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“ARITHMETICAL NOTES, XI.
SOME DIVISOR IDENTITIES

by Eckford ConEN

1. Introduction. In a series of papers [1, 2, 3, 4], the
author has discussed arithmetical functions related to the
unitary divisors d of a positive integer r, that is, divisors d of r,
such that (d, 6) = 1, where 6 is the complementary divisor of r.
It 1s the purpose of this note to derive in a unified manner some
of the basic 1dentities proved in these papers.

The second section is concerned with the unitary analogue

c* (n,r) of Ramanujan’s trigonometric sum c(n,r), §3 with
the unitary analogue of Mobius inversion, and § 4 with ortho-
gonality properties of ¢* (n, r).

2. The sum c* (n,r). We recall that for integers n, ¢ (n, r)
is defined by
ctn,r) = > e(mx,r), e(n,r) =exp(2nin/r), (1)
(x,r)=1
where the summation is over a reduced residue system (mod r).
Let us define (n, r)y to be the largest unitary divisor of r which
is a factor of n. Analogous to (1) we place [1, § 2]

c*(n,r) = Y e(nx,r)), )

(x,r),=1

where the summation is over those integers z (mod r) such that
(z, )% = 1. Such a system of numbers is said to form a semi-

reduced residue system (mod r).
We first express ¢* (n, r) in terms of ¢ (n, r). Let y (r) denote
the largest divisor of r with no square factors other than 1.

Identity 1 ([3, (3.1)])-
ct(n,r) = Y c¢n,d. (3)

d|r
y (d)=v(r)




— 249 —

Proof. Classifying the z in (2) according to their greatest
common divisor with r, one obtains

ck(n,r = Y Y emx,r)= 3 Y eméX,r)

dé=r (x,r)=é do=r (X,d)=1
x(mod r)
y(r) y(r)
) Y emX,d)= ) cn,d,
déo=r (X,d)=1 dir

r y(r)ld
y(r) '

which is the same as (3).
Let ¢ (r) denote the Euler ¢-function and p (r) the Mobius
function. It is well known that

c(n,r) = ) d,u(%)- (4)

d|(n, r)
We also note that
o(r) = C(O,t) =Mz_ du (o), u(r) =c(1,r). (5
Definition. Place |

o*(r) = c*(0,7r), p*(r) =c*(1, 1), (6)

so that ¢* (r) is the number of integers in a semi-reduced residue
system (mod r).

As corollaries of (3) we obtain the following two formulas,
by virtue of (b).

Identity 2 (cf.[2, Lemma 3.1, k = 1]).

e*(r) = Y e(d). (7
v(dflrv(r) ‘
Identity 3 ([1, (2.9)], [3, (3.5))).
pr@ = Y pd=p@). (8)

dir
y(d)=vy(r) i

Notation. Let d || rand d* 6 = r be used to signify that d is
a unitary divisor of r. :

We shall need the following relation for a proof of the unitary
analogue of (4).
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Lemma 1. Let k be a divisor of v. Then

u*(rlk) if k|r,
d) = 9
dz_: wid) { 0 otherwise. ©)
v(r)=vk(dk)
Remark 1. We first recall that
I(r =1)
d) = = 10
Y ad =e0) {0(r>1), . (10)

and that p (r) = 0 unless r is square-free.
Proof. Let ) denote the sum in (9).
Case 1 (k H r). In this case, by the above remark,

Y = ‘Z u(d) = dﬁ:v) u(d)—:u(%):u(v(};—)),

K y(k)
Y(r)=y(k)y(d) dy(k)=y(r)

and the first part of (9) results by (8).
Case 2 (k+r). In this case let r; be the largest common

unitary divisor of k and r, r = r*ry, k = r;* k,, so that k, ’ I's,
rolky > 1, and y (ry) = v (ky) = y (ry/ky). Hence by Remark 1,

Y= Y pd=Y u@=0.

ry ro
d | = dl -2
y(rg)=y(kod)

Identity 4 ([1, (2.7)]). _
c*(n,r) = Y du* (2) (D

d|l(n, ry,

Proof. By Identity 1, (4), and Lemma 1, one obtains

c*m,r)= 3% ¥ Du(g—>= > D Y u@E

do=r D|(n.d) D|(n,r) DE=d
y(d)=v(r) déo=r
y(r)=yd)
o ‘ * r
D|(n,r) Eé=r|D D|(n,r)
y(r)=7(DE) - D]

which is the same as (11).
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In the special case n =0, one gets

Identity 5 ([1, (2.8)]).

o*(r) = Y du*(;l—r>. - (12)

dilr

3. Unitary inversion. In this section the following ana-
logue of (10) is basiec.

Identity 6 ([1, (2.5)]).
S ) = (). (13)

dijr
Remark 2. As d ranges over the unitary divisors of r, y (d)
ranges over all divisors of y (7).

Proof. By Remark 2, (8), and (10), it follows that
Yurd) =Y u(y@) = Y w@d =e@®),

dijr dljr diy(r)
which proves (13).
We define the unitary product f* g of two arithmetical
functions f, g, with values in the complex field, by
frg = d;_ f(d)g(9). (14)
Lemma 2. The set of all arithmetical functions forms a semi-

group S relative to the unitary product. The function € defined
by (10) ts the identity of S.

Proof. Evidently e€*f = f*e =f for every function f.
Moreover, the associative law, f,* (f,* f5) = (f;* fo)* /5, 1s easily
verified for arbitrary functions, f;, fs, f5-

Identity 7 [Inversion formula, [1, Theorem 2.3]). For func-
tions f, g of S,
f(r) = d% g 2g@ = ) fDp*@®. (15
r d*o=r
Proof. Let I denote the function of S defined to have the

value 1 for allr, I (r) = 1. Then (13) may be written pu*« I = e.
Thus by Lemma 2, p* is invertible in § with the (unique) inverse
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(u*)™! = I. Hence, g* I = f 2> g = f * p*, which is merely
a reformulation of (15).
We note that (11) can be rewritten as

00 = T et @, 0= 10
Application of the inversion formula to (16) leads to
 Identity 8 ([1, (2.2))).
S o*(n,d) = &, (n). (17)

djr

Noting that €, (1) = € (r), the relation (17) reduces to (13) in
case n = 1. In the case n = 0, we have

Identity 9 ([1, (2.4))).
Y o*(d) =r. (18)

dr

The latter result can be deduced independently on applymg the
unitary inversion formula to (12).

4. Orthogonality properties. In [3, Theorem 3.2] it was
proved that for unitary divisors d,, d, of r,

rc*(n,e) if e =d, =d,,
0 if dy #d,,

(19)
the summation on the left extending over all @, b (mod r) such
that n = a + b. This result arose from an analogous relation
satisfied by ¢ (n, r) [3, (1.4)] on application of (3). We deduce
now a number of consequences of (19).

Letting n =0 and noting that c¢*(— n,r) = c* (n,r),
(19) becomes.

Identity 10. k[f d, H r, dy H r, then

re*(e) if e =dy = d,,
0 if d, #4d,.

Y c*(a,dl)c*(b,d2)={

n=a+b(modr)

Y, c*(a,d)c*(a,dy) = { (20)

a(modr)
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We prove next
Identity 11. If d, H r, d, H r, then

. . . B re*(e) if e =d; =d
d*azzrc (d,d)c (d,dz)@ (5)—{ 0 if d, #d,.

" Remark 3. If(e, 1)y = 1, then c* (ne, r) = c¢*(n,r).

Remark 4. ([4, Remark 2.1]). If dHr, then any semi-
reduced residue system (mod r) contains such a system (mod d).

Proof. Let the left member of (20) be denoted X. With
(a, )y = d,wemay write a = dX, (X, r/d), = 1. By Remark4,
one may suppose X (mod r/d) chosen so that (X,r), = 1.
Hence, since d, and d, are unitary divisors of r, it follows by
Remark 3 that
Y= Y c¢*dX,d)c*dX,dy) = ) c¢*(d,dy)c*(d, dy)

dijjr dijr
(X,l') =1 '
X (modr/d) Y 1,
X,r/d),=1

which is the left of (21). The proof is complete, by Identity 10.

Remark 5 ([1, Corollary 2.2.1, also c¢f. Lemma 6.1]). The
function ¢* (r) 1s multiplicative.
We require a simple formula proved in [4, (2.2)], namely,

2221

o* (e;) c* <L ) e2> = o* (e,) c* (L , el) ,e|r,efr. (22
e e,

1

Applying (22) to the second factor in the sum in (21), it
results that

Identity 12 ([4, Lemma 2.4]). If d, H 7, s H r, then

c* --,d e ——,5 = 23
2 (5 ‘) <d2 ) {Oz'fdl;edz. (23)

Identity 13 ([3, Theorem 3.3]). If m and n are integers, then

*(m, §)c*(n, 9) , |
Z— 5o =j(g*"(r)>a*(<n,r>*)v<m,r>* = (1, ),

0 if(m, )y #(n, r)y.
(24)
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Proof. Apply (22) to the first factor in the sum in (23), with
dy = r/(m, r)y, dy = r/(n, r)y, and use Remarks 3 and 5.
The following relation results from (24) in the case m = n,

(c*(n, d))* B ( r ”
I (ew) e e): 2

Further, the Inversion Theorem and Remark 5 give

(c*(n, ) = ) deo*((n,d),)e* () u*(). (26)

d*é=r
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