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CALCUL PRATIQUE DES COEFFICIENTS DE TAYLOR
D’UNE FONCTION ALGEBRIQUE

par L. COMTET

Soit y une fonction de la variable complexe z, analytique
dans un voisinage de {:

o0

y = Z an(x——C)".

n=0

Il est souvent commode pour obtenir rapidement les coefficients

a, de la série (1) de prouver que y satisfait & une équation

différentielle linéaire dont les coefficients sont des polynomes
en z: dans ce cas, les a, sont fournis par une récurrence linéaire
dont les coefficients sont des polynomes en n, et leur calcul de
proche en proche devient trés aisé; on pourra méme en déduire
une formule explicite pour a, dans le cas ou la récurrence ainsi
introduite a la forme:

Pm)y-a,+QMm)-a,+, =0.

Par exemple, au voisinage de 0O, les fonctions: y = e*,
y = Log (14+2), y = (14 2)", vérifient respectivement les
équations  différentielles: y —y =0, (1+2)y —1 =0,
Yy (142) —ay = 0, ce qui conduit & la forme bien connue de
leurs coefficients a,, . |

Dans cet ordre d’idées, il peut étre intéressant de mettre
I’accent sur le fait suivant:

Prorosition. — Toute fonction algébrique d’ ordre n vérifie une
équation différentielle linéaire dont les coefficients sont des poly-
nomes et dont l'ordre est au plus égal a (n—1).

(1
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Démonstration. — Nous supposerons la fonction algébrique y.
définie par:

fx,9) =4, Y + 4, Xy 4+ +4,Xy+4,x =0 (2

ou les 4; (x) sont des polynomes en z & coefficients complexes;
en outre, le polynome f est supposé irréductible.
Nous utiliserons essentiellement le résultat suivant:

C(x, y)
B(x, )

Toute fraction rationelle de x et y (y défini par (2)) (3)

peut se mettre sous la forme d’'un polynome en y, de degré au plus
égal a (n—1), et dont les coefficients sont des fractions rationnelles
en x. [1]

Dans ces conditions, faisons choix d’une branche de la fonc-
tion algébrique y de telle sorte que dans un domaine A, y n’ait
ni pole, ni point critique (y est alors analytique). Dans 4, la
dérivation de (2) par rapport a z conduit a:

Ay + ...+ A
Jy = = n—1 > ‘ (4)
nA,y + ...+ Ay

Compte tenu de (3), (4) s’écrit encore:
y' = Dg? = DiVy = D0y + .. + D2y yt! (51)

ou les D{Msont fractions rationnelles de x; dérivons (5,), et
remplacons 3’ par sa valeur tirée de (5;) chaque fois qu’il est
en facteur avec un y’. Compte tenu & nouveau de (3), on obtient

y" = D§ = DiPy =D y* + ... + D2y B EN
et ainsi de suite jusqu’a la dérivée y*—1):
y(n—l) D(n 1) D(f' 1) =D§n—1)y2+ +D'(1n 1) - 1 (Sn——l)

L’élimination de 4%, >, ..., y"~' dans les (n—1) équations

(5) linéaires en y?, %>, ..., y"~' implique:

o e e g o




det |- : = 0. (6)

- - - - ~4
\y(n l)_D(()’_, 1)_D£n l)yaD,’(ln 1)3 --'aDrgrLl)

1 suffit alors de chasser les dénominateurs des fractions
rationnelles D{” (z) et de développer le déterminant (6) par
rapport & sa premiére colonne, pour obtenir la condition sui-
vante, du type indiqué:

‘Pn-1 (x)'y("—l) + Py (x),y(n—2)+ o F Py () Yy +Py(x)y = S (x) (7)

(P;, S: polynomes‘ en ).

REMARQUES

I. Une conséquence immédiate de la proposition est que,
au voisinage d’un point { régulier pour une branche de y définie |
par (2), le développement (1) de la dite branche est tel que les
a, vérifient une récurrence linéaire dont les coefficients sont des
polyndmes en n, de degrés < n—1.

II. La question se pose évidemment de caractériser parmi
les équations différentielles linéaires dont les coefficients sont
des polyndmes, celles qui admettent une intégrale qui est fonc-
tion algébrique (ou encore, parmi les récurrences linéaires dont
les coefficients sont des polyndmes en n, distinguer celles qui
admettent une fonction algébrique pour fonction génératrice).
- III. On pourrait appliquer le procédé indiqué plus haut a
une fonction y définie par (2), ou cette fois les A; seraient des
fonctions analytiques dans un certain domaine 4, il s’ensuivrait,
encore une condition analogue a (7) ou les P, seraient des fone-
tions analytiques dans 4.
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EXEMPLES D’APPLICATIONS
I. Développer en série entiére y = (14+(1+2)*)'/? (x réel,
p reel 7 0). 11 vient y*? —2y? —x = 0, ce qui conduit a
4p* (x+x%)y" +2p[2p-2) + Bp-2x]y' —(p—1y = 0
d’ou
B 2pn[p(2n+1) —2] — (p—l)a '
2p(n+D)[2p(n+1) —2] "

II. Equation différentielle vérifiée par une fonction y:

an+1 -

PWAHpx)y+g(x) =0
ou les p, ¢ sont analytiques. Si I’on pose:
A =4p° +274; A =6pp'q—4p*q’; B =2p’p' +99q’;
C=9p'q—6pqg'; A = A'A — AA’ + AB — 2C?%q;
B,=B'A—BA' + B>+2AC — 2pC?*; C, = C'4 — C4’ + 3BC,
on trouve:
CA*y" — AC,y' + (BC, — B, C)y + (AC; — 4,C) = 0.

Ainsi, par exemple, pour y* + y + 2 = 0, au voisinage de
z=0, on a (4+4+272%)y” + 27xy’ — 3y = 0 ce qui fournit

33Bn+1)(Bn—-1)
- a, (az
4(n+1)(n+2) -

an+2 —

= 0).
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