mathématiques que de

remplacer par l'infini un nombre fini très grand. C'est ainsi que lé
calcul des intégrales définies est souvent plus simple que celui des
formules sommatoires et que le calcul des dérivées est généralement
plus simple que celui des différences finies. De même, on a été conduit
à remplacer l'étude simultanée d'un très grand nombre de fonctions
d'une variable par l'étude d'une infinité continue de fonctions d'une
variable, c'est-à-dire d'une fonction de deux variables. Par une
généralisation plus hardie, M. Yito Volterra a été conduit à définir
des fonctions qui dépendent d'autres fonctions, c'est-à-dire, dans le
cas le plus simple, des fonctions de ligne, en les considérant comme des
cas limites de fonctions qui dépendraient d'un très grand nombre de
variables ou si l'on veut, d'un très grand nombre de points de la ligne.

Les mathématiques n'ont pu se constituer qu'en schématisant,

en idéalisant les réalités concrètes dont elles sont parties,
tel est le cas pour la notion de l'infini.

Borel donne dans le passage précédent, des exemples intéressants

des simplifications ainsi apportées. Mais on pourrait en
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donner de beaucoup plus élémentaires. Soit, par exemple, la
somme a + b de deux nombres entiers a et b. Si nous admettons
que les nombres qui nous sont concrètement accessibles restent
tous au-dessous d'une certaine limite TV, la somme a + ô, non
seulement ne pourra pratiquement avoir de sens que si a et b

sont inférieurs à TV, mais même il faudra supposer que a -f- b soit
lui-même inférieur à TV. Dans tout raisonnement où intervient
une somme a + b, a et b devront être soumis à cette limitation.
Gomme le dit Borel (voir pp. 29 et 37), on peut concevoir la
possibilité de construire une théorie soumise à de telles restrictions

)1. Mais que de complications Les raisonnements les plus
simples deviendraient inextricables.

Dans le même passage de Borel, il est rappelé que Volterra
a fréquemment insisté sur l'intérêt qu'il y a, pour généraliser, à

passer à la limite du fini à l'infini.
Nous croyons utile, ici, de faire, une fois de plus, une

distinction. Ce passage est en effet extrêmement utile quand il s'agit
de raisonnements intuitifs, qui permettent, par analogie, de

prévoir un résultat dans le cas infini, d'après sa forme dans le cas

fini.
Mais, quand il faut passer à des démonstrations rigoureuses,

on se heurte souvent à d'énormes difficultés.
Dans ce cas, l'expérience a souvent prouvé qu'il valait mieux

procéder autrement. Chercher dans le cas fini à distinguer tout ce

qui, dans les raisonnements connus, ne fait pas effectifement intervenir

l'hypothèse du fini... Et constituer ainsi une théorie plus
générale, ou obtenir des théorèmes plus généraux.

Borel initiateur

La description des tendances générales de l'œuvre de Borel

qui résulte des appréciations de ses commentateurs et de lui-
même, n'est cependant pas complète.

Nous avons dit ailleurs au sujet d'une des idées dues à Borel
qu'il était un initiateur. Mais il l'a été aussi en introduisant
d'autres notions.

°) Robin avait publié un ouvrage dans ce sens.
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Pour être précis, nous donnerons immédiatement les noms de

quelques-unes de ces notions, mais, pour rester sur le terrain des

généralités non techniques, nous réserverons leurs définitions et

propriétés à la troisième partie.
Le rôle d'initiateur de Borel s'est exercé au sujet de notions

dont les unes étaient le couronnement d'une suite d'essais qui
avaient été faits pour donner une signification satisfaisante à une
notion intuitive, par exemple la notion de mesure d'un ensemble,

généralisant la notion de longueur d'un intervalle.
D'autres s'attaquaient à une théorie paraissant définitive

mais qui, malgré sa beauté, présentait certains inconvénients,
qu'il s'agissait de faire disparaître. Par exemple, la notion de

«fonction analytique», due à Weierstrass laissait un fossé entre
l'ensemble de telles fonctions et l'ensemble des fonctions très
discontinues. Par sa notion de fonction monogène ou quasi
analytique, Borel a jeté un pont insoupçonné entre ces deux
ensembles.

Par exemple, aussi, on considérait seulement, avant Borel,
les probabilités discontinues et les probabilités géométriques.
Borel a montré qu'il existait entre ces deux catégories une
troisième, celle des « probabilités dénombrables » dont il a étudié
les propriétés.

Par exemple encore, il y avait aussi une coupure entre la
famille des séries convergentes et celle des séries divergentes.
Borel a encore lancé un pont non moins insoupçonné entre ces
deux familles. Citons encore les travaux de Borel sur les « fonctions

entières» qui lui ont permis de donner une démonstration
directe du « grand théorème de Picard ».

C'est Borel lui-même qui fait ressortir la nature commune
de ses apports sur ces différents sujets, en écrivant, avec raison:
« je crois pouvoir faire observer que dans [ces] théories..., j'ai
eu la bonne fortune d'apporter sur un point capital une contribution

essentielle... grâce à laquelle la théorie a pu, en quelque
sorte, franchir un point mort et prendre un essor nouveau ».

Il dit aussi: « Les résultats que je viens de résumer étaient
absolument inattendus pour la plupart des géomètres. »

Et d'ailleurs, ce n'est pas tout. Les lignes ci-dessus étaient
écrites par Borel en 1921, l'année même où, après la publication
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des mêmes lignes, il faisait paraître la première des Notes mémorables

par lesquelles i] fondait, sept ans avant von Neumann, la
théorie des jeux psychologiques (dont l'invention était, il y a peu
de temps encore, faussement attribuée à von Neumann) x).

Ici, il ne s'agit même plus de perfectionnement ou de
franchissement d'un point mort, il s'agit de la création d'une notion
tout à fait nouvelle, de l'entrée dans un monde entièrement
nouveau, à savoir de l'introduction et de l'utilisation efficace des

mathématiques dans un domaine: le domaine psychologique, qui
paraissait inaccessible aux mathématiciens.

Des réserves philosophiques

Nous avons apporté, dans ce qui précède, une adhésion
enthousiaste aux diverses idées de Borel que nous venons de

présenter. Si l'on y ajoute l'essentiel, c'est-à-dire les résultats et
les méthodes nouvelles qui seront résumés dans la Troisième
Partie, on ne peut s'empêcher de ressentir une vive admiration
devant cet ensemble. Emile Borel restera un des plus grands
mathématiciens de son époque, pourtant riche en très grands
talents mathématiques.

Mais, si un résultat mathématique ne peut être que vrai ou
faux, il n'en est pas de même des considérations qui
l'accompagnent. En Philosophie des sciences, on peut soutenir des

opinions opposées, ou qui paraissent opposées, sans qu'on puisse
toujours affirmer que l'une est vraie et l'autre fausse.

On sait, par exemple, qu'un mathématicien aussi éminent

que M. Hadamard, s'est trouvé parfois en désaccord avec les

points de vue développés par Borel concernant les fondements
des mathématiques. C'est pourquoi, il nous a paru utile de

présenter, après les citations de Borel qui vont suivre, les objections

qui viennent naturellement à l'esprit et auxquelles,
d'ailleurs, nous répondrons en partie nous-même, à la page 38.

Nous avons reproduit plus haut, pages 28 et 29, des

citations de Borel où il fait ressortir avec raison l'intérêt et l'utilité

i) Aussi avons-nous cru utile de reproduire les courtes notes consacrées par Borel
à ce sujet, avec un commentaire, d'abord en traduction anglaise, dans Econometrica,
puis en français dans la Revue d'économie politique.
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des trois notions de fini, de calculable et d'effectivement défini.

Nous avons préféré séparer de ces citations, d'autres citations

(qui vont suivre) où, abondant encore dans le même sens, il
semble, en outre, jeter un doute sur la légitimité des notions
d'abstraction et d'infini. En d'autres termes, Borel ne se contente

pas de recommander les définitions constructives, il critique les

définitions descriptives. Pour que le lecteur pénètre bien la

pensée de Borel, nous avons cité de très larges extraits écrits en

ce sens. Ces extraits ne rencontreront peut-être pas une adhésion
aussi unanime que les précédents. Nous exposerons donc à la

suite, les quelques objections qui se présentent naturellement à

l'esprit. Pour en faciliter la lecture, nous avons distingué par des

lettres capitales A, B, C..., les différentes citations de Borel qui
seront mises en question. Nous serions heureux si quelque
lecteur, d'accord avec les idées de Borel, sur ces points, pouvait
nous écrire pour réfuter les objections qui vont suivre.

Parmi les idées générales qui dominent l'œuvre de Borel,
l'une de celles qui lui tiennent le plus à cœur est celle qu'il
exprime, par exemple, sous la forme suivante:

A) Si l'on me demandait de caractériser par un trait commun la
méthode que j'ai appliquée... [c'jest un souci constant d'étudier les
êtres mathématiques en eux-mêmes, comme le biologiste étudie les
êtres vivants, de me familiariser avec eux et de ne pas me laisser
influencer dans cette étude intrinsèque des individus par les préjugés
et les traditions.

Cette méthode de travail m'a conduit à une conception réaliste
des mathématiques qui distingue les êtres mathématiques pouvant
être effectivement définis 1) de ceux dont l'existence est purement
hypothétique.

B) Cauchy n'a jamais, à ma connaissance, exposé explicitement
ce qu'il entendait par une fonction, pour lui, cette question ne se

posait pas, « fonction » était le terme général qu'il employait pour
désigner l'une quelconque des fonctions particulières considérées par
les analystes, chacune de ces fonctions particulières ayant sa définition

propre, à partir des fonctions élémentaires (au moyen de séries,
d'intégrales, d'équations différentielles, etc.); il est sous-entendu que
les raisonnements faits sur la « fonction » en général, s'appliqueront,
en outre, aux fonctions particulières qui pourront être découvertes

i) Le sens de cette expression est précisé par Borel dans la citation de la p. 29.

L'Enseignement mathém., t. XI, fasc. 1. 3
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ultérieurement et qui possèdent les propriétés spécifiées dans les
énoncés (propriétés qui consistent le plus souvent en la continuité
de la fonction et de sa dérivée).

C'est ainsi qu'un biologiste peut parler d'un « être vivant » ou
un chimiste d'un « corps simple » sans avoir été obligé de se créer une
conception a priori de l'être vivant en soi ou du corps simple en soi;
ils pensent simplement aux êtres vivants, aux corps simples, qu'ils
connaissent ou qu'ils pourraient connaître.

On a opposé à cette manière de voir de Cauchy, la méthode, en
apparence plus générale, qui consiste à se donner la fonction a priori
comme une correspondance qui n'a pas besoin d'être formulée
explicitement pour être conçue... Ce n'est pas ici le lieu de discuter si ce

qui ne peut pas être formulé peut être réellement objet de science.
Deux remarques nous suffiront: d'une part cette conception plus
générale de la fonction a conduit à construire et à étudier des fonctions
auxquelles on n'eut, sans doute, pas songé sans elle; elle a donc été
utile. Mais, d'autre part, cette construction effective d'expressions
analytiques représentant les fonctions conçues a eu pour résultat de
rendre désormais inutile la conception a priori de la fonction; après
un détour, on revient, en fait, au point de vue de Cauchy; on est
simplement plus renseigné que ne l'était Cauchy sur l'infinie variété
des fonctions que l'on peut obtenir en combinant les moyens analytiques

que Cauchy connaissait. Le progrès réalisé par le retour aux
idées de Cauchy est cependant très grand; car on possède, pour
classer cette infinie variété, une base solide qui faisait défaut dans la
conception purement abstraite; cette base, c'est l'étude systématique
des procédés de construction à partir des éléments.

C) Il existe certainement (si ce n'est point un abus d'employer
ici le verbe exister) dans le continu géométrique des éléments qui ne

peuvent être définis: tel est le sens réel de l'importante et célèbre
proposition de M. Georg Cantor: le continu n'est pas dénombrable.
Le jour où ces éléments indéfinissables seraient réellement mis à part
et où l'on ne prétendrait point les faire intervenir plus ou moins
implicitement, il en résulterait certainement une grande simplification

dans les méthodes de l'Analyse.

D) Beaucoup d'analystes... mettent au premier rang la notion
du continu; c'est elle qui intervient d'une manière plus ou moins
explicite dans leurs raisonnements. J'ai indiqué récemment en quoi
cette notion du continu considérée comme ayant une puissance
supérieure à celle du dénombrable me paraît être une notion purement
négative, la puissance des ensembles dénombrables étant la seule qui
nous soit connue d'une manière positive, la seule qui intervienne
effectivement dans nos raisonnements. Il est clair, en effet, que
l'ensemble des éléments analytiques susceptibles d'être réellement
définis et considérés ne peut être qu'un ensemble dénombrable, je
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crois que ce point de vue s'imposera de plus en plus aux mathématiciens

et que le continu n'aura été qu'un instrument transitoire, dont
h utilité actuelle n'est pas négligeable... mais qui devra être regardé
seulement comme un moyen d'étudier les ensembles dénombrables,
lesquels constituent la seule réalité que nous puissions atteindre.

Les objections possibles

Déjà dans A (et aussi dans B), considérons, pour prendre le

cas le plus simple, son exemple du biologiste. Selon Borel, en

parlant d'un être vivant, les biologistes « pensent simplement
aux êtres vivants qu'ils connaissent ou qu'ils pourraient
connaître» « sans être obligés de se créer une conception a priori
de l'être vivant en soi». Si ce biologiste entre dans un pays
nouveau, qu'il y rencontre: une montagne, un lac, un lion, etc.,
comment ne risquera-t-il pas de classer la montagne dans les

êtres vivants, s'il n'a pas, avant d'entrer dans ce pays, une
conception a priori des êtres vivants. Cette conception, il n'est
pas nécessaire qu'elle soit innée, ni définitive, elle lui sera, sans
doute, suggérée par les différences qu'il voit entre les êtres
vivants qu'il connaît et les choses sans vie qu'il connaît aussi.
Mais il faut qu'il se soit ensuite imposé à lui-même une telle
discrimination, pour pouvoir l'appliquer plus tard aux éléments
naturels qu'il rencontre.

De même, quoique dans un domaine tout autre, abordé-
dans B, il semble, d'après Borel, qu'après avoir étudié certaines
fonctions particulières, on saura, en rencontrant de nouvelles
entités mathématiques, si ce sont ou non, d'autres fonctions
particulières, sans avoir a priori la notion générale de fonction.
Un mathématicien rencontrera des égalités, des cercles, des

inégalités, des sommes, des intégrales, etc. Comment saura-t-il
distinguer, parmi ces éléments, ceux qui sont des fonctions, qu'il
ne connaissait pas encore, sans avoir décidé au moins provisoirement,

à l'avance, ce que c'est qu'une fonction S'il l'a décidé, il
pourra, d'après Borel lui-même (B) appliquer à ces nouvelles
fonctions particulières « les raisonnements faits sur « la fonction »

en général ». S'il n'a rien décidé, il devra recommencer aveuglément

ces raisonnements sur chaque nouvelle fonction particulière.



— 36 —

D'après Borel, lui-même (dans B), les raisonnements faits sur
des fonctions formulées explicitement « s'appliqueront, en outre,
aux fonctions particulières qui pourront être découvertes
ultérieurement et qui possèdent les propriétés spécifiées dans les
énoncés ». Qu'est-ce à dire, sinon que les raisonnements s'appuient
sur le fait que chaque fonction particulière, d'une part détermine
en fait une correspondance et en outre qu'elle possède les
propriétés spécifiées dans les énoncés qui la concernent. Autrement
dit, que, peut-être, avec Borel, on ne voudra, et on en a le droit,
retenir et utiliser un théorème que pour les fonctions « effectivement

définies », mais que la démonstration elle-même ne fait pas
intervenir cette restriction. C'est-à-dire que la théorie sera la même,
mais qu'elle ne sera appliquée par les uns qu'à certaines fonctions.

Dans B, Borel décrit un détour qui, attribuant une expression
analytique (somme d'une série, intégrale...) à une fonction
antérieurement conçue, ramène l'idée de fonction conçue à celle de

fonction construite. Mais, comme nous l'avons dit, la théorie des

fonctions comprend d'abord des théorèmes s'appliquant à toute
fonction conçue, puis des propriétés particulières à chaque fonction

construite. Le détour dont il est question augmentera bien
le nombre de ces propriétés particulières, mais ne changera rien
à la théorie générale: pour celle-ci, il rty a pas de détour. Pour
citer seulement un exemple: on sait qu'une fonction conçue
comme continue en chaque point d'un segment est uniformément
continue. Et pour énoncer et démontrer ce théorème, nous
n'avons pas à nous préoccuper si la fonction est ou non «

effectivement définie ».

A la fin de B, Borel dit que « pour classer cette infinie variété
[de fonctions], on possède une base solide qui faisait défaut...:
l'étude systématique des procédés de construction...». Cela est

tout à fait exact, pourvu qu'on comprenne qu'il s'agit d'un

moyen supplémentaire, et non unique, de classification, s'ajou-
tant (disons-le, très utilement) aux moyens déjà connus.

Dans G, Borel considère qu'il y aurait « une grande
simplification dans les méthodes de l'Analyse » si « les éléments
indéfinissables étaient réellement mis à part».

Ne serait-on pas, au contraire, plutôt porté à croire qu'en se

préoccupant d'introduire une telle discrimination dans les raison-
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nements, on les compliquerait plutôt qu'on ne les simplifierait.

Reportons-nous à l'exemple de la page 30. Il semble bien que
Borel considère (comme d'ailleurs nous-même) que les très grands

nombres nous sont inaccessibles. Dès lors, si en les rangeant dans

les « indéfinissables » on « les mettaient réellement à part », on

tomberait dans les complications signalées, page 30, pour démontrer,

par exemple, ce théorème bien élémentaire que a+ô & + a.

Tous seront d'accord avec Borel pour donner l'avantage aux
définitions constructives dans les applications. Mais dans les

déponstrations, les définitions descriptives seront souvent plus
commodes. Donnons un exemple. Prenons un élément mathématique

aussi élémentaire, aussi simple, que le milieu d'un segment

rectiligne AB. On peut en donner une définition descriptive:
c'est un point M du segment AB, s'il en existe, tel que MA MB.
Cette définition très simple laisse en doute les deux questions:

y a-t-il un tel point ; s'il y en a un, y en a-t-il un seul ou plusieurs
Une définition constructive répond en même temps à ces deux

questions. Par exemple on peut dire:
Traçons deux cercles de même rayon égal à AB mais de

centres respectifs A et B. Ils se coupent en deux points C et D.

La droite CD coupe AB au point M cherché. Nous avons ainsi

un des moyens graphiques de définir M; en même temps, cette
construction établit l'existence et l'unité de M.

Mais, d'autre part, combien une telle définition (constructive)
serait encombrante dans toutes les démonstrations faisant intervenir

le milieu d'un segment C'est la définition descriptive qui
est, avec raison, universellement employée dans les
démonstrations.

S'il n'est pas toujours possible de suivre Borel dans toutes les

conséquences qu'il tire au cours des passages M, 5..., que nous
venons de citer, cela tient parfois à certaines contradictions, au
moins apparentes. Par exemple (p. 29), un élément ne peut être
« effectivement défini » que s'il est défini au moyen « d'un
nombre fini de mots ». Et, pourtant dans D, les ensembles dénom-
brables (donc éventuellement infinis) nous sont présentés comme
« la seule réalité que nous puissions atteindre ».

D'ailleurs, que signifie une définition « en un nombre fini de
mots»? Si, parmi ces mots, figure «l'infini», la définition
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sera-t-elle réellement distincte d'une définition comprenant une
infinité de mots D'autre part, la notion « infini » elle-même peut
s'exprimer en un nombre fini de mots. Par exemple, la suite
infinie des nombres entiers peut se définir comme: une suite
d'entiers successifs où chaque entier est suivi d'un autre entier.

La notion « infini » nous paraît être une « idéalisation »

commode (et même indispensable dans la mathématique moderne)
de la notion de grand nombre. S'il en est ainsi, on ne comprendra
donc pas comment Borel peut présenter la notion d'ensemble
dénombrable comme « la seule réalité que nous puissions
atteindre ». Il faudrait en conclure, en particulier, que la notion
de l'infini est une réalité que nous pouvons atteindre, alors qu'elle
apparaît comme une idéalisation de la notion de grand nombre
et non pas comme une réalité.

Ce point de vue a été déjà exprimé, il y a plus de deux siècles,

par le grand mathématicien et philosophe Leibniz, qui, dans une
lettre privée écrite à Dangicourt en 1716, écrivait: «Je leur
témoignais que je ne croyais point qu'il y eut des grandeurs
véritablement infinies, ni véritablement infinitésimales, que ce

n'étaient que des fictions, mais des fictions utiles pour abréger
et pour parler universellement, comme les racines imaginaires
dans l'algèbre. »

A partir du moment où l'on admet l'infini, où, donc, on introduit

une idéalisation, on ne voit pas pourquoi on considérerait
comme hétérodoxe le continu et les nombres transfinis. Ce ne
sont pas des réalités, mais ce sont, au même titre que les

ensembles dénombrables, des idéalisations commodes et utiles.

Réponse partielle aux objections précédentes

Nous avons sélectionné, à partir de la page 33, les passages
de Borel où les méthodes descriptives semblent le plus énergique-
ment condamnées. Toutefois, il faut signaler que cette condamnation

n'était pas entièrement définitive. Borel n'a pas hésité

lui-même à employer, dans certaines démonstrations, des

méthodes seulement descriptives, tout en souhaitant les voir
remplacer plus tard par des méthodes descriptives. On en verra
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un exemple dans le passage suivant, à la fin d'un mémoire de

1919. Dans ce mémoire, il ne dédaigne pas de démontrer un
résultat qui lui paraît intéressant, bien que mal défini à son sens:

« étant donnée une série à convergence aussi lente que l'on veut,
on peut définir un a tel que la série (80) correspondante converge
plus lentement que la série donnée»1). Mais il ajoute aussitôt:
« Mais les séries ainsi « définies » ne sont pas « bien définies » au

sens que l'on doit donner à ce terme lorsqu'on se place au point
de vue des définitions constructives. » La question reste donc

ouverte de savoir si, à ce point de vue, « il est ou non possible
de construire... »

Enfin, délaissant ce procès des définitions descriptives et

nous plaçant sur un plan psychologique, on notera avec intérêt
l'observation suivante de Borel:

Ceux qui ne sont pas mathématiciens sont... portés à considérer
les mathématiques comme une science essentiellement inhumaine
dans laquelle la personnalité des hommes qui s'y consacrent ne joue
aucun rôle.

Une telle conception des mathématiques me paraît complètement
inexacte..., je crois discerner que la sympathie et les oppositions de
caractères entre les hommes jouent un rôle important dans la recherche
et la découverte scientifique.

Tous les mathématiciens seront d'accord sur l'affirmation
essentielle contenue dans cette citation. Ils penseront avec Borel
que la personnalité d'un mathématicien joue un grand rôle dans
ses recherches.

L'affirmation contenue dans la seconde phrase de cette citation

sera plus inattendue pour le grand public et même pour bien
des mathématiciens. Elle en est, pour cela même, plus intéressante.

Mais peut-être est-il nécessaire d'en préciser la portée.
Dans la personnalité des mathématiciens, il faut ranger en

effet, à côté des caractéristiques morales ou affectives, les
caractéristiques purement intellectuelles et celles qui dérivent des
milieux où ils ont vécu. Jusqu'à quel point interviennent-elles
respectivement dans les recherches des mathématiciens D'après

0 II ne paraît pas nécessaire d'entourer cette phrase, du contexte, pour en
préciser la signification. Il s'uffit d'observer que, conformément à la phrase suivante de
Borel, elle introduit une notion « définie » mais non « effectivement définie ».
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Borel « la sympathie et les oppositions de caractères entre les
hommes jouent un rôle important dans la recherche et la découverte

scientifique». Sans doute l'expérience personnelle de Borel,
en relation avec de très nombreux mathématiciens, lui a-t-elle
fourni des exemples d'une influence de cette nature. On notera,
toutefois, qu'il parle d'un rôle important et non d'un rôle
prépondérant. C'est, sans doute, avec cette limitation qu'il faut
comprendre cette citation.

En particulier, les changements d'orientation d'un savant
seront souvent la conséquence de changements dans le milieu
qui l'entoure. Ce sera la guerre qui le conduira à étudier le
calcul des probabilités, la balistique, etc. Ce sera la nomination

à une nouvelle chaire, comme ce fut le cas de Henri Poincaré,
d'Emile Borel lui-même. (Après des découvertes brillantes de

mathématiques pures, Borel, comme Poincaré, se consacrèrent
avec succès aux mathématiques appliquées quand ils furent
successivement nommés professeurs de Calcul des probabilités
et Physique mathématique.) Mais ce sont surtout les

caractéristiques mentales, non affectives, d'un savant qui dominent ses

travaux, et dont ceux-ci portent la marque.
Les uns cherchent à découvrir des situations paradoxales,

étonnantes, à diagnostiquer des « cas pathologiques ». D'autres,
tout au contraire, n'étudient ces cas, qui paraissent singuliers,
que pour modifier les définitions et faire ainsi apparaître ces cas

comme des cas particuliers qu'on pouvait prévoir. Les uns,
analystes habiles, cherchent, pour un être mathématique déterminé,

à en établir les propriétés, les formules les plus précises,
et les plus utiles. D'autres comparent des êtres mathématiques
distincts, en discernent les propriétés communes et formulent
une théorie qui permet d'établir en une seule fois toutes ces

propriétés communes, etc. Ce sont là des façons de voir qui sont
à peu près indépendantes du domaine étudié et qui dépendent
avant tout de la personnalité de l'auteur, et plus particulièrement

de ses caractéristiques mentales. Ses caractéristiques
affectives n'apparaissent généralement dans ses écrits que
lorsqu'ils donnent lieu à -une polémique, ce qui, par la nature même
des mathématiques, est assez rare et en tout cas plus rare que

pour les autres sciences.
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Nous terminerons cette esquisse en citant une remarque
profonde de Borel dont la portée s'étend bien au delà des

mathématiques.

S'il m'est permis d'ajouter quelques mots de conclusion..., je
voudrais dire qu'à mon avis, l'unité de l'esprit humain est plus
importante que sa diversité et que les méthodes d'invention, d'imagination,

de découverte, sont beaucoup plus analogues qu'on ne le croit
généralement dans les divers domaines où s'exerce l'activité de l'esprit.

Borel n'a pas eu l'occasion, semble-t-il, de faire connaître sur

quoi se basait cette opinion.
On nous permettra donc de présenter plusieurs exemples à

l'appui.
Nous pensons que pour beaucoup de mathématiciens, la

découverte se produit en deux stades presque contradictoires.
Dans l'un, c'est l'intuition qui règne, sans grand souci de rigueur,
ni de clarté. Une fois la méthode et le résultat entrevus, le
mathématicien reviendra sur ses pas, contrôlera ses raisonnements, il
cherchera à les rendre plus rigoureux, plus simples, plus élégants.

Passant à un tout autre domaine, j'ai eu l'occasion d'entendre
mon frère, André Fréchet, alors directeur de la célèbre Ecole
nationale Boulle, m'expbquer comment il conseillait à ses élèves

d'opérer pour faire un projet de meuble. D'abord donner libre
cours à son imagination, chercher surtout à décider quelle forme
donner à l'objet, choisir les couleurs, etc., en somme, tendre à

choisir le meilleur résultat, sans s'occuper de sa réalisation. Mais,
ensuite, retourner son tablier, se préoccuper de la possibilité, de
la facilité de la réalisation, modifier au besoin le premier projet
pour en limiter le prix, etc.

Dans un troisième domaine, l'économiste, feu Nogaro,
m'avait, indépendamment, exposé aussi comment c'étaient deux
stades distincts qui le conduisaient à un nouveau mémoire.

Un parallélisme frappant se révèle ainsi au cours du processus
de création, dans ces trois domaines si différents.

Mais ces exemples soulèvent une objection; si on laisse courir
sans bride son imagination, dans le premier stade, les nécessités
techniques ne vont-elles pas, dans le second stade, écarter les

projets rêvés dans le premier stade.
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Dans un passage dont nous n'avons malheureusement pas
gardé trace et que nous ne résumerons qu'imparfaitement,
Paul Valéry répond à cette objection par une explication qui,
donnée pour la poésie, s'étend à bien d'autres domaines de

pensée. Dans le premier stade, le poète se livre bien à son
inspiration, mais le maniement de la langue, le sens du rythme, sont
devenus chez lui une seconde nature, de sorte que son inspiration
reste inconsciemment sous l'influence des règles de l'écriture
poétique. Le projet sorti de l'inspiration est comme le premier
souffle du nouveau-né, qui est> déjà préparé à vivre.



TROISIÈME PARTIE

EXPOSÉ DES TRAVAUX SCIENTIFIQUES

D'ÉMILE BOREL

Orientation générale

Il faudrait plusieurs volumes pour seulement résumer tous
les travaux de Borel. Nous nous contenterons donc ici d'exposer
ses résultats les plus marquants.

Pour une étude plus complète de ses œuvres, on pourra
recourir d'abord à la liste bibliographique qui figure à la fin de

l'ouvrage « Selecta » imprimé chez Gauthier-Villars en 1940

(cette liste suit la reproduction des principaux mémoires de

Rorel avec des commentaires, dus à différents auteurs). On

trouvera à la fin de la présente Notice, une liste supplémentaire
allant de 1939 jusqu'à la mort de Borel en 1956.

Les recherches de Borel ont porté successivement sur deux
domaines différents. Depuis leur début jusqu'à la guerre de

1914-18, il s'est surtout occupé de la théorie des fonctions et des

domaines associés à cette théorie. Il signale lui-même que ses

découvertes les plus importantes à cette époque ont été: les

définitions de la mesure, des fonctions monogènes et de la
sommabilité. Ces définitions ont été préparées par l'étude attentive

de cas particuliers et suivies des. démonstrations, souvent
difficiles, des importantes propriétés qu'elles entraînent. Par ces

démonstrations, il s'égale aux plus habiles analystes. Mais,
souvent, ceux-ci épuisent un sujet déjà posé avant eux et,
derrière eux, l'herbe ne repousse plus. Par ses définitions, au
contraire, Emile Borel ouvrait des domaines nouveaux, si riches

que, malgré ses propres apports, ils suscitèrent de toutes parts
des contributions nouvelles. Vint la guerre. Pendant celle-ci,
Borel, après avoir participé aux combats, s'occupa du repérage
du son, puis de questions variées concernant le service des
inventions intéressant la défense nationale, service dont il fut le
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principal organisateur. C'est sans doute son contact, à cette
époque, avec des problèmes de physique mathématique et de

calcul des probabilités qui l'intéressa à ces questions et détermina

son orientation nouvelle.
C'est à ces deux domaines qu'il va consacrer la plupart de

ses recherches à partir de 1920. Toutefois, deux correctifs doivent
être apportés à cette répartition sommaire. Il n'y a pas eu
mutation brusque. Dès avant la guerre, on voit Borel s'intéresser

de plus en plus aux questions de probabilités, en commençant

par une courte note de cinq pages en 1905. La probabilité
qu'un point aléatoire (dont la loi de probabilité sur le segment
(0,1) est uniforme) appartienne à un ensemble donné, est
évidemment égale à la mesure de cet ensemble. Les travaux de

Borel sur la mesure lui ont montré que certains énoncés,
certaines démonstrations concernant la mesure, deviennent plus
instructifs et plus simples dans le langage des probabilités. Cette

remarque n'est-elle pas à l'origine de l'intérêt qu'il avait pris dès

avant la guerre pour le calcul des probabilités?
Le second correctif consiste en ce qu'après la guerre de 1914-

19, s'il ne s'est plus occupé exclusivement de théorie des

fonctions, il ne cessa pas cependant de s'y intéresser, pour prolonger,
soit ses propres recherches, soit celles qu'elles avaient suscitées.

Nous examinerons maintenant plus en détail ses recherches
dans les différents domaines.

Nous suivrons l'ordre chronologique seulement pour chaque
domaine scientifique pris isolément et même, dans ce cas, sans

nous y conformer toujours strictement.

Arithmétique

Nous parlerons plus loin de la théorie de la mesure de Borel.
En vertu de cette théorie, on est amené à considérer l'ensemble
des nombres rationnels comme moins serré que l'ensemble des

nombres irrationnels. Or on parvient par des démarches
naturelles plus simplement aux premiers nombres qu'aux seconds.

On peut alors considérer comme une généralisation de cette

remarque, un résultat de Borel qu'il serait long d'énoncer de
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façon précise mais qui peut s'interpréter comme suit: les nombres

les plus faciles à définir à partir des entiers sont les plus isolés les

uns des autres.
Dans une autre direction, Borel a donné, [50] Q, une

méthode pour résoudre le problème suivant:
Etant donnés un polynome à une ou plusieurs variables, à

coefficients entiers et un nombre premier arbitraire p, trouver
la puissance la plus élevée pn de p qui divise le polynome pour
toutes les valeurs entières de la variable.

Séries Numériques

I. Comparaison des convergences

Considérons deux séries convergentes à termes positifs
s S/2,,, t et désignons par rn s—sn, pn t—tn leurs
restes de rang n.

Borel dit que la série s converge plus rapidement que la
Pn

série t si > oo avec n. Nous dirions plutôt dans ce cas que
rn

s converge beaucoup plus rapidement que t. Et nous proposons
d'adoucir la condition de Borel en disant que s converge plus

rapidement que t quand la plus petite limite de — est supé-
' n

rieure à l'unité. (Notons cependant que la définition de Borel
lui a été très utile dans l'étude des fonctions complexes).

Quand on change l'ordre des termes de %um elle reste
convergente avec la même somme. On voit facilement que la série,

obtenue en rangeant les termes de I\un par ordre de

grandeur non croissante, converge au moins aussi rapidement
que Nous avons même pu donner un exemple 2), où en

0 Nous renverrons par des numéros entre crochets aux mémoires portant le même
numéro, dans la liste bibliographique figurant à la fin de l'ouvrage intitulé Selecta,
publié en 1940 à l'occasion du Jubilé scientifique d'Emile Borel, ou dans le supplément
à cette liste terminant la présente notice. Les renvois aux articles publiés dans le volume
Selecta mentionné plus haut, p. 2, se présenteront sous la forme (S, 201) pour (Selecta,
p. 201).

2) C. R. du 27 février 1961.
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changeant Tordre des termes, on peut obtenir une série moins
rapidement convergente, même au sens de Borel, que Hun.

Borel s'attache particulièrement au cas où les séries
considérées ont une « convergence régulière » parce que, d'après lui,
ce sont les seules séries qui se rencontrent naturellement. Il
montre cependant qu'on peut « fabriquer » une convergence
irrégulière et, par exemple, construire une série où les sommes
partielles sn sont, pour une suite de valeurs de n, voisines de en

et pour une autre suite de valeurs de n, voisines de eeU.

Représentons par la notation

Rap. s > Rap. t

le fait que la série s converge plus rapidement que la série t; on
voit facilement que cette notation est transitive. Nous avons

pu montrer par un exemple (voir la note ci-dessus) que la relation

: Rap. s > Rap. t (exprimant qu'on n'a pas : Rap. t > Rap. s)

n'est pas transitive. Mais notre exemple est à convergence
irrégulière. Il serait intéressant de voir si la relation redevient
transitive quand on se borne aux convergences régulières.

II. Sommabilité d'une série

Borel a obtenu ([5]) une condition suffisante pour qu'en
opérant un certain changement dans l'ordre des termes d'une
série semi-convergente, on n'altère pas sa somme: il suffit que
le produit du terme général (de rang m) par le déplacement

maximum des termes qui le précédent, tende vers zéro avec —
m

Mais la contribution principale et très remarquable de Borel
concernant les séries, c'est sa définition des séries divergentes
sommables, [19], [41], [42] et l'étude de leurs propriétés.

L'égalité:
1

1 +x+ +xn+
1 —x

n'était traditionnellement valable que pour \x \ < 1, c'est-à-dire

quand la série était convergente au sens classique.
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Mais quand \x \ > 1, le premier nombre garde un sens

alors que le second n'en a plus aucun. Ne peut-on généraliser le

sens du mot somme de telle façon que, quand la série aurait une

somme au nouveau sens, cette somme soit précisément égale au

premier nombre. Avec d'autres, Borel a indiqué et étudié une

réponse étendue à cette question, mais il en a tiré de nouvelles
et importantes conséquences. Il précise d'abord les conditions

qu'il est naturel d'imposer à tout procédé de sommation.

1° Toute série convergente doit être sommable avec la même

somme généralisée.

2° Si l'on modifie un nombre fini de termes d'une série sommable,
Zunl on obtient une série 2en qui doit être sommable et les

sommes généralisées ne doivent différer que de la façon qui
s'impose, c'est-à-dire d'un nombre égal à (ua -(-... +ur) —

(c0 + ...+cr) si le dernier terme modifié est de rang r.

3° Si Zwn est aussi une série sommable et si ß, y sont deux nombres

réels quelconques, la série 2 (ß^-f-ywj doit être aussi
sommable et sa somme généralisée doit être égale à ßs+y£
si s et t sont les sommes généralisées de Zun et Zwn.

Il impose encore deux autres conditions 4° et 5° que nous
énoncerons plus loin.

Si sn u0Jr...Jrun reste compris entre deux bornes quand
n varie, il est naturel d'imposer à la somme généralisée d'être
aussi entre ces deux bornes. Dès lors, Borel observe:

1° qu'un moyen d'y parvenir est de prendre pour somme
généralisée une moyenne des sn ;

2° mais la somme généralisée devrait se rapprocher surtout
des sn de rangs élevés. Il y a donc lieu, pour le calcul de leur
moyenne, d'affecter les sn de poids d'autant plus grands que n
est plus grand. Pour réaliser cette condition au maximum, Borel
propose de faire dépendre les poids d'un paramètre a de façon
que la discrimination souhaitée s'accentue quand a augmente.
Plus précisément, il propose de prendre une moyenne de la forme :

^0 T •. • T cn ci sn H-

c0 + c1 a + + cn an +
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où les c sont des nombres > 0, le dénominateur ^ 0 et où l'on
fait croître a indéfiniment.

Borel abandonne alors ces généralités et choisit de prendre:

1

1ni

de sorte que le poids de sn sera:

an
e'a~

ni

et la somme généralisée sera la limite quand a -> + oo, de

Il montre que cette définition vérifie les conditions 1°, 2°, 3°,
ci-dessus.

On peut observer que ce dernier résultat peut être obtenu

pour une sommation beaucoup plus générale.
Appelons P la suite de poids p0 (a), pn (a) vérifiant

naturellement les conditions classiques

P„(a)^0 £ p„ 1

n

Pour réaliser la condition supplémentaire désirée sur les

poids, nous supposerons, de plus, que pour chaque n fixe:

lim pn(a) 0,
a-+ oo

car les premiers des p0 (a), pn (a), seront très petits pour
a assez grand, alors que T*pn (a) restant égal à l'unité, les suivants
ne le seront que pour a beaucoup plus grand. En résumé, nous
dirons qu'une série Hun est sommable P si:

A. La série

m(a) s0p0(à)+ +snpn(a) +

est convergente quel que soit a (ou au moins pour a assez grand).

B. Quand a -» + °o, m {a) tend vers une limite finie, s.

Alors, s sera appelée la somme généralisée P de Iun.
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A titre d'exemples où les conditions A, B, sont réalisées figurent
non seulement la sommation exponentielle de Borel, où

pn(a) e a-
n\

mais aussi plusieurs définitions connues de la sommabilité, où

pn (a) a des expressions différentes.
Par exemple, Cesaro prend dans sa définition (C, 1) a entier et

Pn (à)

1

— pour n < a
a

0 pour n > a

Marcel Riesz prend, dans sa définition (C, S), a entier et

1 a — 1

donc

ttl (d) — U0Jr 1— — U i + + 1 —
al a

Pa(à) Pa+l(à) - 0,

"fl-lî

p0(a) 1-1 ,-Pn(a)= 1 1- n +1

pour n < a — 1 et

Pa-i(à) 1
a — 1

Lindelöf prend

1 1

m (a) u0+u1 + —- u2 + + un+
o

2 n
2 — riet

a
donc

1
p0(a) 0, Pi (a) 1 -, ...Pn (a)

„ ^ n 1
2 - — (n +1)

a a a

On peut démontrer que les propriétés 1°, 2°, 3°, sont vérifiées
pour la sommabilité P la plus générale, ce qui dispense de les

L'Enseignement mathém., t. XI, fasc. 1.
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démontrer successivement pour les quatre cas particuliers ci-
dessus ou pour les nombreuses autres sortes de sommabilité qui
ont été proposées.

Toeplitz et Schur ont obtenu une condition nécessaire et
suffisante pour que la condition 1° soit réalisée par un procédé
de sommation de la forme:

s lim X Vn (a) sn •

oo n

Quand cette condition de Toeplitz est réalisée, les conditions
2° et 3° sont aussi réalisées. La sommation de Toeplitz est un peu
plus générale que la sommation P. Mais elle n'est plus une
moyenne et perd ainsi le caractère intuitif de la sommation P.
C'est sans doute pourquoi la plupart des formules de sommation
proposées se trouvent être des sommations P particulières.

Ni les sommations de Toeplitz, ni les sommations P ne

suffisent, au contraire, à vérifier les conditions 4° et 5° posées

par Borel.
Occupons-nous d'abord de la condition 4°.

4° Si une série Hun est sommable, on doit pouvoir grouper en un
seul terme, un nombre fini quelconque, r, des premiers termes
de sans modifier, ni sa sommabilité, ni sa somme généralisée.

Pour pouvoir traiter de cette condition 4°, rappelons qu'avant
de définir la sommabilité, Borel avait défini la limite généralisée
d'une suite: x0, x1 xm ; c'est la limite quand elle existe,
de e~a x(a), quand a -> + oo où

an
x (a) x0 +xx a + +xn — +...

ni

est supposée convergente quel que soit a.

En vue de 4°, Borel a cru d'abord [19] avoir démontré que
si xor xn a une limite généralisée, il en est de même de la
suite x1^...xn... Toutefois cette démonstration est inexacte,
comme l'a signalé Hardy x) en donnant le très simple exemple
suivant: x (a) cos ea, pour lequel la suite x0, xu x2r... a une
limite généralisée, mais non la suite %, x2l

Voir The Quaterly Journal of Math., 35, 1903.
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Mais dans son ouvrage ultérieur Leçons sur les séries

divergentes, Borel ne reproduit pas son erreur. Au contraire, il
s'exprime ainsi: «Mais l'étude des séries simplement sommables

présente des difficultés analogues à l'étude des séries qui sont

convergentes sans l'être absolument; nous la laisserons de côté,

pour nous occuper exclusivement des séries absolument som-
mables que nous allons définir. »

Observons cependant que l'on peut sauver le premier résultat
en imposant une condition supplémentaire. Plus précisément:
quand la série u0 Jru1Jr... est sommable P (avec la somme
généralisée s), la condition nécessaire et suffisante pour que la
série u1Jru2Jr-" soit sommable P, avec la somme généralisée

s~u0, est que la suite %, u2, ait pour limite généralisée zéro.
Le cas de la condition 5° est plus compliqué encore. On sait

que si les séries sont absolument convergentes au sens

classique et ont pour sommes s et t, alors le produit st est égal
à la somme de la série (absolument convergente) où

w» u0vn + u1vn-1 + +unv0.

Mais quand les séries 5 et t sont convergentes sans être
absolument convergentes, il peut arriver que la série Hwn
diverge. A fortiori, la propriété classique ne peut être vérifiée par
la sommabilité P que si l'on impose à « cette sommabilité » une
nouvelle condition supplémentaire.

Nous n'essaierons pas de préciser cette condition. Car il est
déjà très difficile de la déterminer pour la sommabilité exponentielle.

Pour traiter cette question, il a fallu à Borel, déployer, en
dehors de ses dons d'invention, une très grande habileté analytique.

Il particularise encore plus la sommabilité P, non seulement
an

en prenant pn(a) e mais en exigeant de la série Zunni n

qu'elle soit « absolument sommable », en ce sens que chacune
des trois intégrales suivantes doit avoir un sens 1).

O La condition précédente: que e a x (a) ait une limite quand a oo est
lante

a la condition que l'intégrale f e au (a) da ait un sens.



+ 00 + 00 + 00

f e~a u (a) da J" e~a | w (a) | da J | idr)(a) | da
0 0 o

et ceci quel que soit l'ordre r de dérivation dans u(r) (a).
Ceci étant, Borel démontre ce que deviennent les propriétés

2°, 3°, 4°, 5° quand on y suppose les séries données absolument
sommables et quand on affirme que les séries qui en sont déduites
dans ces propriétés sont absolument sommables. La propriété 1°

subsiste aussi sous la forme: toute série convergente est absolument

sommable et sa somme est égale à sa somme généralisée.
De ces résultats, Borel déduit un théorème très général: si
l'on a un polynome à une ou plusieurs variables réelles, par
exemple, P (m, e, w), si l'on y remplace u, e, w par des séries

absolument sommables et si l'on développe formellement P (u,
e, w) après ce remplacement, on obtient une série absolument
sommable dont la somme généralisée est égale au résultat obtenu
en remplaçant dans P (m, e, w), e, w par leurs sommes généralisés.

Mais c'est l'intervention des séries divergentes dans la théorie
des fonctions de variables complexes qui a incité Borel à les

rendre convergentes en un sens plus général et qui a fourni la
plus importante de ses applications (dont nous parlerons plus
loin), sa sommabilité exponentielle. Après les publications de

Borel sur ce sujet, le nombre des mémoires d'autres auteurs sur
les séries divergentes a décuplé.

Théorie des ensembles

Plaçons-nous dans un espace R à 1, 2, 3 ou un nombre fini
de dimensions. Borel appelle ensemble bien défini et on appelle
ensemble borélien (ou ensemble B) soit un ensemble élémentaire

(intervalle, rectangle, cube, etc soit un ensemble formé à

partir d'ensembles élémentaires par la répétition, un nombre
fini ou dénombrable de fois, des deux opérations suivantes:

I. Réunion d'une suite dénombrable finie ou infinie,
d'ensembles disjoints déjà définis.

II. Différence de deux ensembles déjà définis dont l'un
contient l'autre.
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Borel démontre alors deux théorèmes qui sont fondamentaux

pour la théorie des fonctions :

I. Si tous les points d'un ensemble borné et fermé sont

intérieurs chacun à l'un au moins des ensembles élémentaires

Fx, Fg, ils sont intérieurs chacun à l'un au moins d'un
nombre fini fixe (Fr%,Fr^ --Fr) des ensembles Fn.

II. Soit E un ensemble borélien et s > o. On peut rassembler

un nombre fini d'ensembles élémentaires I1:...In tel que
l'ensemble des points de E qui n'appartiennent à aucun des Ir et
des points des Ir qui n'appartiennent pas à E soit compris à

l'intérieur de la réunion d'ensembles élémentaires en nombre

fini dont l'étendue totale est < s.

Mesure des ensembles

La découverte d'une définition satisfaisante de la mesure
d'un ensemble a joué un rôle capital dans l'élaboration des

nouvelles théories développées par Borel et ses disciples ou
successeurs.

Après avoir exprimé la notion intuitive de la mesure par la
longueur d'un segment rectiligne, par l'aire d'un polygone, par
le volume d'un polyèdre, etc. les mathématiciens se sont
efforcés de traduire cette notion intuitive dans le cas plus
général de la mesure d'un ensemble euclidien (en commençant
par le cas d'un ensemble linéaire). Des définitions à cet effet ont
été progressivement proposées, entre autres par Riemann,
Cantor, Darboux et Jordan. Un nouveau progrès était néces-

| saire.
•j Chaque progrès avait consisté à estimer la mesure d'un

ensemble E au moyen de la longueur totale d'un ensemble
d'intervalles couvrant E. Mais on avait toujours pris ces
intervalles parmi des intervalles choisis d'avance. Borel a écrit lui-
même que son point de départ a été de prendre, pour chaque
ensemble, des intervalles non seulement couvrant l'ensemble
mais dépendant directement de cet ensemble. En prenant

; comme intervalles ceux qu'on obtient en divisant un segment
en parties égales, Jordan arrivait à la conclusion que l'ensemble
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R des points d'abscisse rationnelle entre 0 et 1 avait pour
mesure l'unité. En attachant, avec Borel, à chaque point

g
d'abscisse rationnelle, r„, un segment de longueur—r on constate

n

que R est couvert par un ensemble d'intervalles dont la longueur

totale est el -y ; sa mesure devant intuitivement être inférieure

à ce total est aussi petite que l'on veut avec s. Borel arrivait
ainsi à cette conclusion qui, à l'époque, a paru surprenante, que
l'ensemble des nombres rationnels, pourtant dense partout,
était de mesure nulle. C'est par cet exemple que Borel a été
conduit à la notion générale de mesure.

Les définitions actuellement en usage sont celles de Borel
et de Lebesgue. La mesure de Borel ne s'appliquerait qu'au cas
d'un ensemble dit mesurable B (on a défini plus haut, p. 52, les

ensembles boréliens).
La mesure d'un ensemble mesurable B s'obtient au moyen

des opérations mêmes par lesquelles il a été défini plus haut, la
mesure d'un intervalle étant prise égale à sa longueur.

Lebesgue a donné une définition de la mesure d'un ensemble,
qui garde un sens, que l'ensemble soit ou non mesurable B.
Mais quand l'ensemble est mesurable 5, il est aussi mesurable
au sens de Lebesgue et a même mesure dans les deux sens.

En réalité, ce qu'il y a de curieux dans le cas de la définition
de la mesure, c'est que Borel a commencé son étude de la
mesure, précisément en donnant une définition des ensembles de

mesure nulle 1), qui est valable pour des ensembles non mesurables

B. Tout ensemble mesurable au sens de Lebesgue étant la
réunion d'un ensemble mesurable B et d'un ensemble de mesure
nulle, on peut dire que Borel avait donné implicitement dû avance,
une définition des ensembles mesurables au sens de Lebesgue,
équivalente à la définition de Lebesgue. On peut le voir même

encore mieux et d'une façon plus directe. Car, d'après M. Denjoy,
Borel écrit en substance: Si un ensemble E contient un ensemble
mesurable B, E2, de mesure a, la mesure de E est au moins égale

Rappelons qu'un ensemble linéaire est de mesure nulle quand pour tout e > o,
tous ses points sont chacun intérieur à l'un au moins d'un ensemble de segments Si,
S2, Sn dont la somme des longueurs est < e.
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à a. Si E est contenu dans un ensemble E2l mesurable B de

mesure ß, la mesure de E est au plus égale à ß. Dans le cas où

ß a la mesure de E sera ^ a et ^ a. De là, à dire que si ß a
la mesure de E vaut a, il n'y a qu'un pas. Lebesgue le franchit.
On peut se demander pourquoi Borel n'a pas franchi ce pas lui-
même. Nous pensons que cela tient à ce qu'il veut, très consciemment,

éliminer les ensembles qui ne sont pas « bien définis »,

et que pour lui, les autres ne relevant pas d'une définition
constructive, sont sans existence réelle.

Nous avons dit plus haut que si les définitions constructives

sont, en effet, plus complètes, et sont nécessaires pour les

applications, nous ne voyons pas de raison d'éliminer les définitions
descriptives qui rendent généralement plus simples les
démonstrations 1).

C'est à ce point de vue que, tout en attribuant à Borel
l'antériorité complète pour la notion de mesure, nous pensons
que la définition de Lebesgue, d'ailleurs donnée d'une façon
différente et intéressante, a déterminé un nouveau progrès.

Toutefois, il faut observer que les propriétés des ensembles
mesurables B se conservent dans toute homéomorphie, ce qui
n'est pas le cas des ensembles mesurables au sens de Lebesgue.

C'est pourquoi en Calcul des Probabilités, les ensembles
« probabilisables » sont les ensembles « boréliens » et non les
ensembles mesurables au sens de Lebesgue.

Exemples d?applications

I. Tout ensemble dénombrable est de mesure nulle.

II. La condition nécessaire et suffisante pour qu'un ensemble
E soit de mesure nulle est qu'il existe une suite d'intervalles
distincts /x, J2, dont la série des longueurs est convergente et
telle que tout point de E soit intérieur à une infinité des intervalles

In.

i) Il faut d'ailleurs noter que l'opposition de Borel aux définitions descriptives
n'a pas été totale. On lit, par exemple, en note x) de la page 48, de la troisième édition
de ses Leçons sur la Théorie des fonctions: « Le procédé que nous avons employé revient,
en réalité, à ceci: définir les éléments nouveaux qu'on introduit, à l'aide de leurs
propriétés essentielles, c'est-à-dire de celles qui sont strictement indispensables pour
les raisonnements qui vont suivre. » Il n'est fait ici aucune allusion à la « construction »

des éléments nouveaux.
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Soit alors F l'ensemble des points qui sont chacun intérieurs
à une infinité des intervalles In. F comprend E et appartient à

la fermeture E de E. En particulier, si E est fermé, E est
identique à F.

III. On trouvera plus loin des applications très nombreuses
de la notion de mesure dans la théorie de l'intégration, dans la
théorie des fonctions et dans le calcul des probabilités.

Raréfaction d'un ensemble de mesure nulle

C'est au cours de ses études des fonctions monogènes que
Borel a senti la nécessité d'introduire la notion d'ensemble de

mesure nulle (avant d'avoir défini la mesure d'un ensemble).
Les mêmes études lui ont fait voir qu'il faudrait distinguer entre
les différentes sortes de mesure nulle. Et cette nécessité s'est

présentée à nouveau en calcul des Probabilités. Il a alors introduit

la notion de « mesure asymptotique » d'un ensemble [169],
dont, beaucoup plus tard, il a légèrement modifié la définition
sous le nom de «raréfaction » (d'un ensemble de mesure nulle).
Cette notion nouvelle a moins attiré l'attention que celle de

mesure. Et pourtant, nous sommes d'accord avec Borel pour
penser que l'importance de cette classification des ensembles de

mesure nulle « paraît devoir être comparable à celle de la notion
même d'ensemble de mesure nulle. »

Mais si Borel a même pu imaginer trois modes distincts de

classification, il n'en a pas établi les relations. Et s'il a obtenu
des résultats importants, c'est en partant d'hypothèses qui ne
sont pas toujours nécessaires et ne sont pas toujours suffisantes.
Avant donc de prolonger et d'appliquer la théorie de Borel, il y
aurait lieu de la revoir et de la compléter pour la rendre plus
cohérente.

Pour toutes ces raisons, nous serions heureux si ces quelques
lignes pouvaient inciter de jeunes chercheurs à entreprendre une
étude plus systématique et plus complète de la raréfaction et à

en donner des applications.
La première idée de Borel, [5, p. 185] consiste à établir une

inégalité symbolique, (à définir), entre une sorte de « grandeur »
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d'un ensemble de mesure nulle, E, et la rapidité de convergence
d'une série convergente à termes positifs associée convenablement

à E. Nous avons vu qu'il existe au moins une suite dé-

nombrable d'intervalles I„ qui « surcouvre » E et dont la série

des longueurs EZW est convergente.
Borel dit alors que « la mesure asymptotique de E » est

« inférieure » ou égale » à Iln. Il est revenu plus tard à la question
et a perfectionné son idée primitive. Au lieu de définir la « grandeur

» d'un ensemble comme inférieure ou égale à la convergence
d'une série, notions qui sont des entités totalement différentes,
il compare directement entre eux deux ensembles .E, F de mesure
nulle et ramène cette comparaison à celle des convergences de

séries.

Une première façon d'opérer serait la manière suivante.
Disons provisoirement d'un ensemble dénombrable d'intervalles

qui « surcouvre » E et est de longueur totale finie, qu'il
« majore » E. Soient alors, de même, % un ensemble dénombrable
d'intervalles qui majore F. On dira que E est plus raréfié que
F si la série V des longueurs des intervalles de 2T converge plus
rapidement (voir p. 45) que la série U analogue pour °ll.

Mais plusieurs difficultés se présentent. D'abord, le fait que
l'ensemble dénombrable d'intervalles 2T majore E est
indépendant de l'ordre de ces intervalles, tandis que la rapidité de la

convergence, de leurs longueurs peut en dépendre, comme nous
l'avons montré ailleurs (voir p. 45). Dans la définition précédente,
il ne faut pas faire intervenir T, mais une suite dans un ordre
déterminé des intervalles de Borel suppose, plus loin, que l'on
a rangé la suite par ordre de longueurs non croissante. D'autre
part, non seulement, il y a plusieurs suites formées avec 3T qui
majorent E, mais il n'y a pas un seul ensemble ZT qui majore E.

Borel fait face à cette difficulté en se plaçant dans le cas où,
parmi les suites S d'intervalles qui majorent i?, il y en a une,
S0, qui converge plus rapidement1) que toutes les autres. En
réalité, cela n'est pas possible, mais il suffît de supposer que S0

converge au moins aussi rapidement que tous les S. Quand il y a,
de même, pour F, une suite s0 d'intervalles majorant F qui con-

i) Expression abrégée pour dire que la série des longueurs des intervalles de S0
converge plus rapidement que la série analogue pour S.
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verge au moins aussi rapidement que toute autre suite s

analogue, on dira que E est plus raréfié que F si la suite S0 converge
plus rapidement que s0.

Borel écrit [285, p. 164] « nous discuterons plus loin les
difficultés que peut présenter ce choix [celui de S0]; ce qui est
certain, c'est qu'il y a de nombreux exemples où ce choix s'impose
et ne peut être modifié; les ensembles de mesure nulle
correspondants sont donc classés les uns par rapport aux autres sans

ambiguïté ».

Borel traite, en effet, de nombreux exemples d'ensembles de

mesure nulle auxquels il associe des suites majorantes
déterminées. Ces associations sont naturelles d'un point de vue
intuitif. Mais nous n'avons pas vu démontré par Borel que ces

suites majorent au moins aussi rapidement (au sens de sa propre
définition) que toutes les autres suites correspondantes: c'est,

par exemple, ce qu'on constate, aux 11e et 12e lignes de la p.
179 [285]. Tout se passe comme si Borel, dans ses exemples,
ignorait sa propre définition de l'inégalité de deux raréfactions

pour y substituer une définition intuitive. C'est encore ce qu'il
fait dans les pages 184 à 191 de son livre consacrées au « calcul
de la raréfaction ». Il y introduit un symbolisme très ingénieux
de la raréfaction. Par exemple, la raréfaction d'un ensemble E
réduit à un point est symbolisée par œ~11 où co est le premier
nombre transfmi de Cantor. La raréfaction de l'ensemble F des

nombres décimaux qui n'utilisent pas un chiffre donné (par
exemple, 7) est symbolisée par co~(1~è) où :

log 9
b •

log 10

Mais si 1—b est bien plus petit que 1, si l'on est tenté d'écrire

que co-1 est plus petit que et d'en conclure que E est

plus raréfié que F, cette dernière conclusion n'est pas démontrée

par Borel quand on a recours à sa première définition.
D'autre part, Borel introduit deux autres limitations qui ne

nous paraissent pas indispensables. Il se restreint à l'étude des

ensembles boréliens (de mesure nulle) et au cas où la convergence
des séries de longueurs qu'il considère est « régulière ». Or,
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comme nous l'avons montré (C. R. du 27 Février 1961), on peut
obtenir un certain nombre de propriétés de la raréfaction qui
subsistent quand on n'impose aucune de ces deux limitations.

Borel définit encore deux autres sortes de raréfaction. La
première est la « raréfaction logarithmique ». 11 considère un
ensemble E de mesure nulle non dense, contenu dans (0 1) et
déterminé par la connaissance d'une infinité d'intervalles con-

tigus Ii atbi de longueurs Il désigne par N (x) — 1 le

nombre des It dont la longueur est ^ x et par P (x) la longueur
totale des N (x) intervalles à l'intérieur desquels sont les points
de E (quand les It n'ont pour extrémité ni 0, ni 1).

Quand x 0, le rapport:

log IV (x)
p(x)

log N (x) — log P (x)

a une plus grande limite finie p que Borel appelle raréfaction
logarithmique de E. A titre d'exemple, Borel considère l'ensemble
de mesure nulle constitué des points dont les abscisses entre
0 et 1 ont un développement décimal n'utilisant que les nombres
2, 5, 8. Il trouve que sa raréfaction logarithmique a pour valeur:

- log 3

P
log 10

Or, il avait déjà symbolisé la raréfaction de tels ensembles par
œP

la notation — Il y voit une rencontre et une confirmation de la
oo

compatibilité de ces définitions. Mais aucun rapport n'est signalé
entre cette définition et sa définition primitive par comparaison
de rapidité de convergence des suites majorantes.

En application, Borel étudie la « somme vectorielle »

C (A) +(B) de deux ensembles A, B compris dans (0, 1),
définie comme l'ensemble de ceux des points de (0, 1) dont
l'abscisse est la somme des abscisses d'un point de A et d'un
point de B.

Il donne un exemple où la somme des raréfactions logarithmiques

étant égale à l'unité, la somme vectorielle a pour mesure
l'unité:
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Après démonstration simplifiée d'un résultat dû à Marshall
Hall, Borel donne une troisième définition de la raréfaction,
distincte des précédentes et qu' il appelle la raréfaction relative
minimum ou plus brièvement la raréfaction R.

On considère un ensemble E de mesure nulle, compris dans
(0 ; 1), comprenant les extrémités 0 et 1 mais dense nulle part.
On l'obtient en enlevant du segment (0 ; 1) des intervalles N
contigus à E et denses dans tout intervalle. On peut supposer
qu'on les place dans leur ordre de grandeur non croissante. Soit
bn la longueur du plus petit de n-\-1 intervalles B: ceux qui
restent quand on a placé n intervalles TV, dont le plus petit est
de longueur an. En posant:

K
an + b„

Borel désigne par R le plus grand nombre inférieur à tous les nnd)
Dans le cas où l'on a èn > an, pour tout n, on aura

1 1

rn > — donc R > —n 2 2

Borel montre que: pour que la somme vectorielle de deux
ensembles E, E' de raréfaction R et R' renferme tous les points
de l'intervalle (0; 2), il suffit que l'on ait:

R+Rr > 1

Plus généralement, la somme vectorielle de £, E' a une
raréfaction R" telle que:

R" >R + R'

Borel, toujours novateur, a ainsi défini trois sortes de raréfactions.

Mais il les a étudiées indépendamment, sans s'occuper
de savoir si les définitions de l'inégalité de raréfaction qui en
découlent sont compatibles.

Borel a écrit [285, p. 191]: « La théorie de la raréfaction qui
complète celle de la mesure est un sujet d'étude assez vaste;
je souhaiterais qu'il tentât de jeunes chercheurs. »

°) Voir notre Note aux C. R. 1962.
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Il pense évidemment aux prolongements de ses résultats.

Les diverses observations que nous avons faites plus haut
conduisent à penser qu'il y aurait d'abord lieu de reprendre l'exposé

de ses résultats en y introduisant les compléments qu'ils
réclament.

Il est regrettable que le souhait de Borel n'ait pas encore été

exaucé, malgré l'importance de la notion de raréfaction, des

définitions si originales de Borel et de leurs applications possibles.

(La notion de raréfaction est utile, entre autres, dans l'étude
des fonctions de variable complexe et dans le calcul des

probabilités).

Fonctions réelles (de variables réelles)

Borel a démontré [87, p. 37] que si rn (x) est le reste de rang n
d'une série de fonctions de #, mesurables, qui converge sur un
segment (a, è), la mesure de l'ensemble des points x où ] rn (x) j >e

tend vers zéro avec — pour toute valeur positive de s. Borel
n

a aussi démontré [133, 5, p. 158] que: étant donnée une fonction
F (#), bornée, définissable analytiquement sur un segment (a, b)

et deux nombres positifs, s, oc, on peut trouver un polynome P (x)
tel que la mesure B de l'ensemble des points x où | F (x) — P(x) |

> e soit inférieure à oc

En faisant tendre £ et a vers zéro, Borel en déduit qu'il y a

une suite de polynômes P1 (x), Pn (x), qui converge vers
F (x) presque partout (c'est-à-dire sauf, peut-être, sur un ensemble
de mesure nulle).

Borel conclut: «Les singularités des fonctions f (x) occupent
très peu de place; il est, par suite, possible, dans bien des

circonstances, d'opérer comme si elles n'existaient pas. »

C'est un de ses arguments pour écarter l'étude des fonctions
définies abstraitement et pour se restreindre à celle des fonctions
« calculables ».
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Intégration.

Borel déduit des résultats précédents une définition de l'intégrale,

totalement différente de celle de Lebesgue, quoiqu'elle lui
soit équivalente dans le cas où la fonction intégrée est bornée.

Par définition, si / (x) est bornée et définissable analytique-
ment sur un segment (a, b) et par suite s'il existe une suite de

polynômes Pn (x) qui converge presque partout vers / (x) sur
(a, è), l'intégrale de / (x) sur a, b sera la limite de la suite des

intégrales Pn (x) dx.
Cette définition semble plus simple que celle de Lebesgue.

Mais elle se prête moins à l'extension d'une définition de l'intégrale

au cas où la variable et la fonction sont deux éléments
de deux espaces de Banach, extension nécessaire dans le calcul
des probabilités et ailleurs.

Une polémique s'est élevée ensuite entre Borel et Lebesgue
sur la définition de l'intégrale, dans quatre articles ou notes des

Annales de l'Ecole Normale Supérieure, de 1918 à 1920. Dans la
première, Borel avait présenté sa définition, qu'il considérait
comme constructive, contrairement à celle de Lebesgue.

Lebesgue a réagi violemment. Dans sa réclamation, à côté
de remarques justes, on s'aperçoit qu'il interprète, à tort,
certaines remarques de Borel de la façon qui lui est la plus
défavorable (à lui, Lebesgue), et c'est ce qui lui permet, en partant
de là, d'en établir le mal-fondé. Cette attaque excessive a été
très pénible à Borel, qui rappelle en quels termes admiratifs
il a célébré les travaux de Lebesgue.

En résumé, la priorité de Lebesgue dans la définition de

l'intégrale est incontestable. Mais, d'une part, elle utilise de façon
essentielle la notion de mesure introduite par Borel, et, d'autre
part, elle n'enlève rien à l'intérêt de la définition, entièrement
différente, de Borel. Au reste, plus tard, F. Riesz et Haar,
en donnant chacun une définition différente.des précédentes,
témoignent eux-mêmes que leurs définitions, qui sont construc-
tives, ont suivi la voie tracée par Borel.

Séries dérivées.

Borel a prouvé qu'étant donnés des nombres réels arbitraires

a0, %, on peut toujours former une fonction de variable
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réelle, / (x), telle que pour x 0, par exemple, / (x) ait des

dérivées de tous les ordres et que pour x 0, / (x) et ses dérivées

successives aient respectivement les valeurs a0, âq, On peut
choisir en particulier a0, öq, de sorte que le développement
de / (x) en série de Taylor diverge plus rapidement qu'une série

entière donnée d'avance.
D'autre part, Borel a montré que toute fonction de variable

réelle cp (x), admettant des dérivées de tout ordre dans un intervalle

I donné, peut être mise sous la forme de la somme d'une
série de Taylor et d'une série de Fourier, ces séries et les dérivées
successives terme à terme de ces séries convergeant uniformément

dans I. Et leurs sommes respectives convergent vers les

dérivées correspondantes de cp (x).
Ces théorèmes importants ont été obtenus par Borel en faisant

usage d'une méthode ingénieuse et nouvelle pour la résolution
d'un système d'une infinité d'équations linéaires à une infinité
d'inconnues.

Avant lui, on avait cherché à résoudre un tel système en

utilisant l'analogie avec les systèmes finis comportant le même
nombre d'inconnues que d'équations. Borel, au contraire, observe

que, du moment qu'il y a une infinité d'inconnues, on peut
déterminer pour chaque équation autant d'inconnues que l'on
veut: on aura toujours un nombre suffisant d'indéterminées
dans les équations suivantes. De plus, Borel indique comment
procéder pour ces choix successifs de valeurs des inconnues.

Interpolation.

La formule d'interpolation de Lagrange permet de déterminer

le polynome Pq (x) de degré q qui est égal à une fonction
donnée f (x) pour </+1 valeurs données de x. D'autre part, on
sait, d'après Weierstrass, qu'on peut déterminer un polynome
aussi approché que l'on veut d'une fonction continue donnée.
Il est alors naturel de se demander si le polynome Pq (x) ne
pourrait fournir un tel polynome en l'égalant à / {x) pour un
grand nombre q de valeurs de x.

Sans savoir que Méray, puis Runge avaient déjà répondu
par la négative, Borel a d'abord formé [86] « un exemple d'une
fonction pour laquelle la formule de Lagrange, loin de donner
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une approximation indéfinie, diverge lorsque q augmente
indéfiniment ».

Ayant obtenu ce résultat négatif, Borel a cherché s'il ne
serait pas possible de préciser le théorème de Weierstrass d'une
autre façon. Il y a réussi au moyen de la formule remarquable

/(x) lim £ A(*)/(-)
q-+cc p \qj

P
où l'on suppose o < x < 1, où — est une valeur rationnelle de x

q

et où Mp q (x) est un polynôme déterminé de degré q qui est

indépendant de / (x). On peut d'ailleurs choisir parmi les expressions

possibles de Mpq (x). Serge Bernstein a montré qu'on
pouvait prendre l'expression particulièrement simple suivante:

Mm(x) Cq xp(l —x)q~p.

Fonctions complexes de variables complexes

Séries de Taylor

Borel a établi ce résultat inattendu qu'il pouvait y avoir une
influence de la nature arithmétique des coefficients d'une série
de Taylor sur la nature analytique de sa somme. En effet, en
utilisant une propriété des déterminants obtenue par M. Hada-
mard, Borel a pu prouver qu'une série de Taylor à coefficients
entiers ne peut représenter une fonction méromorphe que si

celle-ci est une fraction rationnelle1).
Borel a pu aussi compléter et étendre le théorème célèbre

de M. Hadamard, d'après lequel : si 9 (z) 2 an zn, ¥ (z) =1 bn zn,

f (z) I an bn zn et si a, ß sont deux points singuliers respectifs
de cp (z) et de ¥ (z), a ß est un point singulier de / (z). Par exemple,
d'après Borel: si cp (z) et ¥ {z) sont des fonctions uniformes à

singularités ponctuelles, il en est de même de / (z); en particulier,
si / (z) et W (z) sont méromorphes, il en est de même de / (z).

0 Dans sa Notice (146), Borel a oublié de mentionner ce cas d'exception, qu'il avait
pourtant signalé dans son mémoire original [11].
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Dans une autre direction, Borel a démontré qu'en général
le cercle de convergence d'une série de Taylor est une coupure
de la fonction représentée par cette série. Ici, en général, peut
signifier: si les coefficients de la série sont des nombres aléatoires

indépendants.

Fonctions entières

Une fonction entière étant une fonction analytique sans

point singulier, Weierstrass avait démontré qu'elle peut se

mettre sous la forme:
00 / z

e°(2) n a
n- 1

où oq, a2 sont les zéros de la fonction F (z) considérée, où

U i/2 1/fc

T + y + + + —

Pt(u)=(l-u)e
dans lequel k est le plus petit nombre entier tel que la série

Z !t+l avecI«1 I < l«2 I < •••
n I I

soit convergente et où G (z) est une fonction entière.
Dans le cas où il n'existe pas de nombre k et dans celui où,

k existant, G (z) n'est pas un polynome, Laguerre dit que la
fonction F (z) est de genre infini. Dans le cas contraire, Laguerre
appelle genre de F (z), le plus grand des deux nombres k et g,

g étant le degré de G (z). C'est le grand mérite de Laguerre
d'avoir vu que les propriétés de F (z) dépendent de son genre
plus que de /c ou de g séparément.

Les résultats de Laguerre ont été rendus plus précis par
Borel au moyen de son introduction de « l'ordre » réel de F (z).
Il appelle ainsi le nombre p tel que, si l'on pose rn | an |, la
série :

G
n ' n

soit convergente pour a > p et divergente pour a < p (elle peut
être convergente ou divergente pour a p). On voit qu'alors:

L'Enseignement mathém., t. XI, fasc. 1. 5



Le renseignement donné par p étant plus précis que celui
donné par k (qui pour p non entier n'en est que sa partie entière),
on conçoit que la connaissance de p ait permis à Borel d'obtenir
des propriétés plus précises que pour ses prédécesseurs.

C'est un nouvel exemple d'une notion introduite par Borel
qui lui permet d'obtenir des résultats nouveaux et d'ouvrir une
nouvelle voie à ses émules et à ses successeurs.

Ainsi H. Poixcare avait prouvé que si la fonction entière
F (z) est de genre /?, on a

| F(z)\<e«rP+1
où r ] z | quel que soit le nombre positif a, pour r assez

grand. Borel démontre que si F (z) est d'ordre réel p, on a:

\F(z)\ <erP+E

quel que soit s > 0, pour ] z | assez grand.

La série I — peut être convergente ou divergente ; quand elle
yP' n

est convergente, Borel montre qu'on a même

If 001 <^p

quel que soit a > 0, pour r assez grand.
H. Poincaré avait aussi limité supérieurement les modules

des coefficients Am de la même série de Taylor qui représente
une fonction entière. Borel a exprimé ce résultat sous la forme
suivante :

Si F (z) I Aq zq est une fonction entière de genre p,
—j-j i

Aa (q !)p+ fend vers zéro avec —
a

Soient M (r) le module maximum de F {z) pour \z \ r
et m (r) le module maximum des ter'mes Aq zq de la série de

Taylor de F (z) pour \z\ r. Borel démontre que :
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log M (r)

log m(r)

tend vers 1 lorsque r croît indéfiniment en restant en dehors

d'une suite d'intervalles tels que la longueur totale de ceux qui
sont compris entre R et k R soit infiniment petite par rapport
à R. (Plus tard G. Valiron a démontré que si F (z) est d'ordre

fini, le rapport (1) tend vers 1 quand r -> oo de façon
quelconque).

M. Hadamard avait prouvé les réciproques des deux résultats
de H. Poincaré; Borel a ensuite précisé aussi ces réciproques
au moyen de son introduction de l'ordre.

Emile Picard avait démontré que si, pour une fonction
entière F (z), il existe deux valeurs exceptionnelles: a # £, qui
ne sont jamais prises par F (z), F (z) est une constante. La
démonstration faisait usage des « fonctions modulaires ». Pendant

plus de quinze ans, les mathématiciens avaient cherché

en vain à simplifier la démonstration de Picard. Borel a réussi
à démontrer cette importante propriété sans faire usage de ces

fonctions modulaires.
Emile Picard avait même démontré un théorème plus général:

s'il existe deux nombres distincts, a, è, tels que la fonction
entière F (z) ne soit égale à chacun d'eux que pour un nombre
fini de valeurs distinctes de z, F (z) est un polynôme. Borel a
démontré un théorème un peu plus général encore : Soient P (z)
et Q (z) deux polynômes différents. Si F (z) est une fonction
entière de genre fini et si les équations F (z) — P (z), F (z) Q (z)
n'ont chacune qu'un nombre limité de racines, F (z) est un
polynôme. Le même mode de démonstration lui permet de
nombreuses généralisations. Par exemple, si F (z), G (z) sont des
fonctions entières de genre fini, alors quels que soient les
polynômes P (z), Q (z), R (z), l'équation P (z) F (z)+Q (z) G (z) — R (z)
a nécessairement un nombre infini de racines, sauf le cas excep-

E(z)tionnel évident où R (z) étant identiquement nul, serait
G(z)

une fraction rationnelle. D'après le second théorème de Picard
cité ci-dessus, toute fonction entière, F (z) non polynomiale,
prend une infinité de fois n'importe quelle valeur, sauf, peut-
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être, une valeur exceptionnelle. Soit (pb (r) le nombre des racines
de l'équation

F (z)=b,
dont les modules sont inférieurs à r. D'après un théorème de

Picard, cpb (r) tend vers l'infini avec r. Borel a aussi précisé ce
résultat [175, pp. 95-104].

La méthode employée par Borel pour donner une démonstration

élémentaire du premier des théorèmes de Picard cités ci-
dessus a été utilisée par Borel et par de nombreux auteurs

pour prolonger ces résultats dans des directions variées. C'est
en utilisant la démonstration de Borel mais en y précisant les
valeurs de certaines constantes que Landau a démontré un
résultat important et inattendu. A savoir que la connaissance
des deux premiers coefficients du développement en série de

Taylor d'une fonction entière, suffit pour déterminer le rayon
d'un cercle à l'intérieur duquel la fonction prend certainement
les valeurs 0 et 1.

Borel attache beaucoup d'importance à ce qu'il appelle la
croissance régulière.

Soit F (z) une fonction entière d'ordre fini et différent de zéro

et M (r) le maximum de | F (z) | pour \ z \ — r. Borel a d'abord
démontré que le quotient:

log log M (r)
7— (2)
log r

reste compris entre deux nombres fixes quand r varie. Borel dit
alors que M (r) et F {z) sont à croissance régulière si ce quotient
tend vers une limite quand r - co

Si au a2, sont les zéros de F (2), Borel dit que rn | an |

a un ordre d'infinitude déterminé, quand:

log n
(3)

log rn

tend vers une limite déterminée.
En combinant un théorème de Poincaré et un théorème de

M. Hadamard, Borel en déduit d'abord que si les deux quotients
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(2) et (3) ont chacun une limite, ces deux limites sont égales.

Il démontre ensuite que, si l'un de ces quotients a une limite,
l'autre a aussi une limite (alors égale à la première limite). Il
observe qu'ainsi, quand la fonction entière F (z) est à croissance

régulière, on peut obtenir l'expression asymptotique précise du

module de ses zéros en fonction de n. Ce résultat est d'autant
plus important que, d'après Borel, «toutes les fonctions entières

rencontrées jusqu'ici en Analyse sont des fonctions à croissance

régulière ». Cette affirmation s'est trouvée s'appliquer plus tard

aux fonctions entières nouvelles découvertes par Painlevé.
Ceci n'a pas empêché Borel d'indiquer des procédés variés

pour obtenir des fonctions entières à croissance irrégulière. Mais

il fait observer que le caractère artificiel de ces procédés ne fait
que confirmer l'assertion ci-dessus.

Fonctions monogènes

Nous arrivons maintenant à l'une des découvertes les plus
sensationnelles de Borel. Sa définition des fonctions monogènes
et les propriétés qu'elle entraîne conduisent à un élargissement
considérable de la théorie des fonctions analytiques telle qu'elle
existait avant Borel.

Il explique lui-même [146, p. 39] comment il a été conduit
à cet élargissement.

Digression. — Et c'est là l'occasion, pour nous, de signaler
un trait commun aux cheminements de pensée qui ont conduit
Borel à des généralisations très importantes dans des domaines
variés. C'est une façon de penser très différente de celles qui ont
conduit d'autres auteurs à d'autres généralisations.

Ces auteurs sont frappés de voir que certaines théories
développées dans des domaines différents, dans des langages
différents, offrent cependant de grandes similitudes. Ils cherchent,
et certains arrivent, à dépouiller ces théories semblables de ce

qu'elles ont de distinct et à les faire apparaître comme des formes
particulières d'une théorie générale. C'est ainsi, par exemple,
qu'ont été créées l'Analyse vectorielle, la Théorie des ensembles,
celle des éléments aléatoires abstraits, etc...

Borel, lui, ne s'intéressait pas particulièrement aux
généralisations. Il semble même, parfois, qu'il s'en défiait. C'est l'étude
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attentive de problèmes particuliers, où il rencontre des sortes
de paradoxes, qui le contraint, pour ainsi dire, à modifier les
définitions qui conduisent à ces paradoxes, afin d'éviter ces
derniers. Et il découvre alors, presque malgré lui, que les définitions
auxquelles il arrive ont une portée plus générale.

Par exemple, dans la théorie de la mesure, il constatait que
l'ensemble des nombres entre 0 et 1, et celui des nombres rationnels

compris entre 0 et 1, quoique ayant des puissances
différentes, avaient même mesure (même « étendue ») au sens de

Jordan. Ce résultat, qui lui paraissait paradoxal, le conduisait
à considérer ce second ensemble comme étant de mesure nulle. Et,
ce premier pas franchi, il arrivait à sa notion générale de mesure.

Il trouvait le même genre de paradoxe, en constatant que
dans l'égalité

1
1 +z + + zn +

1 —z

le premier membre gardait un sens quand z # 1, tandis que le

second n'en avait que pour | z | < 1. Il cherchait à éviter cc

paradoxe en attribuant une convergence généralisée et une
somme généralisée au second membre, pour z ^ 1. Et il arrivait
ainsi à sa sommation exponentielle des séries divergentes,
création d'une portée s'étendant infiniment au-delà de ce cas

particulier.
On pourrait citer d'autres exemples. Signalons au moins

celui de la théorie des fonctions monogènes.
Retour aux fonctions monogènes. — Borel dit lui-même:

« Mes recherches sur les fonctions monogènes ont eu pour origine
l'étude approfondie d'une série signalée dans un mémoire... »

de Poincaré:
apßqvr-III (4)

p q r pa + qb + rc
z

p+q +r

les entiers p, <7, r prenant toutes les valeurs positives. Cette série

converge évidemment en dehors du triangle ABC dont les

sommets ont pour affixes a, è, c, et la somme y représente une
fonction analytique uniforme. Goursat et Poincaré avaient



— 71 —

montré que F (z) ne pouvait être prolongée, au sens de Weier-
strass, à l'intérieur du triangle quand p, g, r peuvent aussi

avoir des valeurs nulles (avec pFq+r ^ 0).

Selon Borel, on n'aperçoit d'abord aucune raison pour que,
si l'on exclut les valeurs nulles de p, q et r et si la fonction
F {z) peut être prolongée à l'intérieur du triangle 1), ses valeurs

y aient un rapport quelconque avec la série qui définit F (z)

hors du triangle.
Il y avait évidemment une infinité de pôles de F (z) aussi

voisins que l'on veut de tout point à l'intérieur du triangle.
On en avait conclu, un peu hâtivement, à la divergence de la
série en tout point intérieur au triangle.

Borel montre, au contraire, que F (z) non seulement converge
en certains points du triangle ABC, mais même qu'il y a une
infinité de courbes traversant ABC sur lesquelles la série F {z)

converge uniformément ainsi que toutes les séries dérivées de

la série F [z). Ainsi la somme de la série F (z) représente sur ces

courbes une fonction continue admettant des dérivées continues
de tous les ordres. De plus, soit y un petit cercle intérieur à

ABC, Borel montre qu'il existe au moins un point M intérieur
à y tel qu'il existe au moins une droite de convergence de la
série F {z) dans tout angle de sommet M. Puisque la dérivée de

F (z) sur chacune de ces droites est égale à la somme de la série
dérivée de F (z), cette dérivée de la fonction F (z) est indépendante

de la droite de convergence considérée. La fonction sera
donc dite monogène au sens de Cauchy. L'intégrale de cette
fonction sur un contour intérieur à ABC, sur lequel la série
F (z) converge uniformément, sera égale, selon Borel, au produit

par 2 ni de la somme des résidus des pôles intérieurs à ce

contour. On obtient ainsi une généralisation d'un des théorèmes
les plus importants de Cauchy, pour cette fonction F (z).

Ayant obtenu ces résultats sur la fonction de Poincaré (4),
Borel retient des définitions qui leur ont donné naissance, tout
ce qui peut s'exprimer pour une fonction / (z), qu'elle soit
représentable ou non sous la forme particulière (4). Il arrive ainsi
à sa conception générale de fonction monogène.

0 C'est-à-dire si la série n'a aucun pôle formel sur les côtés du triangle ABC.
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Il considère certaines suites d'ensembles parfaits CC2,
chacun intérieur au suivant et leur réunion C. Il considère une
certaine classe (C) de tels ensembles C (ainsi nommés en l'honneur

de Cauchy). Une fonction / (z) sera dite monogène sur C si:

1. Elle est continue (et donc uniformément continue) sur
chacun des ensembles parfaits Cp\

2. Elle admet en tout point z0 de C une dérivée unique au
sens suivant. z0 appartient à une infinité des Cp; soit z' un point

j f(z I
de l'un de ces Cp. On suppose que — a une limite quand z*

z ~ zo
tend vers z sur un de ces Cp. Si cette limite existe pour tous les Cp

auxquels appartient z0, elle sera indépendante de p puisque Cp

appartient à Cp+q. C'est cette limite qu'on appellera la dérivée
de f (z) sur C.

La nouveauté apportée par Borel, c'est que la famille de ses

ensembles C est plus vaste que la famille des ensembles W sur
chacun desquels on peut prolonger une fonction analytique et
elle contient la famille des W. Ceci étant, toute fonction analytique

au sens de Weierstrass est aussi une fonction monogène
sur le même ensemble, mais l'inverse n'a pas lieu.

(Pour arriver plus vite aux conséquences, nous reporterons
plus loin la définition des ensembles C et Cp qui est assez
compliquée.)

Borel montre qu'en généralisant la notion de fonction analytique,

les fonctions monogènes conservent d'importantes
propriétés des fonctions analytiques, soit littéralement, soit sous

une forme un peu plus compliquée.
Par exemple, l'existence de la dérivée première (définie

comme plus haut) entraîne, pour une fonction monogène,
l'existence des dérivées de tous les ordres; par exemple, encore:
deux fonctions monogènes qui sont égales sur un arc de courbe

appartenant à leur domaine commun d'existence, soit A, sont
égales sur tout A [S., p. 42]. Il en est de même si, en un point
de C, les deux fonctions et toutes leurs dérivées sont respectivement

égales, c'est-à-dire correspondent à la même série de Taylor.
Revenons, pour mieux les caractériser, aux ensembles C.

Les ensembles W, sur lesquels Weierstrass définissait une
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fonction analytique, étaient des domaines ouverts (c'est-à-dire
des ensembles d'un seul tenant et formés de points tous
intérieurs à l'ensemble W considéré). Nous avons déjà dit que Borel
définit ses fonctions monogènes sur certains ensembles C plus
généraux que les W. Précisons que les Cp (dont la réunion
constitue C) peuvent être non denses quel que soit p et que
l'ensemble complémentaire de Cp est formé de régions disjointes,
en nombre fini ou non, mais dont les frontières, yp, ont une
longueur totale finie Lp.

Soit Fp l'ensemble des points x de C où l'intégrale:

est finie pour tout a > O.Soit / (z), une fonction bornée sur
chaque Cp et qui possède une dérivée finie et continue relativement

à Tp.
Borel montre que / (x) sera donnée dans Tp, par

et obtient ainsi une généralisation de la formule célèbre de Cauchy.
Après que Borel eut créé et étudié la théorie des fonctions

monogènes, d'éminents mathématiciens comme Carleman,
Denjoy, Mandelbrojt, ont approfondi et prolongé sa théorie.

Prolongements. — Borel avait démontré [57] qu'on peut

développer- en série de polynômes:

convergeant absolument en dehors de la demi-droite où z est
réel et > 1. C était un premier exemple de série de polynômes
permettant de sortir du cercle de convergence d'une série de
Taylor (ici lzn).

Borel généralise le résultat précédent. Il montre qu'il est
possible de substituer à une série de Taylor ayant un rayon de
convergence fini, une série de polynômes ayant pour coefficients

| dz |

1 Z <*n (Z)
1 — Z
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des combinaisons linéaires des coefficients de la série de Taylor
et qui peut converger non seulement à l'intérieur du cercle de

convergence de la série de Taylor mais même au-delà.
Borel a aussi découvert un autre moyen de sortir du cercle

de convergence d'une série de Taylor. C'est en vue de ce moyen,
qu'il avait créé la « sommation exponentielle absolue », définie
plus haut (p. 51). Celle-ci lui permet d'assigner une somme
généralisée à la série de Taylor, qui coïncide avec la somme
ordinaire à l'intérieur du cercle de convergence mais qui existe
encore jusqu'à une certaine distance de ce cercle sur tout rayon
prolongée au-delà d'un point non singulier sur la circonférence
du cercle. Plus précisément, la somme généralisée existe à l'intérieur

du «polygone de sommabilité» de la série. Ce polygone
s'obtient en menant une tangente au cercle en tout point singulier.

(Ce polygone peut s'étendre dans certaines directions jusqu'à
l'infini. Par exemple, pour la série 2zn, le polygone de sommabilité
sera évidemment le demi-plan contenant le cercle | z | < 1

et limité par la tangente au cercle au point z — 1).
Ce résultat important dépasse ceux de Weierstrass. Car

Borel a formé des fonctions pour lesquelles il existe des régions
où le prolongement a son sens, de la série de Taylor correspondante,

est possible alors qu'il ne l'est pas par la méthode de

Weierstrass du prolongement analytique.

Equations différentielles et aux dérivées partielles

Borel a étudié les relations entre une équation différentielle
linéaire :

S£[y\ L(x)y(n)+P(x)y(n~1) + + T(x)y,+ U (x) y 0

et son équation adjointe:

M\y\ s (Lz)(M)-(Pz)(n)~1+ ...+(- l)n Uz 0.

On savait déjà, depuis Lagrange, que, par une suite
d'intégration par parties, on arrive à la relation:

j z [y] dx — JyJ{ [z] dx — A (x, y, y', y"-1, z, z', z(n~1})

où A dépend linéairement de y, y', y(n-1) et de z, z', z(n_1).
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D'où il résultait que, si l'on connaît une solution z de l'équation

adjointe, l'intégration de l'équation donnée est ramenée à

celle d'une équation différentielle linéaire en y d'ordre n— 1.

Borel exprime géométriquement [S., p. 213] les relations entre

une équation et son adjointe. On peut faire correspondre à

& \y] 0 une courbe de l'espace à n—l dimensions en regardant

n intégrales distinctes de l'équation comme les coordonnées

homogènes d'un point de la courbe dépendant du paramètre x.
On pourra, de même, faire correspondre à l'équation adjointe,
une autre courbe. Il résulte des relations établies par Darboux
entre les solutions d'une équation et de son adjointe que les

courbes qui leur sont attachées se correspondent dualistiquement.
Borel observe qu'on pourrait prendre cette propriété géométrique
comme définition de l'équation adjointe et que cette définition
mettrait en évidence le fait que la relation entre les deux équations

est réciproque. Mais il ajoute qu'il serait nécessaire de

préciser un peu cette définition; d'abord les points correspondants

des deux courbes devraient correspondre à la même valeur
de x. Il faudrait ensuite multiplier les premiers membres des

équations qui correspondent aux courbes pour que ces équations
deviennent adjointes l'une de l'autre.

Borel cherche ensuite à quelle condition une équation est
équivalente à son adjointe (cas où le recours aux solutions de

l'adjointe pour intégrer l'équation donnée devient inopérant).
Cette question a été d'abord étudiée par Darboux, qui a montré
qu'entre n intégrales distinctes y1 (x), (z), il doit exister,
alors, une relation quadratique:

^[y] £ aik»äWo
i,k

Darboux avait montré que cette relation subsiste quand on y
remplace les yt (x) par leurs dérivées jusqu'à un certain ordre:

&[y] 0, <*?[/] 0

Les considérations géométriques par lesquelles Borel retrouve
ce résultat, lui permettent, en outre, d'en démontrer la réciproque
et surtout de la généraliser. Il observe d'abord que si +3 fonctions

et leurs dérivées jusqu'à l'ordre inclusivement, vérifient
une même relation quadratique homogène à coefficients cons-
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tants, ce sont les solutions d'une équation d'ordre 2^+3
équivalente à son adjointe. Puis il généralise ce résultat, toujours
par ses méthodes géométriques.

Revenant ensuite au problème posé, Borel montre que, dans
le cas où ^ n'est pas identiquement nulle (et où par suite les

équations cherchées doivent être d'ordre impair), la recherche
des équations identiques à leur adjointe se ramène à celle des

lignes asymptotiques de la surface du second degré:

Z atk xi o •

ik

Il montre alors géométriquement comment les solutions de

l'équation ££ [y] 0 s'expriment complètement sans signe de

quadrature. Il passe alors au cas des équations ££ [y] 0 d'ordre
pair et montre qu'on peut suivre une méthode géométrique
analogue à celle suivie pour le cas de l'ordre impair en faisant jouer
à un complexe «linéaire »le rôle que jouait la quadrique (y) 0

Cependant on n'arrive pas à la détermination sans intégration
des courbes cherchées. La méthode permet cependant d'obtenir
tout au moins pour le sixième ordre, des expressions renfermant
un seul signe de quadrature et relativement assez simples.

Borel a porté aussi son attention sur le mode de croissance
des solutions des équations différentielles. Il a obtenu, par
exemple, ce résultat d'une précision inattendue dans des

circonstances si générales: Soit une équation différentielle dont on

suppose seulement qu'elle est du premier ordre, qu'elle est

algébrique en x, y, y' et que l'intégrale considérée, y, ne devient
infinie pour aucune valeur finie de x: on peut dès lors affirmer

que y croît moins vite que éx.

L'invention de la sommabilité a permis à Borel d'obtenir
un théorème remarquable qui a été depuis souvent utilisé par
divers auteurs pour déterminer exactement certaines solutions
irrégulières de certaines équations différentielles. C'est le théorème

suivant : si une série absolument sommable vérifie formellement

une équation différentielle, la somme généralisée de la
série est une intégrale de l'équation.

Cauchy a montré que l'intégrale générale d'un système
d'équations aux dérivées partielles dépend de certaines fonc-
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tions arbitraires dépendant de certaines variables. Borel a précisé

énormément ce résultat, dans le cas d'une seule équation,
en montrant que l'intégrale générale peut s'exprimer comme une
fonction déterminée d'une seule fonction arbitraire dépendant
d'une seule variable.

On savait depuis longtemps que la nature analytique d'une
fonction dépendant d'un paramètre peut dépendre considérablement

de la nature arithmétique de ce paramètre. Tel est le cas
de la fonction de z, zfl, dont la nature change selon que le
paramètre, a, est entier, fractionnaire ou irrationnel. Mais la fonction

za reste analytique.
Borel a étendu considérablement la portée de cette observation.

Il a donné un exemple d'ùne équation aux dérivées
partielles très simples:

d2 V .d2ce
"x 2 ~a T~T tfay)dxz ôyz

où une intégrale périodique, généralement analytique, cesse de
l'être pour certaines valeurs du paramètre a. On a ainsi un
exemple d'une fonction continue de deux variables réelles dont
toutes les dérivées sont continues, mais qui n'est analytique en
aucun point (x, y). Cet exemple est d'autant plus frappant qu'il
ne s'agit pas ici d'un cas pathologique mais d'un problème fort
simple où toutes les données sont supposées analytiques.

Géométrie

Rappelons d'abord que la définition et l'étude des propriétés
de la mesure et de la raréfaction par Borel, si elles sont d'une
importance extrême en analyse, relèvent cependant de la
géométrie.

De même, Borel a étudié l'équation adjointe dont il a été
question plus haut (p. 75) par des méthodes géométriques. Il y a
en particulier obtenu d'importantes propositions concernant les
« plans générateurs » des quadriques dans les espaces à n dimensions

(qui jouent le même rôle que les génératrices des quadriques
classiques).
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Mais le travail le pins important réalisé par Borel en géométrie

est celui qui a fait l'objet d'une question mise au concours

par l'Académie des Sciences et dont Borel a obtenu le prix
correspondant.

Il s'agit de l'étude des déplacements à trajectoires spbériques.
Avant Borel, des solutions particulières avaient été données.
Sans avoir obtenu la solution la plus générale, Borel a pu établir
une classification qui lui a permis, non seulement de retrouver
les solutions connues, mais d'obtenir de nombreuses solutions
nouvelles et de préparer des recherches complémentaires. Pour
arriver à cette classification, Borel observe que la condition
imposée aux déplacements envisagés se traduit par une équation
de la forme:

E E, T, 0
i 1

où chacun des 17 termes Et est une « fonction de l'espace » et
chacun des 17 termes Tt est une fonction du temps. Pour en
obtenir la solution, on est ramené à un problème d'algèbre
classique, qu'on résout en établissant k relations linéaires entre
les Eh d'où résultent 17 — k relations linéaires entre les Tt.
La discussion montre qu'on arrive à une classification où les

solutions correspondent aux différents modes d'intersection d'un
certain nombre de quadriques.

Parmi les conséquences les plus frappantes, citons ces

deux-ci:

I. Il existe un mouvement où tous les points d'une cubique
plane rigide décrivent des courbes sphériques, huit points situés
hors du plan de la cubique décrivant aussi des courbes
sphériques.

II. Etant donnés deux triangles rigides non semblables situés
dans deux plans parallèles, on peut relier leurs sommets par
des barres rigides et déplacer l'un des triangles de sorte que son

plan reste parallèle au plan de l'autre triangle. Dans ce mouvement

un quatrième point fixe dans le premier plan, reste à

une distance invariable d'un quatrième point fixe dans l'autre
plan.
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Les travaux de Mathématiques appliquées

Nous avons expliqué plus haut, p. 17, que, si c'est après la
première guerre mondiale que Borel s'est particulièrement
occupé des mathématiques appliquées, il s'y était intéressé déjà

auparavant en raison de leur connexion avec certains de ses

travaux de mathématiques pures.
Parmi les mathématiques appliquées, Borel a consacré surtout

son attention et ses recherches au calcul des probabilités et à la
physique mathématique.

/. Calcul des probabilités

Là encore, Borel a été un initiateur en introduisant implicitement

la conception de convergence presque certaine, liée à une
généralisation remarquable du théorème de Bernoulli et en
créant la théorie des jeux psychologiques.
Remarques. — L'idée a été émise que les idées les plus originales
de Borel ont été publiées avant la première guerre et concernent
toutes l'Analyse. Nous croyons que les deux sujets que nous
venons de mentionner sont d'une originalité aussi grande et ont
chacun donné lieu aussi à d'innombrables publications
postérieures, par ses contemporains et successeurs.

En sortant du calcul des probabilités, les quatre définitions
(non équivalentes) mentionnées plus haut, p. 58, de la raréfaction
d'un ensemble de mesure nulle, étaient tout à fait inattendues et
n'ont pourtant été développées par Borel qu'après la seconde

guerre mondiale.

Probabilités dénombrables.

I. Avant Borel, on avait étudié, comme lui, le cas d'une
infinité dénombrable d'épreuves. Mais on s'était limité aux
propriétés asymptotiques d'une probabilité dépendant d'un nombre
fini croissant d'épreuves. Avec Borel s'ouvre un domaine tout
nouveau dans le calcul des probabilités: celui des probabilités
« dénombrables ». Et Borel réussit à trouver les valeurs exactes
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des probabilités d'événements dont la réalisation dépend d'une
infinité d'épreuves.

Il commence par démontrer un théorème fondamental et
assez inattendu [S., p. 163].

Soient E1? E2, E„ une suite d'événements indépendants
et Pn p2, Pm leurs probabilités respectives. La probabilité
pour qu'une infinité de ces événements se réalisent est égale à 0

si la série Zpn est convergente et 1 si elle est divergente.
En appelant Ak la probabilité pour que k des événements Et

se produisent, Borel a complété son théorème en montrant que
si Zpk est convergente, les Ak ne sont pas nulles (au contraire
de ^4oo); si Zpk est divergente, les Ak sont nulles (alors que
Ao0 l).

Enfin, dans un mémoire ultérieur, [S. p. 302], Borel a étendu
son théorème au cas où les Et ne sont pas indépendants, moyennant

certaines restrictions sur le sens à attribuer aux cas de

convergence et de divergence.
Dans le même mémoire, Borel réalise un progrès encore plus

grand. Mais, suivant une caractéristique de son esprit que nous
avons signalée plus haut, ce progrès est réalisé dans des cas

particuliers et il laisse au lecteur ou à ses successeurs le soin d'en
comprendre et d'en formuler la portée générale. Il s'agit, d'une

part, d'un théorème apportant une précision nouvelle et très

importante au théorème de Bernoulli et, d'autre part, de la
conception d'une nouvelle sorte de convergence: la convergence
presque certaine (dite aussi presque sûre).

Borel ne considère explicitement que le cas où l'on étudie la
fréquence cpn

1} d'un chiffre déterminé dans les ^ premiers chiffres
d'un nombre N pris au hasard (en supposant que la probabilité
de l'apparition d'un chiffre déterminé est indépendante de ce

1
chiffre et par suite, égale à —). Quand n croît, la convergence de

1

cpn vers — est un événement fortuit, Borel démontre que la

probabilité de cet événement est égale à l'unité. Mais le raisonne-

i) La fréquence d'un événement dans n épreuves est le rapport — où rn est le

nombre de répétitions de l'événement dans les n épreuves.
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ment de Borel est général et permet d'énoncer explicitement le

résultat suivant:
Soient fn la fréquence de n épreuves indépendantes d'un

événement E de probabilité constante p. Alors la probabilité

que fn tende vers p est égale à l'unité.
On voit immédiatement qu'on a là un énoncé à la fois plus

frappant et plus précis que celui du théorème de Bernoulli.

D'après ce dernier, il est très probable que | fn — p | soit petit
quand n est grand, mais il n'en résulte pas que /„ tende vers p.
Au contraire, si l'on admet le théorème de Borel, le théorème
de Bernoulli en résulte, c'est-à-dire que si s est un nombre positif
arbitraire, la probabilité pour que | fn— p | < s tend vers l'unité
quand noo. Le théorème de Bernoulli est donc une simple
conséquence d'un théorème plus général, celui de Borel et une
conséquence moins simple à saisir — et pour cette raison, souvent
mal interprétée — du théorème de Borel.

On n'a malheureusement pas encore pris l'habitude de

considérer le théorème de Borel sous cet aspect. Avant Borel,
le théorème de Bernoulli était un théorème fondamental.
Après Borel, c'est le théorème de Borel qui doit lui être
substitué.

La démonstration de Borel est analytique, mais il avait
indiqué qu'on pourrait donner aussi une démonstration géométrique

de son théorème. Cette démonstration géométrique a été

explicitement obtenue, plus tard, par F. Hausdorff.
La démonstration analytique de Borel est assez compliquée.

Une démonstration à la fois plus simple et d'une portée plus
générale a été donnée plus tard par Cantelli. Mais on doit noter
que la démonstration de Borel a l'avantage de se prêter mieux
à une étude plus précise du comportement de la fréquence.

Nous avons aussi signalé plus haut une autre caractéristique
du théorème de Borel: c'est qu'il introduit (encore une fois
implicitement) une espèce nouvelle de convergence: «la
convergence presque certaine ».

Généralisant la circonstance qui se présente dans le théorème
de Borel, on est partout convenu maintenant de dire qu'un
nombre aléatoire Xn converge presque certainement vers un
nombre aléatoire A quand la convergence de X±, X2, Xn

L'Enseignement mathém., t. XI, fasc. 1.
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vers X est un événement presque certain, c'est-à-dire dont la
probabilité est égale à l'unité.

On peut dire que par la précision donnée au théorème de

Bernoulli et par l'introduction de la convergence presque certaine,
Borel s'est placé au premier rang des successeurs de Laplace
et de Poincaré.

II. Poursuivant son étude des «probabilités dénombrables »,

Borel considère [S., p. 131] les lois de probabilité des quotients
incomplets, An, de la fraction continue

1

X

représentant un nombre incommensurable X compris entre 0

et 1 et dont la loi de probabilité est uniforme.
En appelant <p (n) une fonction positive croissante de ji,

Borel trouve que:
1

I si la série 1 est convergente, la probabilité pour que
cp (n)

l'on ait
An <cp (h)

à partir d'un certain rang est égale à un;
II si cette série est divergente, il y a une probabilité égale à

un pour que l'on ait
An > (p (n)

à partir d'un certain rang.
En d'autres termes, il est infiniment probable que la croissance

asymptotique de An est comprise entre celle de toute fonction
1

cp (n) telle que la série I soit convergente et celle de toute
(p (n)

fonction (p (n) telle que cette série soit divergente.
Dans le même mémoire, Borel exprime une opinion qu'il a

souvent répétée, à savoir qu'une « probabilité nulle ou extrêmement

petite doit être considérée comme équivalent à l'impossibilité

». C'est une opinion qui avait déjà été formulée, longtemps
auparavant, par Bufîon, puis par Cournot. Bufïon et Borel ont
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même chiffré, chacun de leur côté, ce qu'ils appellent «extrêmement

petite ». Borel en a donné une image concrète très

frappante, le « miracle des singes dactylographes ». Peut-on concevoir

que si un million de singes travaillaient dix heures par jour sur

un million de machines à écrire et si leur production était
successivement reliée en volumes, l'ensemble des volumes
obtenus au bout d'un an se trouverait renfermer la copie exacte
des livres de toute nature et de toutes les langues conservés dans

les plus riches bibliothèques du monde? Il n'est douteux pour
personne qu'un tel événement doit être considéré comme
impossible, bien que sa probabilité si elle est extraordinairement
petite, ne soit pas rigoureusement nulle.

Théorie des jeux stratégiques.

Sortant de la théorie pure pour aller vers les applications
(du calcul des probabilités), Borel s'est encore ici montré un
novateur dont les idées et les résultats ont donné lieu à un
nombre énorme de travaux.

Jusqu'à lui — sauf dans des problèmes très particuliers dont
aucune généralisation n'était entreprise — l'étude des jeux de

hasard en calcul des probabilités s'était bornée aux cas où
chacun des événements considérés avait une probabilité
déterminée: jeu de pile ou face, jeu de dés, etc. L'intelligence, le
caractère des joueurs n'y avaient aucune part. Il n'en est pourtant

rien dans la plupart des jeux en usage: jeu de dames, jeu
d'échecs, jeu de bridge, etc. On doit alors admirer avant tout
que Borel ait eu l'audace de vouloir établir une théorie générale
des jeux psychologiques et de concevoir la possibilité d'y
parvenir en appliquant le calcul des probabilités à des hypothèses
convenablement choisies. Il a choisi, à cet effet, des hypothèses
plausibles, et a pu déterminer dans des cas particuliers les
conséquences de ces hypothèses. Ce n'est pas tout; il a aperçu, dès
sa première publication sur ce sujet, que le problème posé par
lui avait des applications dans des domaines variés: économie,
politique, stratégie, psychologie, etc.

Pour éclairer ce qui précède, il nous faut, maintenant,
préciser les hypothèses de Borel. Contrairement à certains esprits,
nous ne pensons pas que ces hypothèses soient inéluctables eh
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d'ailleurs elles ont été discutées. Mais ce sont des hypothèses qui,
d'une part, sont plausibles et qui, d'autre part, se prêtent à un
traitement mathématique du problème, deux qualités qui sont
très loin d'être toujours conciliables. L'un des principaux
mérites de Borel est d'avoir montré qu'un tel choix d'hypothèses
est possible, même si l'on n'admet pas qu'il soit nécessairement
le seul ni le meilleur possible.

Les hypothèses de Borel.

A chaque coup à jouer, un joueur se trouve dans une circonstance

déterminée dont certains éléments lui sont connus; par
exemple, au jeu de cartes, l'ensemble des cartes qu'il a dans la
main et la suite des coups précédents. Sur la base de ces données
et sur l'hypothèse qu'il fait sur la psychologie des autres joueurs,
il décide son coup. Borel élimine cette hypothèse 1 et considère
l'ensemble des données et du choix du joueur. Il y a, dans la
plupart des jeux, un nombre fini, quoique très grand, de tels
ensembles. Au cours d'un jeu, un joueur adopte successivement

un nombre fini de tels ensembles et caractérise ainsi sa « méthode
de jeu». Il y a un nombre fini de méthodes de jeu possibles:
<?!, C2, Cn et chaque joueur adopte nécessairement l'une
d'elles à chaque coup. Mais il y a au début du jeu (par exemple,
quand on distribue les cartes) ou au cours du jeu, une intervention
du hasard. Si donc, en considérant le cas de deux joueurs, A et
B, le joueur A adopte la méthode de jeu Ct et le joueur B la
méthode Cfc, c'est le calcul des probabilités qui permettra de

calculer la probabilité nik pour que A gagne finalement. On a
alors à chercher d'abord s'il existe une méthode de jeu Ct pour A,
telle que nik soit positif quel que soit k (c'est-à-dire quelle que
soit la méthode Ck adoptée par B). Alors A aurait intérêt à

adopter la méthode Ct (ou l'une des méthodes Ct pour lesquelles

7iik est positif quel que soit k).
Borel se place dans le cas où une telle méthode de jeu n'existe

pas et il se demande s'il n'est pas possible de jouer d'une manière

avantageuse en variant son jeu. « Si l'on veut formuler une règle
précise pour varier le jeu, cette règle ne faisant intervenir que

i) Voir page suivante, la citation 011 Borel énonce cette élimination, qui évidemment,

éloigne un peu la théorie de la réalité.
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les faits observés et non pas des remarques psychologiques sur

le joueur auquel on est opposé, cette règle équivaut forcément

à un énoncé tel que le suivant: la probabilité pour que, en un
moment donné du jeu, A adopte, pour fixer sa conduite à ce

moment, le code Ct est \ la probabilité analogue pour B pourra
être désignée par qk et, en désignant par n le nombre de codes

qui subsistent, on a

X Pi 1, Eft« 1" (1)
i=l k=l

La probabilité de gain de A est donc

n n

p£ E Pi Qk-
i=l k l

Borel se place alors, pour simplifier, dans ce qu'il appelle le cas

symétrique, caractérisé par l'égalité nH i, c'est-à-dire que
si les deux joueurs adoptent la même méthode de jeu, leurs
chances de gagner sont égales. Il observe que dans la plupart
des jeux de cartes où l'un des joueurs joue le premier, ces deux
chances ne sont pas égales, mais qu'elles le deviennent si le jeu
consiste en deux parties où l'un des joueurs commencera le jeu
dans la première et l'autre dans la seconde. Comme on a évidemment

^ik "h TT/ci 1

OU

1 1

nik — - + ccik nki - + ccki

avec ocik + aki 0, on aura

n i-l
avec a £ £ *jk(Pt<lk-Pk<h)

i l k l

Tout ce qui précède figure dans la première Note de Borel.
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Dans cette même Note, Borel prouve que, dans le cas où

n 3, «il est facile de trouver des nombres positifs pl5 p2, p3
vérifiant (1) et tels que a soit nul et donc P \ quels que soient
les nombres gx, g2, q3. Il est donc possible d'adopter une manière
de jouer permettant de lutter avec des chances égales contre
tout joueur ».

Dans sa dernière Note sur les jeux, Borel procède autrement
mais ramène au même problème mathématique. Au lieu de partir
de la probabilité pour le joueur A de gagner, il part du gain

moyen de A, soit gik quand A adopte le code Ct et B le code Ck.

La symétrie du jeu entraîne

9ik + Qu 0 •

Quand les codes Ct et Ck ne sont adoptés par A et B qu'avec les

probabilités pt et qk1 le gain moyen de A sera

G Z 9tk Pi 9k

Par une méthode différente de la précédente, Borel montre alors

que, pour n 3 et n 5, on peut trouver des probabilités qk

telles que G soit nul quels que soient les pt.
Le problème de démontrer qu'il n'en est pas ainsi avait été

d'abord prouvé insoluble pour n — 3 par Borel. Dans ses

Notes successives, il lui avait paru d'abord soluble pour n 5;
puis ayant pu prouver qu'il était insoluble pour n 5, il avait
à ce moment pensé qu'il était soluble pour n 7. Enfin, il
termine sa dernière Note en écrivant que ce même problème
« insoluble pour n 3 et n 5 me paraît également insoluble

pour n 7. Il serait intéressant, soit de démontrer qu'il est

insoluble en général, soit d'en donner une solution particulière ».

Il est clair que l'évolution de sa pensée le conduit à croire

que, quel que soit le nombre n des manières de jouer, on peut
choisir les probabilités qk pour B de choisir les codes Ck de sorte

que, quelles que soient les probabilités pt pour A de choisir les

codes Ch la moyenne du gain total de A et celle du gain total
de B soient toutes deux nulles.

Toutefois, on doit constater que Borel n'a pas démontré

qu'il en était ainsi quel que soit n et qu'il n'a même pas,
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contrairement à son habitude, exposé en détail dans un mémoire,

les Notes qui résumaient ses résultats dans les C.R.

On peut trouver l'explication de ces faits dans l'évolution de

ses activités. Borel, pendant une certaine période, a, en effet,

été pris de plus en plus par son activité politique (voir p. 12).

D'abord maire de sa ville natale, puis conseiller général de son

département, il a été élu député en 1924 et l'est resté jusqu'en
1936. Dans l'intervalle, il a même été quelques mois, ministre
de la Marine et nous avons même eu l'honneur de le remplacer
comme professeur et de le dispenser ainsi de faire ses cours à la
Faculté des Sciences. De sorte qu'après avoir posé le problème
et l'avoir résolu dans les cas les plus simples, Borel n'a plus eu le

temps d'étudier en détail le problème mathématique qui restait
à résoudre.

C'est après la dernière Note (de 1927) de Borel que von
Neumann en 1928, adoptant exactement les mêmes hypothèses,
a réussi à démontrer un théorème (dit du minimum — maxi-
morum) équivalent au théorème de Borel, dans le cas général
de n quelconque. Puis, associé avec l'économiste Morgenstern,
il en a tiré une théorie économique générale.

La théorie de von Neumann-Morgenstern a eu un retentissement

considérable, tandis que les Notes de Borel restaient
ignorées. C'est pourquoi nous avons décidé de rappeler l'antériorité

de Borel et nous avons publié dans « Econometrica » en

1953, une excellente traduction en anglais, réalisée par M. Savage
des trois Notes les plus importantes de Borel, avec un commentaire.

Nous avions auparavant communiqué ce commentaire à

von Neumann dont la réponse a été publiée dans le même
numéro d'Econometrica. Tout naturellement von Neumann a

réagi vigoureusement, alléguant que rien ne pouvait être retenu
de la théorie de Bore], avant sa propre démonstration du théorème

général. D'après lui « en 1921 et ultérieurement Borel
suppose que le théorème est ou risque d'être faux ». Mais si cette
assertion est rigoureusement exacte, elle doit être complétée par
la citation de Borel faite plus haut, montrant que Borel a fini
par pencher vers l'exactitude générale du théorème.

Von Neumann ajoutait «j'avais moi-même élaboré mes idées
sur le sujet avant d'avoir lu ses Notes (les Notes de Borel) ».
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Mais en tout cas, il en avait lu une avant de publier son premier
Mémoire (de 1928) où il cite lui-même cette Note de Borel.

Si notre publication dans Econometrica avait révélé à beaucoup

l'antériorité de Borel, elle n'avait pas atteint tous les
intéressés. C'est pourquoi, d'accord avec M. Guitton, rédacteur
de la Revue d'Economie politique, nous avons publié, dans
cette revue en 1959, à nouveau, mais cette fois en français, dans
le texte original, les trois Notes de Borel et notre commentaire
ainsi que la traduction du commentaire en anglais de von
Neumann.

Dans les innombrables publications sur les jeux psychologiques

et sur leurs applications à l'Econométrie, il ne sera plus
admissible d'ignorer l'antériorité de Borel.

Malheureusement, tel n'est pas encore le cas. En 1959, dans

une Notice, d'ailleurs très intéressante sur le grand mathématicien
que fut von Neumann, l'auteur commence ainsi:

« Theory of games.

The essential ingredients of von Neumann's theory of games are
already to be found in his 1928 paper

The first application of game theory to an economic problem
was given in a 1937 paper ».

Et sur ces deux sujets, le nom de Borel n'est même pas
mentionné. Or:

1° le premier mémoire de von Neumann sur la théorie des

jeux a été publié après la dernière Note de Borel sur le même

sujet, et en connaissance de la théorie de Borel, qu'il cite. Les

hypothèses à la base de la théorie de von Neumann sont en outre
identiques à celles de Borel.

2° Borel, et non von Neumann, a été le premier à signaler

que la théorie des jeux est applicable, non seulement à l'Economie

politique, mais aussi à l'art militaire, à la psychologie, etc.

Ceci dit, il faut reconnaître que von Neumann et Morgenstern
ont très bien développé l'application de la théorie des jeux à

l'Economie politique.



II. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la première guerre, — activités qui Font amené à étudier des

problèmes concrets — ont conduit Borel à s'intéresser de plus en

plus à la Physique. Mais cet intérêt s'était déjà manifesté auparavant

et pour des raisons toutes différentes.
Dès 1906, Borel s'occupe de la théorie cinétique des gaz et de

la loi de Maxwell correspondante, après avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour

y apporter la rigueur [96], il prépare le lecteur en étudiant d'abord
la répartition des petites planètes et montrant la nécessité de

donner un sens aux positions antérieures du problème. Dans le

cas des gaz, la discussion est un peu plus compliquée, mais elle

l'amène encore à rejeter les formes du problème antérieurement
admises et à leur substituer un problème qui, après une réduc
tion que nous allons expliquer, prend la forme G énoncée

plus loin.
On part d'hypothèses précises sur les molécules du gaz, qui

conduisent à ramener l'étude du gaz à celui du mouvement de

n sphères égales se mouvant dans un certain domaine où elles

peuvent se réfléchir à la suite d'un choc, soit sur les parois, soit
entre deux d'entre elles. Borel ramène le mouvement des n
centres des n sphères dans l'espace usuel à 3 dimensions au cas
du mouvement d'un point P dans un domaine D de l'espace
à 3 n dimensions, où les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

l'énergie, la vitesse de P est constante. Soit OV le vecteur
d'origine fixe 0, équipollent à cette vitesse. V se déplace sur
une sphère S. Borel énonce alors ainsi la forme finale, G, qu'il
donne au problème.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le problème est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dco de la surface de S
à une époque t comprise entre des limites connues, que l'on fera
ensuite croître indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est

proportionnelle à dœ, c'est-à-dire que toutes les directions de

OV sont également probables (pour un temps suffisamment long).
En précisant le calcul, Borel retrouve enfin la loi de Maxwell.

D'après lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini à l'infini en mathématique
et observe le parallélisme avec le problème de savoir si la Nature
est discontinue ou continue, ce qui entraîne la question de la

légitimité en Physique des théories moléculaires.
Borel note d'abord que c'est souvent «une simplification en

Mathématiques que de remplacer par l'infini un nombre fini très
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit à constater « que le calcul des intégrales définies est

souvent plus simple que celui des formules sommatoires». Mais il
étudie aussi le passage inverse de l'infini au fini, qui correspond
en physique à l'introduction des théories moléculaires. Il observe
alors que « les considérations basées sur l'existence des molécules

n'y jouent qu'un rôle auxiliaire ».

« La théorie moléculaire a donc été un guide précieux pour
l'analyste en lui suggérant la marche à suivre pour étudier les

équations du problème, mais elle est éliminée de la solution
définitive ».

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problèmes
où figuraient des variables continues en remplaçant celles-ci

par des variables discontinues et passant à la limite. Comme
le dit Borel, cette façon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
l'existence et la forme d'une limite et c'était là souvent un
problème très difficile. Depuis lors, la tendance s'est faite jour,
de plus en plus, d'éviter cette difficulté en cherchant à préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,

que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi à une solution s'appliquant directement au problème posé
dans le cas continu. C'est ainsi que l'étude des équations intégrales
symétriques faite par Hilbert en résolvant le problème difficile
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d'un passage à la limite s'est révélée à la fois plus simple et plus
élégante dans l'étude directe de E. Schmidt. Un exemple
analogue est fourni par la démonstration de Fredholm de l'existence
d'une solution de son équation intégrale. Sa marche est analogue
à celle de la solution d'un système de n équations linéaires à n
inconnues; mais si elle s'est trouvée ainsi guidée par l'étude de

ce problème, à aucun moment sa démonstration ne fait intervenir

le passage à la limite du cas d'un nombre fini de variables
à un nombre infini.

Borel revient au cas discontinu en observant qu'il « peut être
intéressant de se proposer, au point de vue purement mathématique,

l'étude directe de fonctions ou d'équations dépendant
d'un nombre fini de variables, mais très grand ». Il se trouve
alors ramené à une question qui lui tient à cœur et qu'il a souvent
agitée sous différentes formes:

« La première difficulté qui se présente lorsqu'on veut étudier
des fonctions d'un très grand nombre de variables, est la définition

précise d'une telle fonction, j'entends par là une définition
individuelle, permettant de distinguer la fonction définie de

l'infinité des fonctions analogues ». Borel se demande « si l'on
peut considérer comme donné » un ensemble de nombres dont
« la vie d'un homme ne suffirait à en énumérer une faible partie ».

Pour lui, un tel ensemble peut être considéré comme déterminé
« par la connaissance d'une formule assez simple pour être
effectivement écarté, tandis qu'il n'est pas possible d'écrire
effectivement autant de nombres distincts ». Il peut être
aussi déterminé en considérant l'ensemble comme l'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de

probabilité est donnée.
Ces considérations sont tout à fait justifiées quand il s'agit de

définitions et d'applications « constructives ». S'il s'agit de
définitions et d'applications « descriptives », la situation est
différente. La démonstration, par exemple, que le terme général d'une
série convergente tend vers zéro quand son rang croît indéfiniment,

nous paraît correcte sans que ce terme général soit représenté

par une formule simple ou qu'il relève du calcul des
probabilités et même si la vie d'un homme ne suffisait pas à
énumérer une faible partie de la suite des termes de la série.
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Cette observation n'enlève rien à l'intérêt de la distinction
que fait Borel des ellipsoïdes «très irréguliers» parmi les
ellipsoïdes dans un espace à un très grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatrièmes puissances des longueurs des axes n'est pas du
même ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D'après Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoïdes, d'exclure ces

ellipsoïdes très irréguliers. «Lorsqu'un ellipsoïde n'est pas très
irrégulier, plusieurs de ses propriétés nermettent de l'assimiler à

une sphère ».

« Une figure qui dépend d'un nombre extrêmement grand de

paramètres ne peut être considérée comme numériquement
déterminée que si ses paramètres sont définis au moyen de données

numériques assez peu nombreuses pour nous être accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il
convient souvent de remplacer une variable ayant un nombre de

valeurs fini mais très grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutôt que par une
variable continue comme on faisait en physique mathématique
classique où l'on supposait la matière continue.

Une autre des suggestions mathématiques qu'offrent les

théories moléculaires concerne les fonctions d'une variable
complexe. Pour le montrer, Borel considère le potentiel d'un système
formé d'une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d'un système plan et, par suite,
d'un potentiel dit logarithmique. Supposons, de plus, que les

masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais « l'hypothèse que les

masses attirantes sont de simples points matériels sans dimension

est difficile à accepter au point de vue physique. On est
ainsi conduit à disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel à l'extérieur de

ce cercle qu'on nommera le cercle d'action de son centre. On

répartit les masses et les densités de telle manière que la densité
s'annule ainsi que ses dérivées sur le périmètre du cercle; elle est
ainsi non seulement finie mais continue ».
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Borel démontre que, par une répartition convenable de la

densité, on arrive à un résultat qui peut étonner. On aurait pu
craindre qu'il n'y eût pas de place libre entre des points matériels
tellement serrés par hypothèse. En fait, Borel démontre « qu'il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction potentielle

logarithmique satisfait à l'équation de Laplace ».

Borel passe alors à la situation correspondante dans la
théorie des fonctions d'une variable complexe. Soit une fonction
à pôles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée

ayant la même valeur dans toutes les directions en chacun des

points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogènes résumée plus haut (p. 69),
mais reliée ici à une théorie physique moléculaire. C'est une
extension magnifique de la théorie des fonctions analytiques
grâce à laquelle Borel a pu dépasser l'extension précédente due
à Weierstrass.

A la fin du même mémoire, Borel survolant son sujet,
s'exprime ainsi: «C'est toujours au contact de la Nature que
l'Analyse mathématique s'est renouvelée, ce n'est que grâce à ce

contact permanent qu'elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-même ». On
ne saurait mieux dire, pourvu qu'on complète cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés à

réaliser un travail interne, consistant en une refonte continuelle
de l'armature des mathématiques, pour les simplifier et les
harmoniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n'a pour but que de dégager l'essentiel et le commun dans les

problèmes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables à de nouveaux
problèmes posés par la Nature.

V irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées



— 94 —

quand on change les signes des vitesses, ce qui revient à changer
le signe du temps. Ces équations ne permettent donc pas de

prévoir dans l'avenir une évolution différente de ce que serait
l'évolution en remontant vers le passé. Dès lors, il semble en
résulter que les phénomènes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les

conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothèse lui parait irréalisable. Cette exactitude
absolue devra laisser place à un certain flottement. Il en résulte

que l'avenir n'est pas entièrement déterminé, alors qu'on ne

peut parler d'une indétermination du passé. Il n'y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phénomènes

presque réversibles, dans d'autres ils seront irréversibles.
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