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ARITHMETICAL NOTES, XI.
SOME DIVISOR IDENTITIES

by Eckford Cohen

1. Introduction. In a series of papers [1, 2, 3, 4], the
author has discussed arithmetical functions related to the
unitary divisors d of a positive integer r, that is, divisors d of r,
such that (<i, <5) 1, where <5 is the complementary divisor of r.
It is the purpose of this note to derive in a unified manner some
of the basic identities proved in these papers.

The second section is concerned with the unitary analogue
c* (n, r) of Ramanujan's trigonometric sum c (ft, r), §3 with
the unitary analogue of Möbius inversion, and § 4 with
orthogonality properties of c* (n, r).

2. The sum c* (n, r). We recall that for integers ft, c (ft, r)
is defined by

c(n,r) Yj e(nx,r)9 e(n,r) exp (Inin/r), (1)
(*,*•) l

where the summation is over a reduced residue system (mod r).
Let us define (ft, r)* to be the largest unitary divisor of r which
is a factor of ft. Analogous to (1) we place [1, § 2]

c*(n,r)£ (2)

where the summation is over those integers x (mod r) such that
(x, r)* — 1. Such a system of numbers is said to form a semi-
reduced residue system (mod r).

We first express c* (ft, r) in terms of c (ft, r). Let y (r) denote
the largest divisor of r with no square factors other than 1.

Identity 1 ([3, (3.1)]).

c*(n,r) X c(n, d). (3)
d I r

y (d) y(r)
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Proof. Classifying the x in (2) according to their greatest

common divisor with r, one obtains

c* (n ,r) Y Y e(nx ,r)£ Y e > r)
dô — r (x,r)=ô dö r (X,d) — 1

x(mod r)
3\W)(X=3X>'\m

Y E e(nX, d) Y c(n > d) >

dö r (X,d)= 1 d\r
I r y(r) \d

3 \W)

which is the same as (3).
Let (f) (r) denote the Euler </>-function and y (r) the Möbius

function. It is well known that

c(n,r)=Y
d\(n,r) \uj

We also note that

0(r) c(0, r) Y dn(r) c(l r) (5)
dô — r

Definition. Place

0* (r) c* (0 r) /i* (r) c* (1 r) (6)

so that </>* (r) is the number of integers in a semi-reduced residue

system (mod r).
As corollaries of (3) we obtain the following two formulas,

by virtue of (5).

Identity 2 (cf. [2, Lemma 3.1, k 1]).

0*(r) £ 0(d). (7)
<?|r

y(d) y(r)

Identity 3 ([1, (2.9)], [3, (3.5)]).

y*(r)£ M CO d (y ('")) • (8)
d|r

y(d) y(r)

Notation. Let d || r and d* <5 r be used to signify that d is
a unitary divisor of r.

We shall need the following relation for a proof of the unitary
analogue of (4).
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Lemma 1. Letk be a divisor of r. Then

i v.<9)I r 0 otherwise.
d\ T

y(r)^y(dk)

Remark 1. We first recall that

f 10 1)
E hid)e(r) i (10)
<Mr I 0 > 1),

and that y (r) 0 unless r is sqnare-free.

Proof. Let denote the sum in (9).

Case 1 (k || r). In this case, by the above remark,

Z= I "V)~ "W ' "(B)) " "(Ii
I k I v(k)

y(r) y(k)y(d) dy(k) y(r)

and the first part of (9) results by (8).

Case 2 (Ai^r). In this case let rx be the largest common
unitary divisor of k and r, r rx* r2, k rx* k2l so that k2 | r2,
r2\k2 > 1, and y (r2) — y (k2) y (r2/k2). Hence by Remark 1,

X= E 0.
d I

d
I £l

I 2 I k2
y02)=y(M)

Identity 4 ([1, (2.7)]).

c*(n,r)£ du* Ç\. (11)
«'IK».')» W

Proof. By Identity 1, (4), and Lemma 1, one obtains

C* (n, r) X £ Dh(C]E D E ME)
W r D|(M) \E/ D|(n,r) DE d

y(d) y(r) dô=r
V(r) y(d)

£D £ h(E)E Dh*(^)>
D\(n,r) E3 r/D D\(n,r) \P J

y(r) y(DE) D || r

which is the same as (11).
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In the special case n — 0, one

Identity 5 ([1, (2.8)]).

0*0) £ d^*(i) a2)
d || I- V"/

3. Unitary inversion. In this section the following
analogue of (10) is basic.

Identity 6 ([1, (2.5)]).

£Ju*0) e(r)- (13)
d\\r

Remark 2. As d ranges over the unitary divisors of r, y (d)

ranges over all divisors of y (r).

Proof. By Remark 2, (8), and (10), it follows that

£ y*(d)=*£ y (y(d))£ y e (y (r)),
d y r d\\r d\y(r)

which proves (13).
We define the unitary product /* g of two arithmetical

functions /, g, with values in the complex field, by

f*9£ f(d)g(ö). (14)
d*ô r

Lemma 2. The set of all arithmetical functions forms a

semigroup S relative to the unitary product. The function e defined
by (10) is the identity of S.

Proof. Evidently e* / /* e / for every function /.
Moreover, the associative law, /j* (/2* /3) (/x* /2)* /3, is easily
verified for arbitrary functions, /x, /2, /3.

Identity 7 [Inversion formula, [1, Theorem 2.3]). For functions

f, g of S,

/(r) £ g(d)^g(r)£ (15)
d||r d*ô r

Proof. Let I denote the function of S defined to have the
value 1 for all r, I (r) 1. Then (13) may be written p* * / e.
Thus by Lemma 2, p* is invertible in S with the (unique) inverse
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(ju*)"1 I. Hence, g * I f g f * l**, which is merely
a reformulation of (15).

We note that (11) can be rewritten as

c*(n,r)= Yj er(n) j (16)
d*a=r

Application of the inversion formula to (16) leads to

Identity 8 ([1, (2.2)]).

Y c*(n,d)e,(n). (17)
<t||r

Noting that e, (1) — e (r), the relation (17) reduces to (13) in
case n 1. In the case n 0, we have

Identity 9 ([1, (2.4)]).

Z0*(d)=r. (18)
d\\r

The latter result can be deduced independently on applying the
unitary inversion formula to (12).

4. Orthogonality properties. In [3, Theorem 3.2] it was
proved that for unitary divisors d2 of r,

^ f rc* (n e) if e d, d2
Y c*(a, dx)c* (b d2)<

B=fl+Mmodr) 0 d d1 ^ d2

(19)

the summation on the left extending over all a, & (mod r) such

that n a + b. This result arose from an analogous relation
satisfied by c (n, r) [3, (1.4)] on application of (3). We deduce

now a number of consequences of (19).

Letting n 0 and noting that c* — n, r) c* (ti, r),
(19) becomes.

Identity 10. If dx || r, || ri then

_ f ro* (e) if e d1 — d2
X c* (a dj) c* (a d2)] (20)

«(modr) I 0
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We prove next

Identity 11. If dx (| r, d2 || r, then

r0*(e) if e dx d2J./*{ 0 ,f d,*d2.
(21)

Remark 3. If (e, r)* 1, then c* (we, r) c* (w, r).

Remark 4. ([4, Remark 2.1]). If d\\r, then any semi-
reduced residue system (mod r) contains such a system (mod d).

Proof. Let the left member of (20) be denoted I. With
(a, r)* d, we may write a dX, (X, r/d)* 1. By Remark 4,

one may suppose X (mod rfd) chosen so that (X, r)* — 1.

Hence, since d1 and d2 are unitary divisors of r, it follows by
Remark 3 that

X E c* (dx > di)c* (dx >dz) E c* (d > rfi)c* (d> d2)
d\\r d||r

(X,r)+=i y 1

X(modr/d) '
(X,r/d)„=l

which is the left of (21). The proof is complete, by Identity 10.

Remark 5 ([1, Corollary 2.2.1, also cf. Lemma 6.1]). The
function 0* (r) is multiplicative.

We require a simple formula proved in [4, (2.2)], namely,

0* (ej)c*(—, e2] 0* (e2)c*(—, eO, Il r, e2 II .(22)
Applying (22) to the second factor in the sum in (21), it

results that

Identity 12 ([4, Lemma 2.4]). If dx || r, d2 || r, then

^ |i r \<5 J \d2J(0if dj #

Identity 13 ([3, Theorem 3.3]). If m and n are then

v c* (m ô)c* (n ô) (r4 0*^) 0* (r))
0* ^H 'r^'r)* ' r)* '

0 if(m, r)* # (n, )*.
(24)
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Proof. Apply (22) to the first factor in the sum in (23), with
d± r\{m, r)*, d2 r/(n, r)*, and use Remarks 3 and 5.

The following relation results from (24) in the case m n,

(c* (n d))2(r \E 0 (25)
0* (d) \0* (r)

Further, the Inversion Theorem and Remark 5 give

(c* (n r))2 X rf0* ((" > <0*) 0* 0) /'* (<5) • (26)
d*<5 r
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