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LES SOMMETS D'UNE SURFACE

par Ali R. Amir-Moéz

Soit / (x, y, z) une fonction réelle des variables réelles x, y, 2

de classe C/'. Nous employons les matrices pour étudier les sommets

de cette fonction.

1. La quadrique osculatrice. — Soit / (£, ?/, z), une fonction
réelle des variables réelles #, ?/, et 2, de classe C" dans le voisinage
d'un point (a, &, c) tel que, pour le moins, l'une des premières
ou deuxièmes dérivées partielles n'est pas zéro. Donc

(1.1) (x— a y — b z— cl) ôll d2f o2f dl
5a2 ôaôb ôaôc 5a

d2f d2f d2f 5f
dbëa db2 ôbôc 5b

ô2f ô2f dll. K
ëeda dcôb de2 de

K Sf K
ôa ëb de

U

y-b

où, par exemple,
d2f

est la valeur de
d2f

0,

à (a, 6, c), s'appelledaôb dxdy
la quadrique osculatrice de la surface / 0 à (a, è, c). On voit
que (1.1) est la série de Taylor de la fonction / jusqu'aux termes
des deuxièmes degrés autour de (a, b, c).

Nous appelons la matrice de (1.1) A, et

Q

52f 52f Ô2f
5a2 daôb 5a de

52f 52f Ô2f

dbda 6b2 dbdc

52f 52f d2.f

ôcda ôcôb de2
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2. La Projection sur le plan tangent et le normal. — La
formule

Ôf df ôf
df — dx H dy -1 dz 0,

dx dy dz

fdf df df\
implique que —, — — est le vecteur normal a

\dx dy dz)

f 0 au point (x, y, z). Nous mettons l'origine sur le point
(x, y, z). Le produit intérieur des vecteurs (.x, y, z) et

'3/ 3/ 3/
a

ô/y /ja2 /q/y \dx dy dz

dxJ\ô_v)\dz)

nous donne la projection du vecteur (x, y, z) sur le normal. La
matrice de cette projection est P (Pl7), i, / 1,2,3 où

p..
dXi ôxj' '!)'*©'* (s

'

ici % x, x2 — y, et x3 z.

On a donc la projection sur le plan tangent / — P, où

3. Les centres de curvature quadrique. — Si (1.1) est un carré

parfait, nous appelons la surface doublement plate dans le
voisinage de (a, ft, c). Supposons que / 0 n'est pas doublement
plate dans un voisinage de (a, ft, c). D'après 6 de [1] ou d'après 6

de [2] on obtient les centres par l'équation

« - - (!)' » »

.j.j
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L'équation (3.1) est un système des trois équations linéaires
des inconnues x, y, z.

Cas où la matrice Q est non-singulière. Ainsi nous avons un
unique centre qui sera obtenu par

où Q
1 est l'inverse de la matrice Q.

Notons que le centre est où y (a, è, c).

II. Si Ç est singulière, mais les centres existent, nous
considérons le réciproque de Q dénotée aussi par Q'1. Ici Q'1 Q Q

Q~x E, où E est la projection sur le rang de Q [3]. Donc,
nous écrivons

Dans ce cas il y a beaucoup de centres. Mais on choisit le point
de cet ensemble qui est le plus proche du point (a, 6, c).

III. Si Q est singulière et (1.1) n'a pas de centre, on dit que
la surface n'a pas de centre à (a, 6, c).

4. La direction de la curvature quadrique. — Dans les cas I
et II de 3 nous appelons les vecteurs £ et rj les directions de la
curvature quadrique de / 0 au point (a, b, c).

Dans le cas III l'équation

nous offre une direction rj. Nous l'appelons la direction de la
curvature quadrique pour ce cas.

5. Les sommets d'une surface. — Si la quadrique osculatrice
est tangente à la surface / (x, y, z) 0 par un sommet de la

L'Enseignement mathém., t. X, fasc. 3-4. 17

Ainsi
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quadrique, nous appelons ce point de la surface un sommet de

la surface.

6. Théorème. — Pour qu'un point soit sommet, il est nécessaire

et suffisant que

PQ QP,

où P et Q sont les matrices décrites dans 1 et 2.

Démonstration: D'après 3 la direction de curvature
quadrique est obtenue par

'a/>
(Q - de

I. Si Q est non-singulière, on a

La projection de £ sur le plan tangent est zéro, c'est-à-dire,

ai-F) - (j^Q-^I-F) 0.

Cette équation nous donne

s«-
ou

Donc

SiAS'-"'
Q~x PQ P, ou QP

II. Si Qest singulière, nous employons le réciproque Q
1

de Q.

Ici
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Mais encore la projection du vecteur rj sur le plan tangent est

zéro, c'est-à-dire

^EÔ"1(/-P)=0,
OU

I)£c"
La dernière équation nous donne

P Q'1 PQ ou PQ QP.

7. Exemple. — Trouvez les sommets de la surface

x2 +y2 -z3 + 1 0

Solution :

df df df
-— 2x — 2y — — 3 z2
dx dy dz

ô2f ô2f Ô2f
!T2 2>ir2 2>ir2= ~6z-
dx dy2 dz2

Les autres dérivées sont zéro. Donc

/2 0 0

2= 0 2 0

\0 0 — 6zj
et

(4x2
4xy — 6xz2x

4Xy 4/ -6yz>
— 6xz2 — 6yz2 9z4

L'équation PÇ — QP nous donne que

8x2 8xy — 12JCZA

8vj 8y2 — 12j;z2

,36xz3 36j;z3 — 54z5
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doit être symétrique ou hermitique, c'est-à-dire,

f —12xz2 36xz3,
{ —12yz2 36yz3.

Si x 0, y 0, on a z 1. Donc (0, 0, 1) est un sommet.
Si x 0, y ^ 0, on a z 0. Mais z — 0 ne donne que des

points imaginaires de la surface. Donc la surface a seulement
un sommet, c'est-à-dire (0, 0, 1).

8. Conjecture. — Soit P un plan contenant le normal de la
surface / 0 au point A — (a, à, c) ; supposons que P entrecoupe

la surface à la courbe K. La courbe K a curvature
maximum ou minimum quand A est un sommet de la surface.
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