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f(x, b) —f(a, b)

X —da

— A quand x —a.

Autrement dit, quand f(z,y) a au point (@, b) une dérivée
partielle restreinte, par rapport & a, elle a aussi une dérivée par-
tielle au sens ordinaire par rapport a a et la premiere est égale
a la seconde f,.

On dira de méme que f (z, y) a au point (a, b) une dérivée
partielle restreinte par rapport a y, si le rapport

f(xa y) —f(x>b)

20
e (20)
X—a
a une limite quand (rx—a)?+ (y—0)2— 0 de sorte que b

reste bornée. Et alors f (z, y) a une dérivée partielle f, au sens
ordinaire au point (a, b) et le rapport (20) tend vers f,.

Ceci étant, nous dirons que f (x, y) est différentiable au point
(a, b) au sens de Severt, si en ce point, f (z, y) a ses deux dérivées
partielles restreintes par rapport & = et y. Et alors la différentielle
de f (z, y) au point {a, b) au sens de Severi sera encore

df = f.dx + f, 4y . (19)

TroOISIEME SECTION

Equivalence des quatre définitions de la différentielle

Les quatre définitions précédentes de la différentielle d’une
fonction f (z,y) en un point (e, b) quoique différentes dans la
forme présentent cependant dans cette méme forme deux traits
communs. |

D’une part, ou bien elles présupposent Dexistence des
dérivées partielles de f (z, y) au point (a, b), ou bien cette exis-
tence résulte-t-elle directement de la définition.
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D’autre part, toutes ces définitions conduisent & la méme
expression de la différentielle:

df(x, y) = fadx + fydy .

Les différences entre les quatre définitions de la différentielle se
réduisent donc aux différences entre les définitions de la diffé-
rentiabilité. C’est donc celles-ci qu’il nous suffira de comparer
pour conclure qu’elles sont équivalentes.

Equivalence des quatre définitions
de la différentiabilité

I — Comparons, par exemple, la définition de Stolz, a celle
de Hadamard. Si, au point (a, b), f(x, y) est différentiable au
sens de Stolz, on aura: :

Af = (fo+e)dx + (f, +&') Ay

. € :
avec Iim { ,} = 0.
Ax2 + A4y2 > 0 e

Done si x (t), y (t) sont des fonctions de t dérivables et respec-
tivement égales & a et b pour { = «, on aura

F(x(®,y @) — f(a, b)
At

o)X 4 (f +e) 2
= g) — g)—= -
a At P At

Adx A
Quand 4t— 0’21_t et Z%tendent vers 2’ (), y'(«), donc Az et Ay

tendent vers zéro et par suite aussi ¢ et &’. Dés lors, le second
membre tend vers

faxi + fo e (21)

donc .aussi le premier.

Par suite, f (z (), y (1) ) est dérivable pour ¢t = « et sa dérivée
est égale a (21). C’est & dire que toute fonction différentiable au
sens de Stolz I'est aussi au sens d’Hadamard.




— 199 —

La démonstration de la réciproque est moins simple. Nous
considérons une fonction f (z, y) différentiable au sens d’Hada-
mard au point (a, b). C’est-a-dire qu’on peut écrire:

df(x (), y (1) = Ax, + By, (22)

pour la valeur de ¢ considérée, soit ¢ = «. Il suffit de montrer
qu’on a

R , — f(a, b) — AAdx — B4 )
T ACER) R ACEIL Y =0 (22bis)
ro0 T r—=0 r
en posant:

r = \/sz + Ay?.

A cet effet, nous allons montrer qu’on arrive & une contradic-

R
tion si ’on suppose que — ne tend pas vers zéro et que par con-
r

séquent, 1l existe une suite de points (z,, ¥y, correspon-

dant aux valeurs 4,z, 4,y, r,, R, de Az, Ay, r, R telles que
o _

“| reste supérieur & un nombre positif fixe £, quand r,— 0.
r

n

Pour cela, admettons pour commencer qu’on puisse définir
deux fonctions z (¢), y (!) dérivables pour ¢t = o et prenant les
valeurs respectives a, b, z,, y,, pourt = a et t, = r,+o. On aura

;R_n_ = f(x (tn) > V (tn)) _f(x (O() ’ y(OC)) - AAnx — BAny

ry r

(23)

n

R, R
— est donc la valeur pour t =, de — dans (22bis) quand on k
n r . :

n

r

y remplace ¢ par ¢,. Et I'on a (23). Or,on a >k et la relation

n

(22) qui peut s’écrire dans le cas actuel:

fx@®, y@) —f(x(@), y() S lim A Ax (1) + B Ay (1)
t— o At At
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ou

Iim — =0,
r—> 0 r

d’ou en particulier

lim — =0 avec

rp—>0 Fn

R,
—| >k>0. (24)

Les deux relations (24) fournissent la contradiction
annoncée. Reste a démontrer l'existence des fonctions z (2),
y (t) décrites plus haut. On a fixé d’avance les valeurs de z (¢),
y (¢) pour les valeurs ¢ = ¢, = r,+o. Mais pour que les ¢, soient
distincts, on pourra ne retenir de la suite des r,(#0) qui tendent
vers zéro qu'une suite de valeurs distinctes et méme décrois-
santes. On a évidemment:

X (tn) - X(OC) <1 y(tn) - y(OC) <1
rn = > rn ) — >
ce qui peut s’écrire
X(t) —x(@| _ y(t) —y@| _ 25)
t —o | t, — o =

On peut donc extraire de la nouvelle suite des ¢, une suite
telle que les deux premiers membres de (25) tendent vers deux
limites finies respectives, 4 et u.

A cette troisiéme suite de valeurs de ¢, correspondra une suite
de points M,, (z (t,), y(t,)) avec t,—t,+1> 0. Pour définir com-
plétement x (¢), ¥ (¢), nous les prendrons fonctions linéaires de
t, de t, & t,+, égales respectivement a x (¢,), y (¢,) et a x (£, + 1),
y (t,+,) pour t =t, et ¢, ,. La courbe lieu du point z (¢), y () sera
une ligne polygonale tendant vers le point (a, b). Alors

x(t) — x ()

r— o

sera une fonction homographique de ¢ de ¢, & t, 4 ; dont les valeurs
resteront comprises entre ses valeurs pour t = ¢, et ¢t =1, Or
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celles-ci tendent vers 1 quand f,— «. Il en résulte que x () est
bien dérivable pour ¢ = o; et de méme pour ¥y (%).

Ainsi toute fonction f (z, y) différentiable au point (a, b) au
sens d’Hadamard est aussi différentiable en ce point au sens de
Stolz et au mien. B

. En résumé, les définitions de la différentiabilité au sens de
Stolz et au sens d’ Hadamard sont équivalentes.
II—Comparons notre définition géométrique (page 191) de la
différentiabilité avec notre premiére définition. |

10) Supposons d’abord que f(z, y) soit différentiable au
point (a, b) au sens de notre premiére définition. Alors on aura
une relation de la forme:

Af = AAx + B4y + er (26)

avec r = /Ax* + Ay* et lim & = 0 .
r—0
Condition U—Si I' est une courbe, lieu des points z (), y (¢),
z (¢), qui pour ¢t = a, passe par le point (a, b, ¢ = f (a, b)) de la
surface §: z = f (x, y) et qui a une tangente en ce point, on aura,
d’apres (26)

Az — AAx — BAy r -
At B SAt (27)
Quand 4t— 0, le premier membre tend vers.
z, — Ax, — By, . (28)
r J4x® + 4y? -
Dans le second: — = + 2 2,
At At > Pty

Dongc le second membre de (27) tend vers zéro avec At et par
suite

z, = Ax, + By, .
Donc la tangente en Q a I' appartient au plan P:
Z—-—c=AX-a)+B(Y-b),

fixe et non paralléle a Oxz.
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Condition V : Inversement considérons une droite 7' passant par
Q et contenue dans le plan P. Soient [, m, n ses coefficients direc-
teurs. On aura (26) Al+Bm = n avec [24+m?+#0. Il existe dans
le plan zoy une infinité de courbes passant par le point (a, b) et
tangentes & la projection 7" de T sur zoy. Choisissons-en une,
soit C. Il y aura donc, pour cette courbe, une représentation
paramétrique ou ses coordonnées & (), #n (¢) sont égales a a et b
pour ¢{ = B et sont dérivables pour ¢t = f avec 6},2 + 11',,2 # 0 et

2=t (29)
m ' t

Soit maintenant la courbe I' de la surface § qui se projette sui-
vant la courbe C sur xz Oy. Sa.cote correspondant a ¢, sera

S =/CEW, n@)
et en vertu de (24), on aura

AS (¢ AAE (t) + BAn (t P
() _ A4E® +Ban@) P 0
At At At

P AE(D)\? An (H)\?

Quand 4t -0,

P
Finalement 7 — 0. Donc d’aprés (30), § (¢) est dérivable pour

t =B et sa dérivée est
Sp = Ap+ g | (31)

et puisque \/é;gz + 45 # 0, les trois dérivées &5, 15, S; ne
sont pas toutes nulles et la courbe I' a bien une tangente au
& M

| point t = B. Puisque T m on aura d’apres (29) et (30)

m
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= = ="F.q y a bien une courbe I' sur S passant par Q
m n

et tangente en Q & la droite 7" donnée située dans P. Dés lors les
conditions U et V étant remplies par P, S a bien au point ¢, un
plan tangent: le plan P, non paralléle & Oz: la fonction f (z, y)
est bien différentiable au sens de notre définition géométrique.

20) Inversement, supposons que f (z, ) soit différentiable au
point (a, b) & notre sens géométrique. Cest-a-dire que la surface S
ait au point Q, un plan tangent non paralléle & Oz, soit le plan P:

Z—c=AX—a) +B(Y—-b).

Nous voulons démontrer que f (z, y) est au point Q différen-
tiable a4 notre premier sens, et méme, plus précisément que

(Af~AAx —BAy> 0

r

Iim

r—-0
avec ro= Jd4x? + 4y*.

En effet, dans le cas contraire, il existerait une borne £ >0
et une suite de valeurs h,, k, de Az et Ay telle que en posant
R, A4,.f— Ah, — Bk, |
;;— B rn
quand r,— 0.

Soient A4,, p,, v, les cosinus directeurs de la droite Q Q,,
(Q, ayant pour coordonnées a-+h,,b+k,, c+1,=f (a+h,, b-+k,).

On pourra toujours extraire de la suite o des points de coor-
données A,, w,, v, (qui restent sur une sphére de rayon 1) une
suite ¢’ qui converge vers un point de coordonnées A, u, v,
(avec A%24-pu2+4-v2? = 1). Remplacons la suite des Q, par la suite
correspondant a ¢'. Ceci étant, considérons une courbe C
du plan de zy passant par les projections des points Q,, Q.,, ...
Q, ... Q. Sur z oy, ce sera par exemple la ligne polygonale dont
les sommets sont ces projections. Ce sera la projection, C, d’une
courbe I' de la surface S. Pour celle-ci 4,, u,, v, tendant vers
Ay W, v, la droite Q@ @, tend vers la droite d passant par Q et de
cosinus directeur A, u, v. Si nous supposons, en outre (condition

T), que f(z, y) est continu au point @, on voit que le point O,

IR
ou rn=\/h,f+k;f‘,|~—" reste > k > 0

n
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tend vers Q et que la corde Q Q, de I' a une limite 6. Dés lors la
courbe I' a une tangente au point Q et par hypothése cette
tangente est dans le plan P. On a done

v = AA + Bu . (32)
h k [
Mais 2 ="=2L=C,
In Mn
avec C, = Jh + K2 + (4,/) .
D’ou
R, C, C,
- = —(vn_—Aln—B:un) = — "
rn rn rn

ou d’apres (32), y,—> 0. Or

C, \/,1,3 + w2 4+ v? 1
rﬂ

-ﬁ—_-_——-_’l
A2+l NZEE

Si A24-p? était nul, on aurait d’apres (32) v = 0 alors que

A2+ pu2ty2 =1, Donc — a une limite finie et — — , alors
I r, ~

rn

De 19, p. 201 et 20, p. 203, il résulte que notre définition géo-
métrique de la différentiabilité est équivalente & notre premiére
définition, comme a celle de Stolz.

qu’on a supposé que > k > 0. Il y a bien contradiction.

III— Comparons enfin la définition de Severi a celle de Stolz.

10) Si f(x, y) est différentiable au point (a, b) au sens de
Stolz, on a

f(x,y) —f(a, b) =(x—a)f, +(—=bf, +e(x—a) + & (y—b)
avec lim {:} =0 quand (x—a)*> +(y—b)*>>0. Alors
1

fG,y) —f@,y =[ft,» —fla, b)] —[fla,y)—f(a, b)]
= (x—a)(f, +8) + (&, —&;) (y —b)
ou ¢, & et g, —» 0 avec (x—a)*> + (y —b)*.

|
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Done

|

y —b
+181_82

f(xa y) —f(a’ y) _

X —d

&

fa

IA

X —da

reste borné, le

Quand (x—a)2+4(y —b)%2—~ 0 de sorte que z »

second membre tend vers zéro, donc aussi le premier. Par suite
f (z, y) a, au point (a, b) une dérivée partielle au sens de Severti,
par rapport a . On verrait qu’il en est de méme par rapport a v.
Ainsi f (z, y) est différentiable au point (a, b) au sens de Severi.
Les différentielles de f (x, y) au point (@, b) sont évidemment les
meémes aux deux sens.

20) Si f(x, y) est différentiable au point (a, b) au sens de
Severi, écrivons

f(x,y) —fla,b) = [f

(x.»~fa, y>] ma

X —dad

+[f(a, y)—f(a, b)

VD)6 = i +a] -0+ [ 407 6.

y—>b

Alors, quand (x —a)?+(y —b)* = 0 de sorte que reste <1,

X—a
on voit que w et o’ tendront vers zéro. De méme on peut écrire

fx, ) =f@@,b) = (f+0)(x—a) + (f, +0) (y —b)

, 6
avec hm{g,}zo quand (r—a)® 4 (y—b)2— 0 de sorte que
X—a <1
y—b '

Dés lors on pourra écrire

fx,9) =fla, b) = (fat+e)(x~a) + (f,+¢)(y—b)

R
avec lim {e’} = 0 quand (x —a)? + (y—b)*> - 0, quelle que soit

la valeur du rapport entre x—a et y —b. Autrement dit f (z, y)
est aussi différentiable au sens de Stolz.
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Finalement, les différentiabilités aux sens de Stolz et de
Severi sont équivalentes. Et les différentielles correspondantes
sont égales.

Conclusion

Finalement, nous avons démontré que les définitions de la
différentielle aux quatre sens:

d’approximation de Stolz et Fréchet,
géométrique de Fréchet,
opérationnel d’Hadamard,
analogique de Severi,

quoique de formes absolument différentes, sont équivalentes.

Pour abréger, nous donnerons le nom générique de définition
de la différentielle au sens moderne a chacune des définitions
ci-dessus.

QUATRIEME SECTION

Parallélisme entre le cas d’une variable et celui de
plusieurs variables pour les propriétés de la différentielle
sous sa forme moderne.

Nous rappellerons d’abord les propriétés de la différentielle
dans les deux cas d’une ou de plusieurs variables en renvoyant le
lecteur pour les démonstrations aux traités récents qui utilisent
les définitions modernes (nous indiquerons, comme exemple, les
pages correspondantes de la troisiéme édition, 1914, du tome I du
cours d’Analyse Infinitésimale [13] de la Vallée-Poussin, et du
tome I, 1942 du cours d’analyse mathématique de Valiron [14].
Et nous montrerons par des exemples pour plusieurs de ces pro-
priétés qu’elles disparaissent quand on emploie I’ancienne
définition de la différentielle d’une fonction de plusiéurs variables,
¢’est-a-dire quand on suppose seulement I'existence des dérivées
~partielles au point considéré. ' ’
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