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SUR LES SUITES D’ENTIERS DEUX A DEUX
PREMIERS ENTRE EUX

par W. SIERPINSKI

Le but de cet article est de donner plusieurs théoréemes
concernant les suites d’entiers deux & deux premiers entre eux.
Ces théorémes sont simples et leurs démonstrations sont éle-
mentaires, mais je ne les ai pas trouvés dans la littérature mathe-
- matique qui m’était accessible.

TatoriEME 1. Tout entier >6 est une somme de deux entiers
>1 premiers enire eux.

Démonstration. Si n est un nombre impair >3, on a
n=2+(n—-2) et, évidemment n—2>1 et (2, n—2)=1. Le
théoréme 1 est done vrai pour les nombres impairs > 3.

Voici maintenant la démonstration, due & M. A. MAKOWSKI,
pour les nombres n pairs >6.

Si n est un entier divisible par 4, n==4k, ou, d’aprés n>6,
kestunentier >1,onan=2k—1)+(2k+1), 00 2k+1>2k-1>1
et les nombres 2k —1 et 2k+1, en tant que deux entiers impairs
consécutifs, sont premiers entre eux.

Si, enfin, n=4k-+2, ou k est un entier>1 (puisque n>6),
on a n=(2k-+3)+(2k—1) et les nombres 2k+3 et 2k—1>1
sont premiers entre eux, puisque si 0<d[2k—1 et d|2k43,
on a d|(2k+3) —(2k—1), donc d|4 et, comme d est un diviseur
du nombre impair, on en conclut que d=1.

Le théoreme 1 se trouve ainsi démontré. Or, M. A. MAKOWSKI
a remarqué aussi qu’il résulte sans peine d’une remarque de
M. H. L. ApLER que le nombre g (n) de toutes les décompositions
d’un nombre naturel n>6 en une somme de deux entiers,
n=a+t+boul<a<bet(ab) = lestégalag(n) = L[e (n)-2],
ol ¢ (n) est la fonction bien connue d’Euler. |

En effet, M. ADLER a remarqué que, pour n entier >1,
@ (n) est le nombre de tous les systémes de deux nombres
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naturels z, y, tels que x4y = n, 1<z <net (x,n) = 1 = (y, n).1)
Or,siz+y = n,ona (x,y) = 1 dans ce cas et seulement dans ce
cas, ot (z, n) = (y, n) = 1. Il en résulte que (pourn>1) ¢ (n) est
le nombre de toutes les décompositions du nombre n en une
somme de deux entiers positifs premiers entre eux. Si 'on exclut
les décompositions n = 14+(n—1) et n = (n—1)--1, alors, dans
les ¢ (n) —2 décompositions qui resteront, les nombres z et y
seront tous les deux >1, d’ou la formule pour g (n). Or, puisque,
comme on le sait, ¢ (n) >2 pour n entiers >0, il en résulte aussi
tout de suite le théoréme 1. M. A. MAKOWSKI a remarqué aussi
que, va que lim ¢ (r) = 400, il en résulte aussi que

n=ao

Iim g (n) = 4+ o0.

n=0oo

TuEOREME 2. Tout nombre naturel est, d’ une infinité de manieéres,
différence de deux nombres naturels premiers entre eux.

Démonstration. Pour démontrer le théoreme 2 il suffit de
remarquer que si n est un nombre naturel donné, on a pour
k=1, 2, 3,... la décomposition

n=mk+n+1)—(nk+1),
ou (mk+n+1,nk+1) =m, nk+1) = 1.

TaroreME 3. Toutentier >17 est une somme de trois entiers > 1,
deux d deux premiers enire eux. |

Démonstration. Si n est un nombre pair>8, on a n = 6k,
oun = 6k-+2, oubien n = 6k-+4 et, comme n>8, nous pouvons
admettre que dans les deux premiers cas & est un entier>1 et
que dans le troisiéme cas k est un entier >0. Vu les formules

6k = 2+3+[6(k—1)+1], 6k+2 =34+4+[6(k—-1)+1],
6k +4 = 2+3+(6k—1),

on conclut sans peine que n est une somme de trois entiers >1,
deux a4 deux premiers entre eux.

1) H. L. AbLER, A generalization of the Euler ¢-funclion, Amer. Math. Monthly
65 (1958), p. 690-692. '
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Voici maintenant la démonstration de M. A. MAKOWSKI
pour n impairs >17. Vu que 19 = 3-+5+11, nous pouvons
méme supposer que n est un nombre impair >19. Si n est un
tel nombre, on a n = 12k-+y, ouy =1, 3,5, 7, 9 ou 11, et
Gl k est un entier positif et méme, pour y<<7, k>1. Vu les
identités

12k+1 =9+ (6k—T)+(6k—1),
12k+3 = 3+ (6k—1)+(6k+1),
12k+5 = 3+ (6k—5)+(6k+17),
12k+7 = 9+ (6k+ 5)+(6k—17),
12k+9 = 9+ (6k—1)+(6k+1),
12k +11 = 34+ (6k+7)+(6k+ 1)

on conclut que n est toujours une somme de trois entiers >1.
Les nombres dans les parenthéses sont, dans chacune de ces
six égalités, premiers par rapport aux nombres 3 et 9 et premiers
entre eux, puisque ils sont tous impairs, non divisibles par 3,
et leur différence est respectivement 6, 2, 12, 12, 2 et 6. On a
donc dans chacun de ces six cas la décomposition du nombre
impair n>19 en une somme de trois entiers >1, deux a deux
premiers entre eux.

Le théoreme 3 est ainsi démontré.

Or, on démontre sans peine que le nombre 17 n’est pas une
somme de trois entiers>1, deux & deux premiers entre eux.

Or, on peut démontrer que le nombre 30 n’est pas une somme
de quatre entiers>1, deux a deux premiers entre eux, mais
que tout entier >30 est une telle somme. Il se pose le probléme
si, pour tout entier s>4, tout entier suffisamment grand est
une somme de s entiers >1, deux a deux premiers entre eux.

THEOREME 4. Il existe des progressions arithmétiques aussi
longues que U'on veut, formées de nombres naturels >1, deux a deux
premiers enire eux.

Démonstration. Soit n un entier donné quelconque >1 et
soit @ = n! Les n nombres

a+1, 2a+1, 3a+1, ..., na+1,
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sont deux & deux premiers entre eux. En effet, si, pour les
entiers k et [, tels que 0 <k<I<n, les nombres ka+1 et la+1
n’étaient pas premiers entre eux, ils auraient un diviseur premier
commun p et on aurait p|(!—#k)a, done soit pll—£k, soit pla.
Mais, comme [ -k <I<n, on a (I—k)|n! = a. On a donc toujours
pla, ce qui est impossible, vu que plka--1.

Le théoreme 4 est ainsi démontré.

I1 est & remarquer qu’il n’existe aucune progression arithmé-
tique ak-+b (k =1, 2, ...), ol a et b sont des entiers positifs,
dont tous les termes seraient deux & deux premiers entre eux.
Nous démontrerons ici le théoréme plus général suivant:

TrEOREME 5. Si f(X) est un polyndme en x aux coefficients
entiers, ou le coefficient de la plus grande puissance de x est positif,
les termes de la suite infinte

fQ), £(2), f3), ...,

ne peuvent pas étre deux o deux premiers entre eux.

Démonstration. Le coefficient de la plus haute puissance de «
dans le polyndme f(x) étant >0, il existe un entier n>0, tel
que m = f (n) >1. Mais alors, comme on voit sans peine, le nombre
f (m+n) est divisible par m et les nombres f(n) et f(m-+n)
ont un diviseur commun m >1 et par suite ne sont pas premiers
entre eux. Le théoréme 5 est ainsi démontré.

TutoreEME 6. St f(x) est un polyndme en x aux coefficients
entiers, ou le coefficient de la plus grande puissance de X est positif,
la condition nécessaire et suffisante pour qu’il existe une infinité
des entiers positifs X, X5, X3, ..., tels que tous deux des nombres
f(x,), f(x,), {(x3), ... sotent premiers entre eux, est la condition C
suwwante :

C. Il n’existe aucun nombre entier d>1 tel quon ait d|f (x)
quel que soit I'entier positif x.

La nécessité de la condition C étant évidente, nous démon-
trerons seulement leur suffisance. Dans ce but nous démontrerons
“le lemme suivant:

'LEMME. s élant un entier posilif et qi, qz, ---, (s des nombres
premiers distincts pour lesquels il existe des entiers positifs t4, t,, ..,
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t,, tels que qf (t;) pouri = 1,2, ..., s, il existe un entier positif
t tel que qxf (t) pour 1 =1, 2,

Démonsiration du lemme. Le lemme est évident pour s =1.
Soit maintenant s un nombre naturel donné et supposons que le
lemme est vrai pour s nombres. Soient q;, ¢z, ..., 5, G541 deS
nombres premiers distincts, pour lesquels il existe des entiers
positifs £,, t,, ..., ty4 1, tels que g ff (¢) pour i =1, 2, .., s+1.

Le lemme étant par hypothése, vrai pour s nombres, il existe

un entier positif 5, tel que ¢ ff (t,) pour ¢ = 1, 2, ..., s. Or, on
a ¢g4 1 /f (t541)- Les nombres premiers ¢4, ¢s, ..., ¢s+ ¢tant tous
distincts, on a (¢19> .- ¢5, ¢s+1) = 1, d’ou il résulte, comme
on sait, qu’il existe des nombres naturels k et [ tels que
to4-kq192-..qs = tor 1H1gs 4 1- SO T = to+£kq1G2.-.0s = Lo 1H1Gs 41
On aura

f(t) - f(tO) mod ¢; pour L == 17 2) ey et f (t) f ( sH mOd 9s+1

d’ot, vu que ¢ ff (t,) pour 1 =1, 2, ..., s et qo1 A (ts41)
il résulte que q;4f (t) pour 1 =1, 2, ..., s, s+1. Le lemme est
donc vrai pour s+1 nombres. Il se trouve ainsi démontré par
Pinduction.

Démonstration du théoreme 6. Supposons que le polyndme
f (x) satisfait a la condition C. Le coefficient de la plus grande
puissance de x étant dans le polynome f (x) positif, il existe un
nombre naturel z; tel que f (x,) >1. Soit maintenant n un entier
donné >1 et supposons que nous avons déja déterminé les n

nombres naturels z,, z,, ..., z, tels que (dans le cas ou n>1)
les nombres f(x,), f(x,), ..., f(z,) sont deux & deux premiers
entre eux. Solent ¢; (1 = 1, 2, ..., s) tous les diviseurs premiers
du nombre f(z,) f(xy)... f(x,). Le polynéme f (x) satisfaisant
a la condition C, 1l existe des entiers positifs ¢4, ,, .., t,, tels
que ¢ ff () pour ¢ =1, 2, ..., s, d’ou, d’aprés notre lemme,
nous concluons qu'il existe un nombre naturel z,,,, tel que
g Xf (z,+1) pour ¢ =1, 2, ..., s. Vu la définition des nombres
g; 0 =1, 2, ..., s), il en résulte tout de suite que (f(z,,,),

f(zy) f(x;) ... f(x,)) = 1. Les nombres
f(xl) ’ f(xz) 5 sves f(xn) s f(xn+1) s

sont donc premiers deux & deux.
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Les nombres z, (n =1, 2, ...) sont ainsi définis par I'induction
et la suitel nfinie

Jx) 5 f(x2), f(x3)5 e

est telle que leurs termes sont deux & deux premiers entre eux.
Nous avons ainsi démontré que la condition C est suffisante.
Le théoreme 6 se trouve ainsi démontré.

TuEorEME 7. 81 uy, Uy, ... est la suite infinie de Fibonacct
(c’est-a-dire la suite définie par les conditions: u; = u, =1
et u,,, = u,+u,.;pour n =1, 2, ...), il extste une suite infinte
des entiers posilifs croissants Ny, N,, ..., telle que les nombres de
la suite infinte

Uy s Upys ooes (1)

sont deux a4 deux premiers entre eux.

Démonstration de M. A. Rorkiewicz. Comme on sait, si
m et n sont des entiers positifs, on a (u,, &,) = U, » ). Gomme
u; = 1, 1l en résulte tout de suite que si nq, n,, ... est une suite
infinie croissante des entiers positifs deux a deux premiers
entre eux, les termes de la suite infinie (1) sont deux & deux
premiers entre eux. On peut prendre ici, par exemple n, = p;
(k =1,2,..), ou p, est le k-1tme nombre premier, ou bien
prendre n, = F, = 22* 11, ou k =1, 2, ...

M. A. Rorkiewicz a remarqué aussi qu’il résulte de la
formule pour (u,, u,), que si ny, n,, ... est une suite infinie
croissante d’entiers positifs, les nombres de la suite infinie (1)
sont dans ce cas et seulement dans ce cas deux & deux premiers
entre eux, si, quels que soient les entiers k et [, tels que 1 <k </,
on a (n,, n;)<2.

Remargue. Dans la suite infinie de tous les nombres consé-
cutifs de Fermat, F, = 22"4+1 (n = 1, 2,...), les termes de
cette suite sont, comme on le démontre sans peine, deux a deux
premiers entre eux. Dans la suite de nombres de Mersenne,
M,=2"-1(n =1,2,...)lesnombresdela suite M, (k=1,2,...)
ou p est le k - ieme nombre premier, sont deux a deux premiers
entre eux. On peut aussi démontrer que les termes de la suite

1) Voir, par. exemple, mon livre Teoria Liczb II, Warszawa 1959. p. 280, exercice 5
L’édition anglaise de ce livre est sous presse.
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oft .
" infinie My, = My, = 2> 1 —1 (n=1,2, ....) sont deux &
deux premiers entre eux.

’ L. ’ - .‘ . . S .
THEOREME 8. a, b et ¢ étant des entiers positifs, st le\q‘uatwn
ax-+by = ¢ a une solution en nombres entiers xz, y, elle a une
infinité de solutions en nombres entiers x, y premiers entre eux.

Démonstration. Nous pouvons admettre que (a,d) = 1,
puisque, sid = (a, b),a = da, b =db,, alors, d’aprés az+by = ¢
on trouve dlc, donc ¢ =dcy, et notre équation est équivalente
a l'équation a,z+b,y = ¢4, ou (aq, b;) = 1.

Supposons donc que a, b et ¢ sont des entiers positifs, (a,b) = 1
et qu’il existe des entiers x, et y, tels que axy+dy, = c. On
aura done aussi a (xo+bt)+b (y, —at) = ¢, quel que soit ’entier .

Comme (a,b) = 1, il existe, comme on sait, des entiers
u et ¢ tels que au+-bv = 1.

Posons
t = ke—(xgv—you)+1, (2)

en choisissant l’entier positif £ de sorte que entier (2) soit
positif, ce qui subsiste pour tous les k suffisamment grands.
11 résulte de (2) que

(t+(xov=you), O) = 1. (3)
Soit d un entier positif tel que d|xo+bt et d|y,—at. Il
en résulte que dlar,+by, = ¢ et, comme au--by = 1, on a

d [ (xo +b0)v —(yo —atlu = xqv —you +(au +bv) t = xqv — you +1.

On a donc dlc et dlrge —you+t, d’ou il résulte, d’apres (3),
que d = 1. Les entiers © = zo+bt et y = y,—at sont donc
premiers entre eux et on a az-+by = c. Le théoréme 8 se trouve
ainsi démontré.

D’aprés une remarque de M. A. ScHiNzeL le théoréme 8
peut étre déduit sans peine d’un théoréme de M. T. SkoLEM,
publié dans Norsk Mat. Tidsskrift 15, p. 25-27 (cf. aussi Jahrbuch
iber die Fortschritte der Math. 59; (1933), Sonderheft 11, p. 129).

W. Sierpinski (Recu le 8 novembre 1962.)
Konopczynskiego 5/7 m. 38
Warszawa 1.
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