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I1. Let the rank of Q be k, and centers exist. Then these
centers are solutions of

0
& = CE = — (521) EQ™1, (3.2)

where Q7' is the reciprocal of (), see [2]. That is, if E is the
projection on the range of @, then

Q7'Q =007"' =E.

Here we choose the center of quadric curvatures at a point
of (3.2) so that, it is at the shortest distance from 7.

I1I.  When the rank of ¢ is £ and the quadric does not have

centers, then we say that f does not have a center of quadric
curvature.

4. DIRECTION OF QUADRIC CURVATURE

In part I and I1 of section 3 we respectively call the vectors &
and &, the directions of quadric curvature of f at (cq, ..., c,).
In 1I1 of section 3, we define the direction of quadric curvature
to he a vector 6 which satisfies

_ ok = — (g0
=8 - - (L)ro

where [ is the projection described in section 3.

5. VERTEX POINTS

Let at the point y = (¢q, ..., ¢,) of f the direction of quadric
curvature be the same as the normal to f==0. Then 7y is
called a vertex point of the function f.

Theorem : A necessary and sufficient condition for a point to
be a vertex point of the function f i1s that at that point

PQ =QP,

where P and Q are the matrices described in section 3.
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Proof: At a vertex point the projection of the direction of
quadric curvature on the tangent plane is zero. Thus

Of\ _4
— | = I-P) =0.
<66>Q (I —P)
This implies that

Q™'PQ =P.

In all cases this implies
PQ =QP.

A vertex point in particular may become a spherical point,
i.e. a point where

o’ f

0x; 0X;

= A0;;, A

ij »

1s a constant.
A vertex point will be called a cylindrical point when

82
f_ _Aéij,l,jék,
0x; 0X;
62
L 0>k
0x; 0X;

6. FUNCTIONS OF FIXED CENTER

An interesting fact about these functions is that they are
not necessarily quadrics.
The equation.

of
= — = 6.1
0= () o
where ¢ = (¢, —z,4, ..., ¢,—x,), and (cq, ..., ¢,) 1s the fixed center

gives f. To produce a counter example we let the origin be the
center and the dimension of the space be two. Then in the real
case (6.1) becomes
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