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Enfin, prenons pour F (x,y,z)la fonction:

F(x, y, z) <x(x, y)[z-(p(x)].

La fonction a (x, y) est bornée au voisinage de F origine, ou. aura
donc F(x, y, (p(x)) 0 et en particulier F (0 o o) o

Cette fonction i*7 (#, y, z) est difïérentiable à l'ancien sens théorique

à l'origine. C'est-à-dire que ses trois dérivées partielles
existent à l'origine. En effet:

F (x o 0) — F (o o o) a (x, 0) [0 — (x)] _
X I x I

Donc F'x(o, 0, 0) existe et est égal à — 1

F 0, y 0) - F (0 0 0) a(0 y) [0-0]
F F

Donc F'y (0, 0, 0) existe et est nul.
Enfin

F (0 0 z) - F (0 0 0) a (0 0) (z - 0)
k.

z z

Donc F'z(o, 0, 0) existe et est égal à /c ^ 0. Toutes les conditions
du théorème C sont vérifiées au sens ancien de la différentiabilité.
A ce même sens, puisque la solution q> (x) n'est pas dérivable, la
conclusion du théorème (que cp (x) est difïérentiable à l'origine)
n'est pas exacte.

Cinquième Section

Une application à la définition des fonctions monogènes

On dit avec Emile Borel qu'une fonction complexe / (z) de la
variable complexe z x.+ iy est monogène au point c a+ib,
si cette fonction est dérivable en ce point. C'est-à-dire que

—- f'c + e avec lim s 0.
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En posant /(z) P(x y) + iQ(x, y), cherchons à quelles
conditions doivent satisfaire P et Q pour que / (z) soit monogène

pour z — c. Conformément à l'usage en vigueur à son époque,
Goursat [1] résoud le problème aux pages 6 à 9 de l'édition de

1905 du tome II de son cours d'analyse, en prouvant d'abord

que les fonctions P (x, y), Q (x, y) doivent avoir des dérivées
partielles au point considéré et alors en supposant (hypothèses H)

1°) qu'elles en ont encore au voisinage de ce point,
2°) que ces dérivées partielles sont continues au point

considéré.

Nous allons voir que la définition moderne de la différentielle
permet de réduire considérablement cette hypothèse H et même
d'obtenir une condition nécessaire et suffisante.

En effet, si / (z) est monogène au point c, on peut écrire

Af (f'c + e)Az ou AP + iAQ (A + iB + e' +is")(Ax +iAy)

d'où
AP — (A + s')Ax — (.B + s")Ay

et

AQ (B + e")Ax +(A + e')Ay

avec lim \ t =0.
I« J

D'après la définition donnée plus haut, page 185, il en résulte

que P et Q sont différentiables au sens moderne au point (a,b)
et que leurs différentielles

dP P'adx + P'bdy

dQ Q'adx + Q'bdy

sont telles que P'a A, P'b — B, Q'a - B, Q'b A.

Ceci exige que l'on ait :

P'a ÔV, P\ Q'a- (35)

Réciproquement si 1°) P et Q sont différentiables au point (a, 6),

ce qui implique qu'elles ont chacune leurs deux dérivées partielles
au point (a, b), 2°) ces dérivées partielles vérifient les condi-
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tions (35) dites de Cauchy-Riemann, alors la fonction / (z) sera

monogène pour z — 0, car on aura:

Af AP + IAQ (A + &')Ax - (.B + e")Ay + i[(B + e±)Ax

+ (A £2) ^y~\ d* (*>' 4~ isi) Ax 4- — s" + is2 Ay

Af
— — A + iB + rj
Jz

avec

_ +(-*+",)^i s le.,+|B1|+,e.|+l62l
\Az\

et par suite, lim rj0, c'est-à-dire que / )est dérivable pour
Àz -> 0

Z — C •

En résumé : Pour que la fonction / (z) P (x, y) + iQ (x, y)
soit monogène pour z — c a ib, il faut et il suffit:

1°) que P et Q soient difïérentiables au sens moderne au

point (a, b),

2°) que, ces fonctions ayant alors nécessairement des dérivées

partielles au point (a, ô), celles-ci vérifient les conditions
de Cauchy-Riemann

P'a Q\> n - -c..
Remarque : Nous avons établi ce théorème en 1919 [17]. Quelques
années plus tard, Mrs. Chisholm Young Ta indépendamment
redécouvert et Ta appelé « Théorème fondamental de la théorie
des fonctions complexes ».

Sixième Section

Différentielles successives.

Dérivées partielles du second ordre.

Avant de nous occuper des différentielles, disons quelques
mots des dérivées partielles. On a longtemps admis implicitement

que si fxy et f'yx existent, elles sont égales. Pourtant leurs
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