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ON THE ASYMPTOTIC BEHAVIOR OF THE
SUM OF A " NON-HARMONIC FOURIER SERIES"1)

by P. M. Anselone

1. Introduction. This paper is concerned primarily with the
asymptotic behavior as t-* co of a function of the form

r,\ V"1 Znt A f cn ~ an~^~ibn
<P(t) L cne.n 9 t ^0 A (1)

: —oo I Zn xn + iyn,

where

xn < 0, Vn, (2)

M sup I zn — 2nni | < ln2 (3)
n

Conditions (2) and (3) will be generalized later. Note that if
zn — 27T7U, Vn, then (1) is a Fourier series. In particular, a
series of the type (1) may occur as the residue evaluation (Heavi-
side expansion) of the inverse Laplace transform integral

I Z + iri

cp (t) — lim —: J cp(z)ezt dz t ^ 0 Ç > 0 (4)
tj-+co 2ni ç-in

if the transform cp(z) is regular for Re(z) ^0. In fact, such an

example, which will be discussed later, motivated the present
study.

Since | ent | eXn' and xn<0, it may seem plausible that
cp(t) 0 as t -> oo or, at least, that (p(t) is bounded. However,
Rudin [6], constructed an example in which the series in (1)

converges uniformly on each finite interval and (p(t) is unbounded.
In this paper we give conditions under which cp(t) ->• 0 in certain

mean-square senses as t oo. Since the proof involves Hilbert
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space concepts, a résumé of some of the relevant theory is

presented next.

2. Biorthonormal Sequences. Let H be a complex separable
Hilbert space with the norm || || and the inner product K

A subset E of H is complete if the set of finite linear combinations
of elements in E is dense in H. An equivalent condition is that

(f,9) 0 VgeE=>f 0.

Let {An} be an orthonormal sequence in 77, i.e., (Am, hn) dmn.

Recall that a series Lynhn converges to some h e H iff I \yn |2 < oo,
n n

in which case yn (A, hn) and

h Y(h,hn)hn, (5)
n

II Ml2 EK*. hn)\2.(6)
n

If {hn} is complete, then (5) and (6) hold for all h e H and (6) is
ParsevaVs identity.

Let {/„} and {gn} be biorthonormal sequences in if, i.e.,
ifmi gn) àmn- If A ZyJn, then yn (A, gn) and, hence,

n

h£ (h (7)
n

If {g„} is complete and the series I gn)f„ converges for a
n

particular he H,then(7) holds since

(h-£ (h 0n)fn 9m0 VtU.
n

The same statements are valid with {/„} and {gn} interchanged.

Lemma 1. Let {/„} be a sequence and {A„} a complete
orthonormal sequence in H. Suppose there exists a constant 0,
0 ^ 0<1, such that

\\lyn(h„-fn)\\2 ^o2Yt\yn\2,(8)
neF neF

i) Cf. Taylor [7], pp. 118-119.
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for each finite set F and arbitrary constants yn, n e F. Then:
{/„} is complete; there exists a unique complete sequence {gn}
in H such that {/„} and {g„} are biorthonormal;

h£ (Ä 9n)fn I(Ä, fn)gn (9)
n n

(i + ey2\\h\\2 ^Y,\(h,gn)\2 s(i-ey2\\h\\2 vheH- (io)
n

(l-e)2\\h\\2̂£|(/i,/„)|2^(l+0)2||/z||2 (11)
n

This fundamental result was proved for real L2(a, ß) by Paley
and Wiener [4; pg. 100]. It was extended to a complex separable
Hilbert space by Duffin and Eachus [3]. An independent proof
was given by Nagy [5; pp. 208-210].

Lemma 2. Assume the hypotheses of Lemma 1. Then a

series Ly„fn converges to some h e H iff 11 yn |2< oo, in which
n n

case y„ (h,g„)and

(1 +ey2II hII2 g XI yn I2 ^ (1 || h \\2. (12)
n

Proof. If h — Zynhn, then yn (A, g„), so that (10) implies
n

(12) and 11 yn |2< oo. If 271 yn |2< oo, then, also by (10),
n n

(1 + ey2 II £y„fn II2 ^ X I F finite,
neF neF

so that Iyttfn converges by the Cauchy criterion.
n

Lemma 3. If (3) holds, then the hypotheses in Lemmas 1

and 2 are satisfied with H L2(0, 1),

K(t) eint, fn(t) j ° ~ f ~
1 ' (13)

{ n 0, ±1

and 6 eM — 1.

Proof. Paley and Wiener [4; pp. 108-109] proved the analogous

result for L2(—7r, n) with M<n~2 and 6 — Mn2. Duffin
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ln2
and Eachus [31 extended that result by taking M < — and

71

o ~ eMn — 1. Their proof goes over without essential change

to the present situation.

3. The Asymptotic Behavior of (p(t).

Theorem 1. Assume (2) and (3). Then the series in (1)

converges in L2(0, s) for each s>0 iff

X \c„I2C 00, (14)
n

in which case

S+ T

J I <p(t) |2 dt-»•0, co, (15)
S

for each fixed t>0, and

1 s

~ i'I <P (0 I2 dt 0 as s oo (16)
s o

Proof. According to Lemma 3, Lemmas 1 and 2 are applicable.

Consider (1) in the form

_ z
f 0 ^ t 1

<p(t + k) (pk(t)Xc„en /„(0, |fc 0
(1?)

By Lemma 2, this series converges in L2 (0,1) for a particular k iff

X|C„^& |2=X|c„|V**k<oo, (18)

in which case

(1 + ey2 IM2 ^ XIA I2^ ^ (1 - 0)-2 II II2 (19)
n

Since xn<0, (18) for A: 0 implies (18) for all /c. Therefore, tho
series in (17) converges in L2(0,2n) for every k iff (14) is satisfied.
This justifies the first assertion of the theorem.
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Now assume (14). Since x„<0, the series in (18) converges
uniformly with respect to k. It follows that

ZlcJ2 e2Xnk -> 0 as k oo (20)
n

By (19) and (20),

|| (pk || -> 0 as k oo (21)

which implies (15) and (16).
To facilitate the next theorem, let ||| ||| denote the norm for

L2(0, oo).

Theorem 2. Assume (2) and (3). Then these three conditions

are equivalent: (A) the series in (1) converges in L2(0, s)

for each s>0, and cp e L2(0, oo); (B) the series in (1) converges in
L2(0, oo);

L — < 00 • (22)
n ~Xn

If (A), (B) or (22) is satisfied, then

-h(i+0)-2 m «nu2 2(i -ey2\\\<p\\\2. (23)
4/n2 n

Proof. By (2) and (3),

— In2 < xn < 0 Vn (24)

Hence, (22) implies (14). In view of Theorem 1, we can assume
without loss of generality in this proof that (14) is satisfied and,
hence, that the series in (1) converges to <p(t) in L2(0, s) for each

s>0.
Let

00

III «Pill2 $\<p(t)\2dt,(25)
0

whether finite or infinite. By (17), (19) and (25),

OO

IIMII2 I (26)
fc 0
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(l+er2Ilk 111^1^4 ^(l-er'IIMII2.. (27)
n 1 0

1 — es
For s 7^ 0, is positive, monotone increasing, and tends to 1

— s

as s -» 0. Hence, by (24),

3 l-e2*n
< -—-— <2, Fn (28)

4Zrc2 — xn

This inequality and (27) imply (23). Therefore, (pe L2(0, oo) iff
(22) holds. This proves the equivalence of (A) and (22).

For each finite set F of integers, let

<pF(t) (29)
neF

Since cpF is a special case of <p, (23) yields

-2-(i+0)-2||kFm2 ^ g2(1 llkFlll2.
4Zn2 neF -xn

It follows by means of the Cauchy criterion that (B) and (22)

are equivalent. Thus, the theorem is proved.
As indicated in the foregoing proof, (22) implies (14). However,

(14) does not imply (22). To see this, let xn -» 0 as n -> oo.

Thus, the series in (1) may converge in L2(0, s) for each s>0, but
<p $ L2(0, oo).

The following elementary theorem is included for comparison
with Theorem 2.

Theorem 3. If (2) holds and

Y1
I Cn I

/"11\L I < 00 (31)
n yj — Xn

then the series in (1) converges in L2(0, oo) and

1 v. |cjllklll ^ —E-7=- (32)
v 2 » V

L'Enseignement mathém., t. X, fasc. 3-4. 16
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Proof. Assume (31). Then, by (1), (25) and the Cauchy-
Schwarz inequality,

(pIII2 ^ Z Z I c m c„ | J e*"1'e*n'df
;

m n 0

\4- /oo
i2 ^ rr I ilc „2xmt j+x I ç „2x„t<p|||2 ^ EE|cmc„| \<?Xm'dt\ fe**»'dt)

\<P III2 ^ EElCmC„|

o / \o
1 w 1

— 2xr -2x,
k,r

if (-2x„f

which implies the desired results.
Since (31) implies (22), the first statement of Theorem 3

could have been obtained also from Theorem 2. Since (22) does

not imply (31), Theorem 2 contains a stronger result.

4. Generalizations. Results similar to the above can be
obtained under more general conditions. In place of (2) and
(3), consider

xn < f Vn (33)

Xln2
sup I zn-Ç-Xni I < —— (34)

2n

for some real £ and some >l>0. The changes of variable

(p*(t*) e"*>(0, (35)
2n À

yield (1), (2) and (3) in terms of q>*(t*) and z*n x*n+iy*. Thus,
the theorems of Section 3 apply. By means of (35), the
statements of these theorems can be expressed in terms of (p(t) and

zn. Since only substitutions are involved, we omit further
details.

Consider (3) or (34) with sup replaced by lim sup.
n ti-+oo

This case can be treated by expressing (1) in the form

<p(t) (p'(t) + (p"(t), (36)
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where
N

<p'(0 E c»e"n' cp"(t) E (37)
\n\ >N

and (3) or (34) holds with sup replaced by sup.
n \n\>N

Then all of the above results apply to (p"{t). Furthermore,
since cp'(t) is a finite sum, the series for cp(t) and cp"{t) have the
same convergence properties.

Finally, ln2 can be replaced by 2ln2 in (3). Under this
weaker condition, Lemma 3 is valid for H L2(-^, and
0 eM/2-l. Then the reasoning used in the proofs of Theorems
1 and 2 can be applied to the intervals (k — 2) to derive
similar results. Furthermore, the case of (33) and (34) with the
right member of (34) doubled can be handled. Since notational
complications are involved, we have preferred to deal with the
conditions (3) and (34) as they stand.

5. An Example. Consider the difference-integral equation

where K(s), — l^s ^1, and cp(t), —1 EU < 00, are complex
and continuous. This equation was investigated by Anselone
and Bueckner [1, 2]. The Laplace transform of cp(t), 0 ^ t< 00,
is

A(z) J e z(s+t) K(s) (p{t)dtds~ez J e zt(p{t)dt, (40)

(p(t)—cp(t +1) j K(s)(p(t — s)ds t ^ 0, (38)
-1

(39)

where

-1 -1

W(z) l-ez- j e~zs K (5) ds (41)
-1

An argument involving Rouchés theorem proves that : for some
to, W(z) has simple zeros z„, | n\^to, such that z„ — 2nni -+ 0
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as I n I ->• oo ; and W(z) has only a finite number of other
zeros z with Re(z) ^ where £ is any real number. By means
of (4), <p(t) can be expressed in the form

<p(t) cp'(t) +£ CY"\ (42)

If <p(z)is regular for Re(z) ^ 0, then <p' e L2(0, oo) and, by-
Theorem 1,

s+ t
J I <P (0 I2 dt -> 0 as s -> oo
s

for each fixed t>0. For further details, see the references
cited.
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