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SUR LES SUITES D'ENTIERS DEUX A DEUX

PREMIERS ENTRE EUX

par W. Sierpinski

Le but de cet article est de donner plusieurs théorèmes

concernant les suites d'entiers deux à deux premiers entre eux.
Ces théorèmes sont simples et leurs démonstrations sont

élémentaires, mais je ne les ai pas trouvés dans la littérature
mathématique qui m'était accessible.

Théorème 1. Tout entier >6 est une somme de deux entiers

>1 premiers entre eux.

Démonstration. Si n est un nombre impair >3, on a

n=2Jr(n— 2) et, évidemment n—2>1 et (2, n— 2) 1. Le

théorème 1 est donc vrai pour les nombres impairs >3.
Voici maintenant la démonstration, due à M. A. M4KOWSKI,

pour les nombres n pairs >6.
Si n est un entier divisible par 4, n—kk, où, d'après n>6,

k est un entier >1, on a n=(2k — l) + (2/c+l), où 2k-\-l >2k — 1 >1
et les nombres 2k — 1 et 2/c+l, en tant que deux entiers impairs
consécutifs, sont premiers entre eux.

Si, enfin, n=4/c+2, où k est un entier >1 (puisque ft >6),
on a ft=(2/c-f3) + (2/c — 1) et les nombres 2/c+3 et 2k —1>1
sont premiers entre eux, puisque si 0<d\2k — 1 et d\2k-\-3,
on a d\(2kJr3) — (2k — 1), donc d|4 et, comme d est un diviseur
du nombre impair, on en conclut que d= 1.

Le théorème 1 se trouve ainsi démontré. Or, M. A. M4KOWSKI
a remarqué aussi qu'il résulte sans peine d'une remarque de

M. H. L. Adler que le nombre g (ft) de toutes les décompositions
d'un nombre naturel ft>6 en une somme de deux entiers,
ft a+è, où 1 <a<b et (a, b) i est égal à g (ft) \ [cp (n) —2],
où (p (ft) est la fonction bien connue d'Euler.

En effet, M. Adler a remarqué que, pour n entier >1,
<p (ft) est le nombre de tous les systèmes de deux nombres
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naturels x1 y, tels que x-{-y n, 1<£ <n et {x,ri) 1 (yJn).1)
Or, si x-\-y n, on a (x, y) 1 dans ce cas et seulement dans ce

cas, où (#, n) — (y, ft) — 1. Il en résulte que (pour n >l).<p (ft) est
le nombre de toutes les décompositions du nombre n en une
somme de deux entiers positifs premiers entre eux. Si Ton exclut
les décompositions n — l-f-(ft-l) et n — {n —1) + 1, alors, dans
les (p{n)—2 décompositions qui resteront, les nombres x et y
seront tous les deux >1, d;où la formule pour g (n). Or, puisque,
comme on le sait, (p {ri) >2 pour n entiers >6, il en résulte aussi

tout de suite le théorème 1. M. A. M4KOWSKI a remarqué aussi

que, vu que lim q> {ri) -f 00, il en résulte aussi que
n 00

lim g {ri) 4- 00.
n 00

Théorème 2. Tout nombre naturel est, Tune infinité de manières,
différence de deux nombres naturels premiers entre eux.

Démonstration. Pour démontrer le théorème 2 il suffit de

remarquer que si n est un nombre naturel donné, on a pour
k 1, 2, 3,... la décomposition

n (nk + n + 1) — (nk + 1),
où (nk + n + 1, nk + 1) (n nk + 1) 1

Théorème 3. Toutentier > 17 est une somme de trois entiers >1,
deux à deux premiers entre eux.

Démonstration. Si n est un nombre pair >8, on a n — 6/c,

ou n — 6/c+2, ou bien n 6&+4 et, comme n >8, nous pouvons
admettre que dans les deux premiers cas k est un entier >1 et

que dans le troisième cas k est un entier >0. Vu les formules

6k 2 + 3 + [6(fc — 1) +1] 6k+ 2 3 +4 + [6(fc- 1) + 1]

6fc + 4 2 + 3 +(6k — 1),

on conclut sans peine que n est une somme de trois entiers >1,
deux à deux premiers entre eux.

i) H. L. Adler, A generalization of the Euler <p-function. Amer. Math. Monthly
65 (1958), p. 690-692.
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Voici maintenant la démonstration de M. A. M4KOWSK1

pour 11 impairs >17. Vu que 19 3 + 5 + 11, nous pouvons
même supposer que n est un nombre impair >19. Si n est un

tel nombre, on a n 12/c+y, où y — 1, 3, 5, 7, 9 ou 1.1, et

où k est un entier positif et même, pour y<7, k> 1. Vu les

identités

12/c+l 9 + (6fc-7) + (6fc-l)P
12/C+3 3 + (6fc-l) + (6fc+l),
12/c-f 5 3 + (6k — 5) + (6k + 7),
12k + 7 9 + (6k + 5) + (6k — 7),
12k + 9 9 + (6k — 1) + (6k + 1),

12/c+ll 3 + (6k + 7) + (6k + 1)

on conclut que n est toujours une somme de trois entiers >1.
Les nombres dans les parenthèses sont, dans chacune de ces

six égalités, premiers par rapport aux nombres 3 et 9 et premiers
entre eux, puisque ils sont tous impairs, non divisibles par 3,

et leur différence est respectivement 6, 2, 12, 12, 2 et 6. On a

donc dans chacun de ces six cas la décomposition du nombre

impair ft >19 en une somme de trois entiers >1, deux à deux
premiers entre eux.

Le théorème 3 est ainsi démontré.
Or, on démontre sans peine que le nombre 17 n'est pas une

somme de trois entiers >1, deux à deux premiers entre eux.
Or, on peut démontrer que le nombre 30 n'est pas une somme

de quatre entiers > 1, deux à deux premiers entre eux, mais

que tout entier >30 est une telle somme. Il se pose le problème
si, pour tout entier s >4, tout entier suffisamment grand est

une somme de s entiers >1, deux à deux premiers entre eux.

Théorème 4. Il existe des progressions arithmétiques aussi
longues que Von veut, formées de nombres naturels >1, deux à deux
premiers entre eux.

Démonstration. Soit n un entier donné quelconque >1 et
soit a ft! Les n nombres

a + 1 \ 2a + 1 3a +1, na + 1,
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sont deux à deux premiers entre eux. En effet, si, pour les
entiers k et Z, tels que 0<A:</</z, les nombres ka-\-1 et la-\-1
notaient pas premiers entre eux, ils auraient un diviseur premier
commun p et on aurait p \ (l—k)a, donc soit p\l — k, soit p\a.
Mais, comme l—k<l^n, on a (l—k)\n\ — a. On a donc toujours
p\a, ce qui est impossible, vu que p\ka-\-i.

Le théorème 4 est ainsi démontré.
Il est à remarquer qu'il n'existe aucune progression arithmétique

ak-\-b (k 1, 2, où a et b sont des entiers positifs,
dont tous les termes seraient deux à deux premiers entre eux.
Nous démontrerons ici le théorème plus général suivant:

Théorème 5. Si f (x) est un polynôme en x aux coefficients
entiers, où le coefficient de la plus grande puissance de x est positif,
les termes de la suite infinie

/(l),/(2),/(3),
ne peuvent pas être deux à deux premiers entre eux.

Démonstration. Le coefficient de la plus haute puissance de x
dans le polynôme f (x) étant >0, il existe un entier ^>0, tel
que m f (n) > 1. Mais alors, comme on voit sans peine, le nombre

f (m+ri) est divisible par m et les nombres / (n) et f (m-^ri)
ont un diviseur commun m> 1 et par suite ne sont pas premiers
entre eux. Le théorème 5 est ainsi démontré.

Théorème 6. Si f (x) est un polynôme en x aux coefficients

entiers, oùle coefficient de la plus grande puissance de x est positif,
la condition nécessaire et suffisante pour qu'il existe une infinité
des entiers positifs xl5 x2, x3, tels que tous deux des nombres

f (xj), f (x2), f (x3), soient premiers entre eux, est la condition C

suivante :

C. Il n'existe aucun nombre entier d>l tel qu'on ait d|f (x)
quel que soit l'entier positif x.

La nécessité de la condition C étant évidente, nous démontrerons

seulement leur suffisance. Dans ce but nous démontrerons
le lemme suivant:

Lemme. s étant un entier positif et qx, q2, qs des nombres

premiers distincts pour lesquels il existe des entiers positifs tj, t2,
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ts, tels que q^f (tf) pour i =* 1, 2, s, il existe un entier positif
t tel que q^f (t) pour i 1, 2, s.

Démonstration du lemme. Le lemme est évident pour s —1.

Soit maintenant s un nombre naturel donné et supposons que le

lemme est vrai pour s nombres. Soient qx, q2, • qs+i des

nombres premiers distincts, pour lesquels il existe des entiers

positifs t±, t2, *s+1, tels que q^f (h) pour i «s 1, 2, s+i.
Le lemme étant par hypothèse, vrai pour s nombres, il existe

un entier positif £0, tel que q^f (t0) pour i 1,2, s. Or, on

a qs+1J(f (ts+1). Les nombres premiers qx, q2, qs+1 étant tous

distincts, on a (q1q2 qs, qs+i) — ^ d'où il résulte, comme
on sait, qu'il existe ' des nombres naturels k et l tels que
to~\~^ÇiQ2'"Çs — L+ iJr^9s+ i- Soit t t0-\-kq1q2...qs — ts+ 1Jrlqs + 1

On aura

f (t) f (*o) mod qt pour i 1,2, 5 et / (*) / {tsjj) mod qs+1

d'où, vu que qtJ(f (t0) pour i= 1, 2, 5 et ?s+ xJ(f (ts+ x)f

il résulte que q^f (t) pour i 1, 2, 5, s+L Le lemme est

donc vrai pour s-f-1 nombres. Il se trouve ainsi démontré par
l'induction.

Démonstration du théorème 6. Supposons que le polynôme
f (x) satisfait à la condition C. Le coefficient de la plus grande
puissance de x étant dans le polynôme f (x) positif, il existe un
nombre naturel xx tel que / (^3.) > 1 - Soit maintenant n un entier
donné >1 et supposons que nous avons déjà déterminé les n
nombres naturels %, x2, xn tels que (dans le cas où n> 1)

les nombres f (xx)y f (x2), f (xn) sont deux à deux premiers
entre eux. Soient qt (i 1, 2, s) tous les diviseurs premiers
du nombre f (xx) f (x2)... f(xn). Le polynôme f (x) satisfaisant
à la condition C, il existe des entiers positifs tx, t2, £s, tels
que qtJéf (h) pour i =-- 1, 2, 5, d'où, d'après notre lemme,
nous concluons qu'il existe un nombre naturel xn+1, tel que
q^f (xn+1) Pour i 1, 2, s. Vu la définition des nombres
qt (i 1, 2, s), il en résulte tout de suite que (f(xn+1),
f (xx) f (x2) f (xn)) 1. Les nombres

f(x1) > f(x2), •••, /CO /(*„+i),
sont donc premiers deux à deux.
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Les nombres xn(n 1,2,...) sont ainsi définis par l'induction
et la suitei nfinie

/Ol), f(x2), f(x3),
est telle que leurs termes sont deux à deux premiers entre eux.
Nous avons ainsi démontré que la condition C est suffisante.
Le théorème 6 se trouve ainsi démontré.

Théorème 7. Si u1? u^ est la suite infinie de Fibonacci
(c'est-à-dire la suite définie par les conditions: u1 u2 — 1

et un + 2. unJrun+1 pour n 1, 2, il existe une suite infinie
des entiers positifs croissants nx, n2, telle que les nombres de

la suite infinie
••• (1)

sont deux à deux premiers entre eux.

Démonstration de M. A. Rotkiewicz. Gomme on sait, si

m et n sont des entiers positifs, on a (umf un) — u(m) K)1). Comme

u± 1, il en résulte tout de suite que si nx, n2l est une suite
infinie croissante des entiers positifs deux à deux premiers
entre eux, les termes de la suite infinie (1) sont deux à deux
premiers entre eux. On peut prendre ici, par exemple nk — pk
(k 1,2, où pk est le k - ième nombre premier, ou bien
prendre nk Fk 22fc+l, où k =1, 2,

M. A. Rotkiewicz a remarqué aussi qu'il résulte de la
formule pour {uim un), que si nu n2, est une suite infinie
croissante d'entiers positifs, les nombres de la suite infinie (1)
sont dans ce cas et seulement dans ce cas deux à deux premiers
entre eux, si, quels que soient les entiers k et Z, tels que 1 </c<Z,
on a (nk, ?q)<2.

Remarque. Dans la suite infinie de tous les nombres consécutifs

de Fermât, Fn 22"+l {n — 1, 2, les termes de

cette suite sont, comme on le démontre sans peine, deux à deux
premiers entre eux. Dans la suite de nombres de Mersenne,
Mn 2n — 1 (n 1,2,...) les nombres de la suite Mpk (k 1, 2,...)
où pk est le k - ième nombre premier, sont deux à deux premiers
entre eux. On peut aussi démontrer que les termes de la suite

Voir, par. exemple, mon livre Teoria Liczb II, Warszawa 1959. p. 280, exercice 5

L'édition anglaise de ce livre est sous presse.
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2n

infinie MFn M2«*+i 22~ + 1-1 (n 1, 2, sont deux à

deux premiers entre eux.

Théorème 8. a,b et c étant des entiers positifs, si Véquation

ax+by c a une solution en nombres entiers x, y, elle a une

infinité de solutions en nombres entiers x, y premiers entre eux.

Démonstration. Nous pouvons admettre que (a, b) — 1,

puisque, si d (a, b), a dal7 b =db1, alors, d'après ax+by c

on trouve d|c, donc c —dctl et notre équation est équivalente
à Yéquation ayx+byy el7 où (al7 bf) — 1.

Supposons donc que a, b et c sont des entiers positifs, (afi) 1

et qu'il existe des entiers x0 et y0 tels que ax0 + by0 c. On
aura donc aussi a (x0+bt) + b (y0 — at) c, quel que soit l'entier t.

Comme (afi) 1, il existe, comme on sait, des entiers
u et ç tels que au+bv l.
Posons

t kc-(x0v -y0 u) + l (2)

en choisissant l'entier positif k de sorte que l'entier (2) soit
positif, ce qui subsiste pour tous les k suffisamment grands.
Il résulte de (2) que

(t+(x0v-y0u), c) 1 (3)

Soit d un entier positif tel que d\x0+bt et d\y0—at. Il
en résulte que d\ax0+by0 — c et, comme au+bv 1, on a

d | (x0 + bt)v - (y0 —at)u x0v - y0u + (au +bv)t x0v - y0u +1.
On a donc d\c et d\x0v — y0u+t^ d'où il résulte, d'après (3),
que d 1. Les entiers x x0+bt et y y0~ at sont donc
premiers entre eux et on a ax+by c. Le théorème 8 se trouve
ainsi démontré.

D'après une remarque de M. A. Schinzel le théorème 8
peut être déduit sans peine d'un théorème de M. T. Skolem,
publié dans Norsk Mat. Tidsskrift 15, p. 25-27 (cf. aussi Jahrbuch
über die Fortsehritte der Math. 59f (1933), Sonderheft II, p. 129).

W. Sierpinski
Konopczynskiego 5/7 m. 38

Warszawa 1.

(Reçu le 8 novembre 1962.)
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