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Sei H eine teilweise geordnete Menge mit dem kleinsten Element 0.
Sei d eine Abbildung d: £ X E — H mit:

a) d(x,z) =0

b) d(z,y) = d(y, »)

c) zu a € H existiert b € H, sodass aus d (x,y) > b und d (y,2) 3 b
folgt, dass d (z, z) $ a.

Eine solche Funktion heisse eine Pseudometrik.
d induziert eine uniforme Struktur, wenn verlangt wird, dass die
Mengen

(]ala e il = {(xa y) cd (CC, y) > a; (L = 17 n)) a; 7/__ O}
eine Basis des Filters der Nachbarschaften bilden sollen.

Satz: Ein topologischer Raum ist genau dann uniformisierbar, wenn
er pseudometrisierbar ist.

Zum Beweise wird zu einer beliebigen gegebenen uniformen
Struktur eine Pseudometrik explizit angegeben, deren zugehorige
uniforme Struktur mit der gegebenen iibereinstimmt.

Friihjahrssitzung in Bern — 9. Juni 1963

Am 9. Juni 1963 fand im Mathematischen Institut der Universitét
Bern die Friihjahrssitzung der Gesellschaft statt. Es wurden zwei
grosse Vortrige gehalten:

1. Prof. Dr. A. Dorp (Universitat Ziirich): Ueber das verallgemeinerte
Schonflies-Theorem.

2. Prof. Dr. P. Henrict (ETH Zirich): Einige metrische Aufgaben
bet nicht-normalen Matrizen.

Ferner wurden Bericht und Antrige des Kuratoriums zur Forde-
rung der mathematischen Forschung entgegengenommen und gut-
geheissen.

Jahressitzung in Sitten — 31. August 1963

Die Schweizerische Mathematische Gesellschaft hielt am 31. Au-
gust in Sitten ihre Jahressitzung ab, im Rahmen der Jahresversamm-
lung der Schweizerischen Naturforschenden Gesellschaft. Den Vorsitz
hatte der Préasident der SMG, Professor B. EckmMANN, inne. Es wurden
sieben wissenschaftliche Vortrige gehalten, die untenstehend ent-
weder durch Titel oder durch Auszug angefiihrt sind.

In der Geschiftssitzung wurde der Vorstand der SMG fiir die
Amtsperiode 1964/65 wie folgt neu bestellt: Prdsident : Prof. Dr. J. pE
SieseNTHAL (Lausanne), Vizeprdsident: Prof. Dr. H. HuBer (Basel),
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Sekretir|Kassier : Prof. Dr. W. NeF (Bern); als Rechnungsrevisoren
wurden die Herren Professor WeeMiULLER und Dr. Rorm (Bern)
gewihlt. Ferner wurde die Ernennung von Herrn Professor Rolf NE-
vANLINNA zum Ehrenmitglied der Gesellschaft (10. Juli 1963) von den
anwesenden Mitgliedern durch Akklamation ratifiziert.

Wissenschaftliche Mitteilungen :

1. M!eS, Piccarp (Neuchatel): 1. Dépendance et indépendance linéaire
modulo n de vecteurs & composantes entiéres d'un espace vectoriel
& un nombre quelconque de dimensions; 2. Sur les groupes quast
libres.

2. W. Harcuer (Neuchatel): La notion d’équivalence entre systémes
formels.

3. C. Prron (Lausanne): Définition de Uespace de Hilbert comme géo-
métrie projective orthocomplémentée généralisée.

4. P. JEanquarTiEr (Lausanne): Distribulions invariantes.
5. K. Voss (Zirich): Ueber vollstindige Minimalflichen.

6. E. Krevszic (Graz): Eine Verallgemeinerung der Whittaker-
Bergman-Operatoren.

7. A. PrLucGeRr (Zirich): Ueber harmonische Funktionen tm Einheits-
krets mit Werten in.einem Banachschen Raum.

1. Sophie Piccarp (Neuchatel): Dépendance et indépendance linéaire
modulo n de vecteurs a composantes entiéres d’un espace vectoriel a
un nombre quelcongue de dimensions.

Soit E un espace vectoriel de dimension quelconque défini sur un
corps K de scalaires (par exemple sur le corps des réels) et rapporté
4 une base donnée quelconque { €, },AeA; soit {z*}, Aed,
I’ensemble des composantes scalaires d’un Veeteur quelconque z de E
dans cette base. Env1sageons I'ensemble Mt des vecteurs z de E dont
toutes les composantes z* sont des nombres entiers du corps K. Cet
ensemble I constitue un module par rapport a I’addition vectorielle.
I1 contient avec tout couple z,y d’éléments de E leur somme et leur
dlf‘ference Soit maintenant » un entier fixe = 2. Nous disons qu’un
vecteur z { z* } | A€, de M est congru au vecteur nul modulo n
et nous écrivons z = O (mod n) si on a z* = 0 (mod n) quel que
soit A € A. Soit S un systeme de vecteurs du module M. Si le systéme S
est fini, formé des vecteurs z, ..., 7,, nous disons que ce systéme est
hnealrement indépendant modulo n si la congruence vectorielle
Doy 2y 4 ... + o, 2, = 0 (mod n) implique que chacun des scalaires o;
est un entier du corps K, tel que «; = 0 (mod n), et nous disons que
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les vecteurs du systeme S sont liés linéairement modulo n §’il existe
un systeme d’entiers a,, ..., o, de K, dont I'un au moins n’est pas
congru 4 0 modulo n et tels que la congruence vectorielle I) a lieu.
Et, s1 le systeme S est infini, nous disons que les vecteurs de S sont
linéairement indépendants modulo » si tout ensemble fini d’éléments
de § est linéairement indépendant modulo #»; par contre le systéme S
est 116 modulo » s’ existe dans S au moins un systéme fini de vecteurs
qui sont liés linéairement modulo n.

Solent n, s, et t trois entiers, tels que n = 2, 1 = ¢ = s et soient
9.ni=1,..1 t vecteurs d’un espace vectoriel & s dimensions,
rapporté & une base donnée ¢, ..., e;. Soient al, ..., af les composantes

de ¢, dans cette base, soit 4 = (af) la matrice dont les vecteurs v,
sont les vecteurs colonnes.

Proposition 1. Pour que les ¢ vecteurs ¢, soient linéairement indé-
pendants modulo 7 il faut et il suffit que la matrice A soit de rang ¢
et que le p.g.c.d. de n et de tous les mineurs d’ordre ¢ de A4 soit
égal a 1.

Démonstration. La condition est nécessaire. En effet, supposons
— — e - ,

que les ¢ vecteurs ¢, ..., ¢; sont linéairement indépendants modulo n
et par conséquent que la congrulence 1) oq o, + ... + a, 0, = 0
(mod n) implique que a; = 0 (mod n), 1 = 1, ..., t. Soit r le rang de
la matrice A. On ne saurait avoir r < t, car si r était < ¢, 1l existerait
un systéme d’entiers oy, ..., «, dont 'un au moins est & 0 (mod n)
et qui satisferaient la congruence I’), ce qui est contradictoire. En
effet, la congruence vectorielle 1') implique les s congruences numé-
riques II) ogal + ...+ a4l =0 (mod n), t=1,2,....,s. Or, le
systéme de congruences II) équivaut aux systemes d’équations
linéaires III) oy af + ... + o, @ = vi n, t = 1, ..., s, ol les entiers v;
sont arbitraires. On peut donc poser v; =0, 1 =1, ..., s, ce qui
donne le systéme homogeéne II1") oy af + ... + a,al = 0,1 =1, ... s,
ou les inconnues sont-ay, ..., «,. Le rang r de ce systéme est, par hypo-
these, < t. Il est, d’autre part, = 1 puisque le vecteur nul ne figure
pas parmi des vecteurs indépendants et par conséquent aucun des
vecteurs v; n’est nul. Donc A contient des éléments non nuls. Soit &
le déterminant mineur principal de A, que nous supposerons formé
des éléments communs aux r premiéres lignes et aux r premiéres
colonnes de A. (Le raisonnement est analogue quelles que soient les
rangées de A qui contribuent & former §). Pour résoudre le sys-
teme III), il suffit alors de résoudre les r premieres équations de ce
systéeme par rapport a o, ..., o,. Cette solution peut se mettre sous

-—OC+ 5'+ ‘_‘..-—‘“até‘t . N
la forme IV) a; = gl m 18 Boi=1, .1, 00 84y

désigne le déterminant qui se déduit de é en y remplacant la imecolonne
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par celle des coefficients de o, ; dans les r premieres équations 111%).

Si & = 0 (mod. n), posons &, ; = ... = &, = 0. Gomme aucun de
ces nombres n’est un multiple de n, on trouve ainsi un systéme de
valeurs entiéres de ay, ..., @, qui ne sont pas toutes = 0 (mod n) et

qui satisfont la congruence vectorielle '), ce qui est contradictpire.
Et, si 6 = 0 (mod n), soit n™ la plus grande puissance de n qui est
diviseur de 8, soit d* le p.g.c.d. de tous les nombres d;,, ;,t =1,...,7,]
=1, ..,0—r. Si d* est un multiple de »n™, posons dans les for-

mules IV), o,y = ... = a, =0 oud = n—(?” % (0 (mod n). Ces formules

fournissent des valeurs entiéres de o, ..., &, et oy, ..., o, est une solu-
tion de I) ou les «; ne sont pas tous multiples de n, ce qui de nouveau
est contradictoire. Et si d* n’est pas un multiple de »™, soit »™ la
plus grande puissance de n qui est un diviseur de d*, soit d* = d'n™.
11 existe dans ce cas un couple d’indices ¢ et j, tels que 0., ; = hn™,
ot Pentier & est £ 0 (mod n). Posons, dans ce cas, o, ; =n""" 9’
et o;; = 0 quel que soit I'indice j" # 7 de la suite 1, ...,t—r.
Les formules IV) fournissent alors des valeurs entieres de ay, ..., «,
et 'ensemble des entiers oy, ..., &, dont 'un au moins o; =h £ 0
(mod n), satisfait la congruence vectorielle 1) ce qui est contradictorre.
On voit donc que sir < ¢, les ¢ vecteurs o, ..., ¢; sont liés linéairement
modulo n. Si done les vecteurs ¢, ..., v; sont linéairement indépen-
dants modulo n, ce que nous supposons, on a r = t. Il s’ensuit que
t" > s vecteurs de I sont toujours liés linéairement modulo n.
Supposons maintenant que r =t et montrons que si les ¢
vecteurs ¢, ..., ¢, sont linéairement indépendants modulo n,onad = 1.
En effet, supposons le contraire et admettons que le p.g.c.d. d de n et
de tous les déterminants mineurs d’ordre ¢ que ’on peut déduire de
la matrice A est > 1. Soit p un diviseur premier quelconque de d,
soit p™ la plus grande puissance de p, diviseur de tout déterminant
mineur d’ordre ¢ de A et soit 6 un déterminant mineur d’ordre ¢ de A4,
tel que 6 = ¢'p™, &' £ 0 (mod p). Prenons & pour déterminant
principal du systeme d’équations III), équivalent a I’équation vecto-

rielle I'), ou r = ¢. Comme les vecteurs ¢, ..., v; sont, par hypothese,
linéairement indépendants modulo n, les seules valeurs de ay, ..., a,

qui satisfont 'ensemble des équations I1I) sont celles ou chacun des «;
est un multiple de n. Supposons, pour fixer les idées, que ¢ est formé
des éléments communs aux ¢ premiéres lignes et aux ¢ colonnes de A
(le raisonnement est analogue dans les autres cas). Résolvons les
équations principales du systéme III) par la régle de Cramer. Il

: o; . , : : :
vient o; = n <, ou J; est le déterminant qui se déduit de § en y

Vi
remplagant la ime colonne par | - |, quel que soit i = 1, ..., 1.

Vit
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Développons d; suivant les éléments de sa ime colonne. Il vient
6; =v; A} + ... + v, AL ou AJ deésigne le coeflicient de o/ dans le

développement de 6, quels que soient i, j = 1, ..., #. On ne saurait
avoir A} = 0 (mod p™), quels que soient 7, j = 1, ..., ¢, car, dans le
cas contraire, le déterminant 4 adjoint de 0, serait un multiple de p™.
Mais 4 = §'~! et, comme p est premier, que § = §'p™ et que §" £ 0
(mod p), il s’ensuit que 6! est multiple de p™*~1) mais non d’une
puissance plus élevée de p, ce qui contredit légalité 4 = § 1,
puisque 4 est multiple de p™. On voit donc bien que tous les éléments
de 4 ne sauraient étre des multiples de p™. Soit i, j, un couple d’in-
dices de la suite 1, ..., ¢, tel que A{g =hp", L =m <m, h £0

(mod p) et que pout tout couple d’indices i, j compris entre 1 et ¢,
A7 = 0 (mod p™). Posons v,, = &' p™~™ ', v; = 0 pour tout j = j,
~de la suite 1, ..., z. On obtiendra un systeme de valeurs de ay, ..., o,

dont I'une au moins a;, = — A n’est pas un multiple de n. On démontre
p

sans peine qu’il est toujours possible de choisir les entiers v, 4, ..., vs
de facon a annuler tous les déterminants caractéristiques du
systeme III). On voit donc que sid > 1,1l existe un systeme de valeurs
entiéres de «y, ..., «,, dont 'une au moins n’est pas un multiple de n
et qui satisfont I'équation vectorielle I'), ce qui est contradictoire,
puisque ¢y, ..., ¢, sont par hypothése linéairement indépendants. La
condition énoncée est donc bien nécessaire. Elle est aussi suffisante.
En effet, supposons que r = ¢ et que le p.g.c.d. d de n et de tous les
déterminants mineurs d’ordre ¢t de 4 (dont 'un au moins est # 0)
est = 1. Il s’agit de montrer que les vecteurs ¢, ..., v; sont linéaire-
ment indépendants modulo n. Décomposons n en facteurs premiers.
Soit n = pft .. pj’* cette décomposition. Comme d = 1, 11 existe
pour tout ¢ = 1, ..., A, un déterminant mineur §; d’ordre ¢, non nul,
déduit de A, qui n’est pas divisible par p;. Prenons successivement
chacun des déterminants dy, ..., 0y pour déterminant principal du
systeme d’équations III) et résolvons successivement les ¢ équations
principales correspondantes par la régle de Cramer. On trouve

0;; : :
V) a;=n ?;—2, ou t=1,..,h]=1,..,¢ et comme pour tout
indice ¢ donné (1 =1 =1t), le déterminant §, n’est pas divisible
par p;, donc a plus forte raison pas par p!"i, st m; > 1, il s’ensuit

que o; défini par la formule V) est un multiple de pI"* qui est un

diviseur de n. Cela étant quel que soit 1 = 1, ..., h, on voit bien que
les entiers o, ..., o, qui satisfont le systéme d’équations I1I) sont tous
des multiples de n. Or le systeme III) équivaut & la congruence
vectorielle I'). Si dene d = 1, la congruence 1') implique que
o; =0 (mod n), j =1,..., et, par suite, que les vecteurs o,, ..., v;
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sont linéairement indépendants modulo n. La condition énoncée est
donc aussi suffisante et la proposition 1 est démontrée. .

Soit maintenant £ un espace vectoriel de dimension infinie, défini
sur un corps K de scalaires, rapporté a une base donnée { e } , 1€ 4,
soit § un systéme fini ou infini de vecteurs de £, & composantes
entiéres, et soit n un entier = 2. Tout vecteur de I'espace £ est une
combinaison linéaire d’un nombre fini de vecteurs de base. Quel que

soit Ientier t = 1 et quels que soient ¢ vecteurs ¢, ..., 9, de E, il
existe un systéme finie;,, ..., ;, de vecteurs de la base donnée de £,
tels que chacun des vecteurs v; est une combinaison linéaire de
ces u vecteurs. Soit ¢; = aléy, + ... + a'ey,, 1 =1, .., et soit
p = (af) la matrice des composantes a/ , j = 1, ..., u, des vecteurs
¢, ..., v; relatives aux vecteurs de base ¢, ..., €1,. Nous dirons que y

est la matrice des composantes essentielles associées a ce systeme.
Toutes les composantes de chacun des vecteurs ¢; qui ne figurent pas
dans u sont nulles, la matrice u elle-méme pouvant également contenir
des éléments nuls.

PropositioNn 2. La condition nécessaire et suffisante pour que les
vecteurs du systeme S soient linéairement indépendants modulo 7,
c’est que, quel que soit Pentier ¢ = 1 et quels que soient ¢ vecteurs
du systéme S, la matrice u des composantes essentielles associée
a ces vecteurs soit de rang ¢ et que le p.g.c.d. de n et de tous les
déterminants mineurs d’ordre ¢ que I'on peut déduire de p soit

» égal a 1.

La dépendance et I'indépendance linéaire modulo n de vecteurs
a composantes entieres joue un role important dans bien des problémes
de la théorie des groupes et en particulier dans celle des groupes
quasi libres.

2. Sophie Prccarp (Neuchdtel): Les groupes quasi libres 1.

Soit G un groupe multiplicatif et soit 4 = {a,}, L e A, un
ensemble de ses éléments générateurs. Une relation entre les
¢lements de A est appelée quasi triviale si elle est de la forme
1) f(all, s @y ) =1, o 1 est élément neutre de G et f est une

composition finie de certains éléments a,, i = 1,2, .... &, de A, de

degré nul par rapport & chacun d’eux. Le groupe G est appelé quast
ltbre 8’1l est engendré par un ensemble A4 d’éléments qul ne sont liés

1) La démpnstration des résultats indiqués dans cette Note est donnée dans 'ouvrage
de S. Piccard: Les Groupes quasi libres, Paris, Gauthier-Villars (Sous presse).
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que par des relations quasi triviales et les éléments de A sont dits
quasi libres. Soit n un entier = 2. On dit que le groupe G jouit par
rapport a chaque élément de son systéme générateur A de la pro-
priété P (mod n) si toute relation 1) entre éléments de A est telle
que son premiler membre f est de degré ¢; = 0 (mod n) par rapport
aay, t=1,..k Tout élément de G qui fait partie d’'un systéme de
générateurs de G liés uniquement par des relations quasi triviales est
appelé quasi libre. Un groupe quasi libre jouit par rapport & tout
élément d’un quelconque de ses systémes de générateurs quasi libres
de la propriété P (mod n), n = 2, 3, ....

Soit G un groupe quasi libre et soit A un systeme de générateurs
quasi libres de G. Tout élément a du groupe G possede alors un degré
fixe par rapport & tout élément de A en ce sens que, quel que soit A € 4,
toute composition finie d’éléments de A qui représente a a le méme
degré par rapport & a,. Soit @ un élément quelconque de G et soit pu,
son degré par rapport a a,;, quel que soit A € A. Nous dirons que a

a,

appartient a la classe M(“ ), A€ A. On répartit ainsi les éléments

A
de G en classes d’équivalence, disjointes deux a deux, d’égale puis-
sance. On peut définir pour ces classes M une loi de composition
commutative et associative, appelée produit, comme suit. Soient

M (iz) et M (3’1) deux classes M. Leur produit est I'ensemble des
A 2

a,

éléments de G de la forme ab, ou ae M< ) et be M(gl) Ce produit

A A

a,
est la classe M * ). Avec cette loi de composition, les classes M
Batv,

forment un groupe abélien I" associé a G. L’élément neutre de I" est la
classe (M = M <gl>, L€ A, dite classe M nulle.

Un systeme de générateurs A d’un groupe G est dit irréductible si,
quels que soient les entiers &k et m (1 =k < m), 1l n’existe aucun
systeme formé de & éléments de G, que I'on puisse substituer & m
éléments de A et obtenir un nouvel ensemble A* générateur de G.
Lorsque le systéme A est irréductible, nous disons qu’il constitue
une base de G. Un groupe qui possede des bases est appelé fonda-
mental.

Tout groupe quasi libre est fondamental et tout systéme de géné-
rateurs quasi libres constitue une base de ce groupe. Le groupe
abélien I' est également fondamental et, si A est d’ordre fini n,
I' est également & base d’ordre n.

Un nombre fini quelconque m de classes M: M, =1, ..., m,
sont dites indépendantes si la relation ((M)™t ... (mM)"m = (M, ou
Ny, ..., tm sont des entiers, implique que n; = ... = nm = 0. Un



sous-ensemble infini de I est dit indépendant si chacun de ses sous-
ensembles finis est formé de classes M indépendantes.

Soit 9 un ensemble ordonné de classes M. Chacune d’elles est
formée d’éléments de G de degré non nul tout au plus par rapport a
un nombre fini d’éléments de A. Pour tout ensemble fini 9t de
classes M dont I'une au moins n’est pas nulle il existe un ensemble
fini? A* d’éléments de A, tels que P'un au moins des’éléments de G
faisant partie d’une classe M de M est de degré # 0 par rapport a

Pélément envisagé de A*. Soit A* = {a;,a;, .., a; b, M =
LM, oM, ..., M} et soit ¢;; le degré de tout &lément de la classe M
par rapport a l’élément a; (t=1,..,87]=1,..,r). Nous disons

que ¢;; est le degré de la classe M de It par rapport a a,; et nous

appelons la matrice (¢;;), formée de s lignes et de r colonnes, la matrice
des degrés de Pensemble P par rapport aux éléments de A*. La
condition nécessaire et suffisante pour qu'un ensemble 9 de puissance
quelconque de classes M soit indépendant c’est que, quel que soit
le sous-ensemble fini I+ de I, formé d’un nombre £ = 1 quelconque
de classes M, M* ait une matrice de degrés, par rapport aux éléments
de I’ensemble correspondant A* de rang .. Une classe M est dite

a : -
unité st M = M(pf’) ou, pour une valeur unique de l'indice 4 € A,
A

u;, = 1, alors que pour tout A* # 1 de l'ensemble des indices A,
on a u;* = 0; de facon plus précise, une telle classe M est une classe
unité relative a I'élément a, de A. Tout ensemble de classes M unités
par rapport a des éléments d’'une méme base de & est indépendant et
Iensemble de toutes les classes M unités par rapport aux divers
éléments de A constitue une base du groupe I'. La condition nécessaire
et suffisante pour qu'un ensemble M de classes M, générateur du
groupe I', constitue une base de ce groupe c’est qu’il soit formé de
classes M indépendantes. I’indépendance du systéeme entraine son
irréductibilité et vice-versa, I'irréductibilité implique I'indépendance
des éléments de IN.

Lorsque l'ensemble A de générateurs quasi libres de G est fini,
formé de n éléments a4, a,, ..., an, tout systéeme de n éléments de G,
générateur de ce groupe, constitue une base de G et il est formé
d’éléments quasi libres. Quelle que soit la base B = { by, ..., bx } de G,
les classes M qui contiennent les éléments de B sont indépendantes et
forment une base du groupe I'. Tout élément quasi libre fait partie
d’une classe M et d’une seule et aucune classe M ne saurait contenir
plus d’un élément d’une méme base A de G. Les classes M ont un
caractere intrinseque, indépendant de la base A de G a partir de
laquelle elles sont définies. L’ensemble des éléments de la classe M
nulle constitue un sous-groupe invariant de G.

1) Non majorable.
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Les groupes quasi libres sont plus généraux que les groupes libres
et les comprennent comme cas particulier. Un groupe quasi libre peut
avolir un sous-groupe non fondamental.

2. William S. Harcuer (Neuchatel): La notion d’équivalence entre
systemes formels.

Nous dirons qu’un systéme formel logique F est un triple ordonné
(S5, A, R) ou § est un ensemble récursif non-vide, dit ’ensemble des
énoncés de F, A est un sous-ensemble récursif non-vide de S, dit
Iensemble des axiomes de F, et R est un ensemble fini de relations
récursives sur S (chaque relation étant de degré supérieur a 1), dit
I'ensemble des régles primitives d’inférence. Soit ay, ay, ..., an—1 (n > 1)
une suite finie d’éléments de S. Nous disons que ’énoncé = de /' (donc
x € §) est inféré de cette suite par la regle primitive R,, (de degré n)
si et seulement si la relation R, (a,, ay, ..., @n-1, z) tient. Pour X < S,
y € S, nous disons que y est déductible de X dans F, et nous écrivons
X |5 v, si et seulement §’il existe une liste finie d’éléments de S

dont y est la derniére ligne et telle que chaque membre z de la liste
est, soit: 1) un axiome de F'; 2) un élément de X 3) inféré d’une per-
mutation quelconque des membres antérieurs & z dans la liste par
une regle primitive d’inférence.

Pour X < §, soit K, (X) I’ensemble de tous les éléments y de S
tels que X |- y. Nous montrons que K, est une fermeture de Moore

sur S (mais pas, en général, une fermeture topologique). (S, K>
est donc un espace de Moore univoquement rattaché au systéme
formel /7. Nous définissons l’isomorphisme de deux systémes for-
mels /' et F’' comme étant I'isomorphisme des deux espaces de
Moore (S, K> et {S', K, > qui sont respectivement rattachés a F
et a f’. ,

Soit e la relation d’équivalence sur S définie parz ey < K, ({z})
= K ({y}). Considérez I'espace de Moore quotient F* = (S/e, Kp,>
par la relation e, et appelons I'* le quasi-systéme rattaché au systeme
formel F. (Nous montrons que X < § = K, (X) < /e, d’ou il suit

que X < S/e = K,, (X) = K, (X). La fermeture sur S/e est donc la

méme que celle sur S, & part des distinctions logiques entre ces deux
ensembles. Mais, malgré cette compatibilité des fermetures, le quasi-
systéme F* ne constitue pas lui-méme un systéme formel en général,
comme nous le montrons). Nous disons que deux systémes formels
F et F' sont équivalents si et seulement sileurs quasi-systemes respectifs
sont isomorphes.

Ces définitions, qui ne s’appuient que sur la structure déductive
d’un systéme formel et non sur une interprétation ou un modéle,
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nous permettent de caractériser d’une facon abstraite la structure
déductive d’un systéme formel. Nous demontrons par exemple, le
théoreme suivant:

Pour qu’un systéme formel F quelconque soit équivalent au Galcul
des propositions classique P, il est nécessaire et suffisant que 1) S/e

soit (dénombrablement) infini, 2) le couple ordonné {(S]e, 0

T )

. - ) : . 0
soit un treillis Booléen sans aucun atome, ou la relation ]F* est la

relation } restreinte aux éléments de S/e. ,;* , ainsi définie, est
toujours un ordre partiel sur S/e, comme nous le montrons).
3) X « S/e, X fini, entraine que X'—F—*—y < inf. X

élément de S/e.

Dans ce théoreme, la formulation du Calcul des propositions P
implicitement utilisée est celle qui évite une régle primitive de substi-
tution en posant une infinité d’axiomes. 1l est intéressant de noter
que certaines autres formulations habituelles (par exemple celles qui
font appel & la regle primitive de substitution) ne sont pas équivalentes
a P.

0 ;
-+ Y, ou y est un

4. Pierre JEaANQuUARrTIER (Lausanne): Distributions invariantes.

Soit 9’ 'espace des distributions sur R**1 3 (2, ..., 24, 1) = (2, 1),
et soit @ un nombre réel positif. Nous dirons que f € 9’ est invariante
st f (px,t) = [ (x, t) pour toute rotation p de R™ et que f est homogéne
de degré v si f (hx, \"t) = \'F (z, t) pour tout x> O. Désignons par
A le sous-espace de 9’ formé des distributions invariantes et homo-

génes de degré v. Dans ouvert |z| = 0 de R"*1, on peut écrire tout
élément f e/ sous la forme

fxt)=lz|"h (||

ou £ (s) est une distribution d’une seule variable s; si @ (z, t) € D est
& support compact dans |xz| % 0, on a alors {f (z, 1), o (x, 1))
= <A (s), ®, ¢ (s)>. On peut prolonger o en une application linéaire
continue de & sur un espace K de fonctions C* d’une variable,

muni d’une structure topologlque convenable, de fagon que appli-
cation transposée o', du dual K’ dans &', 1ndu1se un i1somorphisme

d’un sous-espace Hv de K’ sur %”v, Soit Nv I’ensemble des entiers
k = 0 tels que — (v+n-+a-+ka) soit entier pair = 0. Si N est vide
ona H = K Localement, les éléments de K sont des distributions;
toutefois un élément non nul de K peut &tre nul localement.
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Prenons a = 22 , P et g entiers premiers entre eux > 0, et consi-

dérons par exemple 'opérateur différentiel

1 d\M hp
D :<Zﬂ> (AP, S H
h entier > 0, ¢ nombre complexe non nul. Envisageons quatre cas:
1) hq pair, ¢ non réel > 0; 2) hg pair, ¢ réel > 0; 3) hg impair, ¢ non
réel; 4) hq impair, ¢ réel. Par transformation de Fourier et a l'aide
des isomorphismes o, on montre que la codimension de I'image de D
est égale au nombre d’éléments de Nﬂ, - Nu,, avec: p" = v + 2hp,
v’ = v' dans les 1¢r et 3¢ cas, u' = v + 2p dans le 2¢ cas si ¢ est pair
et dans le 4¢ cas, p’ = v 4+ 4p dans le 28 cas si ¢ est impair, ou
Vi = — (v+n+a).

En particulier, D n’admet une solution élémentaire invariante et
homogéne que st NV _,, n’a pas d’élément pair, contient au plus un
élément pair, est vide ou contient au plus un élément, suivant que
I’on considere le 1er, 2¢  3e ou 4° cas.

5. K. Voss (Ziirich): Uber vollstindige Minimalflichen.

Es wird bewiesen:

Saiz 1: Es gibt bis auf Ahnlichkeit genau zwei vollstindige Mini-
malflaichen mit eineindeutiger sphérischer Abbildung: Die
Ennepersche Minimalfliche und das Katenoid.

Bei der Enneperschen Fliache ist das sphérische Bild die einfach
punktierte Kugel, beim Katenoid die Kugel mit Ausnahme von zwei
Diametralpunkten.

Der Beweis erfolgt in vier Schritten:

1. Eine vollstdndige Fliche im Raum mit eineindeutiger sphé-
rischer Abbildung hat hochstens vier Enden.

Dies folgt aus der Cohn-Vossenschen Ungleichung: Die totale
Gauss’sche Kriimmung einer Flache mit vollstdndiger Riemannscher
Metrik i1st hochstens gleich 2ny (y = Euler-Charakteristik). In unse-
rem Falle ist y = 2— Anzahl der Enden.

2. Bei einer vollstdndigen Minimalflache mit eineindeutiger spha-
rischer Abbildung wird jede Normalrichtung mit hochstens vier
Ausnahmen angenommen.

Hierzu ziehen wir einen Satz von Osserman und Ahlfors heran
(siehe R. OssErMAN, Comment. Math. Helo. 35 (1961) 65-76): Bei

TS vven s

S R T
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einer vollstéindigen, nicht ebenen Minimalfliche bilden die Ausnahme-
werte der sphirischen Abbildung eine Menge der Kapazitdt Null.
Die zusammenhingenden Komponenten der Ausnahmemenge sind
daher einpunktig (sonst wire die Kapazitdt positiv), und wir haben
héochstens vier solche Komponenten.

3. Ich beweise folgenden lokalen funktionentheoretischen Satz:
Satz 2: Ist f(z) in der Umgebung von z, analytisch und = 0, und

ist z, wesentliche Singularitat, so gibt es einen gegen z,
strebenden Weg, auf dem [|f|]dz| < oo ist.

4. In der Weierstrass’schen Darstellung des Ortsvektors x unserer
Minimalfldche

2 2
L—2 ii—l_“,z}f(z)dz

dx = He{ 5 5
ist f analytisch auf der Kugel mit hochstens 4 Singularitdten. Aus
Satz 2 und der Vollstdndigkeit folgt f = 1/p mit einem Polynom p
von hochstens drittem Grade. (Ausnahmewerte der sphérischen
Abbildung sind die Nullstellen von p und der Punkt co0.) Ferner muss
dx eindeutig integrierbar sein. Dies trifft nur fir f = 1 und f = 1/22
zu; dem entsprechen die beiden Fldchen des Satzes 1.

Falls p ein beliebiges Polynom vom Grade = 3 ist, so erhélt man
durch Bildung der universellen Uberlagerung neue Beispiele voll-
stdndiger Minimalfldchen, bei denen die Ausnahmemenge aus genau
k =< 4 beliebigen Punkten der Kugel besteht. Eine Flache mit Aus-
nahmewerten 0, o, 4+ 1 war schon von Osserman konstruiert worden.

6. Erwin Krevszic (Graz): Eine Verallgemeinerung der Whittaker-
Bergman-Operatoren.

Betrachtet werden lineare Operatoren T im Raum der komplex-
analytischen Funktionen f mit dem Wertebereich im Raum der
Losungen w einer linearen partiellen Differentialgleichung

Lw =0 (1)

in NV unabhéngigen Verdnderlichen und von 2. Ordnung. Mit Hilfe
solcher Operatoren lassen sich aus funktionentheoretischen Ergebnis-
sen Sétze {iiber allgemeine Eigenschaften (Singularititen, Wachs-
tum usw.) der genannten Liosungen gewinnen. Dabei erhebt sich die-
grundlegende Frage, wie man unter den zahlreichen denkbaren
Operatoren diejenigen bestimmen kann, die die Eigenschaften der
analytischen Funktionen f in iiberschaubarer Weise transformieren.
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Fir NV > 2 betrachten wir hier nur die Laplace-Gleichung. Es sei

£ = (&, .yxy) und ¢ = (v,, ..., 0y_,). Ist f (u, ) analytisch in

N
- . —
1= a .2z und ist a = (a

1 1’ .o

.vy @) 1s0trop, so ist

o~

1

N-2

h@)=Ti= 1 Tif, Tif=[i(we)dy (2
C

j=1

eine harmonische Funktion von /NN Verdnderlichen. Fiir jedes
N = 3, 4, ... existieren beliebig viele solche Operatoren 7', die sich

vonelnander durch das-zugehéorige « unterscheiden. Darunter befinden
sich als Sonderfalle Operatoren von E. T. Whittaker und S. Bergman
(N = 3) sowie von A. Erdélyi und R. P. Gilbert (N = 4). Fir N = 3
und NV = 4 kann man jeweils eine Klasse von Operatoren 7 angeben,
die sich zur Behandlung des Koeflizientenproblems bei Entwicklungen

von h(;) in eine Reihe harmonischer Polynome eignen. Letztere
besitzen gewisse Orthogonalitdtseigenschaften und sind im Falle
N = 4 mit den Jacobischen Polynomen verwandt.

Fir N = 2 ist der Fall der Laplace-Gleichung trivial, und wir
betrachten

52
0x, 0,

0
+ a (x4, Ty) e + b (xq, xo) . (3)
2

Zugehorige Operatoren haben die Form
w=Tf= (J;g (21, 29, 1) [ (@ (24, 1)) dt (4)

mit festem ¢ und von (3), aber nicht von f abhéngigem g. Man
gewinnt g nédmlich als Losung einer partiellen Differentialgleichung
Mg = 0. Dabei soll g « moglichst einfach », die Koeflizienten in (3)
aber trotzdem moglichst allgemein sein. H. Florian hat kiirzlich ein
Verfahren entwickelt, das derartige Funktionen g liefert. Diese
Methode lédsst sich auch im Zusammenhang mit einem von M. Eichler
angegebenen Operator anwenden.

Abschliessend werden einige offene Fragen gestreift. Dabei wird
auf die Bedeutung der Operatoren bei der Untersuchung spezieller
Funktionen hingewiesen. Eine grundlegende Arbeit in dieser Richtung
ist die Dissertation von P. Henricl.

7. A. PrLuGER (Ziirich): Ueber harmonische Funktionen tm Etnheits-
kreis mit Werten tn etnem Banach’schen Raum.

Die Resolventen unitdrer Operatoren auf einem Hilbert’schen
Raum sind Beispiele fiir analytische Funktionen vom Einheitskreis
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in einem Banach’schen Raum. Die Darstellbarkeit dieser Resolventen
als Integrale der Form
2n
1

|

3 2

d¢ (),

wo ¢ eine Zerlegung der Einheit ist, legt die Frage nahe, ob die
klassischen Sétze iiber die Darstellbarkeit als Stieltjes’sches Integral
und die Existenz radialer Grenzwerte fast iiberall auf die genannten
Funktionen iibertragen werden konnen. Es gilt der folgende

Satz A: F sel eine harmonische Funktion vom FEinheitskreis
{z]|z] <1} in einem komplexen Banach’schen Raum B

und
lim |1 7 (") || d6 < o

r— o

(lim existiert, da || F || subharmonisch ist). Dann gibt es
eine Funktion ¢ von beschréankter Schwankung vom Inter-
vall [0,2 7] in B mit

S S El
F@)= [ —F—""=d¢ (5), |[z]<1.
0 ¢ — 1|

Fir analytisches F' gilt insbesondere

2z

Zum Beweis betrachtet man die Abbildung A, von C,,n B:
2n '
A, ()= J1O)F()ds, fec,,.
0

Sie konvergiert fiir 7 — 1 gegen eine beschrénkte lineare Abbildung A

und es ist
1 1 —|z|2
EA(leia—z,2>:F(Z)‘ | (1)

Hatte der Satz von F. Riesz iiber die Darstellbarkeit beschrinkter
linearer Funktionale auf C,_ durch Stieltjes’sche Integrale hier ein

Analogon, so wire man fertig. Hiefiir ist aber die Bedingung der
Beschranktheit zu schwach. Hingegen ist die folgende Bedingung
notwendig und hinreichend: Es sei j ein offenes Intervall in (0,2 7)
@; seine charakteristische Funktion und

Y

o(j)=sup||A())| fir feC, und 1] < o).
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Dann gibt es eine Konstante K, sodass fiir irgendwelche fremde Inter-
valle 7, ..., Jn In (0,27) gilt '

o(j)) +..-+o(n) < K.

Ein solches A nennt man wohl Abbildung von beschrankter Schwan-
kung. Es gilt: Zu einer linearer Abbildung A von C,_ in B gibt es eine

Funktion ¢ von (0,2 n) in B, die von beschrinkter Schwankung ist,
mit
2z

A= J1d)dp (d), [feC,,, (2)

0

dann und nur dann, wenn A von beschridnkter Schwankung ist.
Ist B der Korper der komplexen Zahlen, so ist jedes beschrinkte A
auch von beschrénkter Schwankung, da zu jeder komplexen Zahl ¢
ein reelles o mit e ¢ = |c| existiert.

Es 1st leicht zu zeigen, dass das eingangs mit /' konstruierte A
von beschréankter Schwankung ist. (1) und (2) ergeben dann sofort
die Behauptung des Satzes.

Wie im klassischen Fall zeigt man: Wo ¢ differenzierbar ist,

existiert der Grenzwert lim F (re®). In einigen Banach’schen Rédumen,
r—>1

z.B. den gleichméssig konvexen, gilt auch das Analogon zum
Lebesgue’schen Satz von der « Differenzierbarkeit fast iiberall » einer
Funktion von beschréankter Schwankung ') und damit in Verbindung
mit Satz A das Analogon zum Satz von Fatou von der Existenz
radialer Grenzwerte fast tiberall.

1) J. A. CLARKSO.N, Uniformly convex spaces. Trans. Amer. Math. Soc., 40 (1936),
396-414.




	Jahressitzung in Sitten — 31. August 1963

