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édition [13] « ... nous avons abandonné ’ancienne définition de
la différentielle totale et adopté celle de Stolz. La supériorité de
cette définition a 6t6 mise en lumiére par les travaux de M. M. S.
Pierpont, Fréchet et surtout W. H. Young. Elle est indiscutable:
les théorémes découlant plus directement des principes, la
théorie de la différentiation des fonctions explicites et implicites
devient plus serrée et, par le fait, plus satisfaisante». Cette
définition est d’ailleurs rappelée & la page 140 du méme tome.
Les mémes avantages s’appliquent aux autres définitions que
nous rappellerons plus loin, puisqu’elles sont équivalentes a
celle de Stolz. |

DEUXIEME SECTION

Définitions modernes
de la différentielle d’une fonection de plusieurs variables

Dans ce qui suit, nous nous limiterons au domaine des fonec-
tions numériques de deux variables numériques, le cas de plus de
deux variables numériques pouvant étre traité de la méme fagon.

Autrefois, la définition théorique de la différentiabilité de
f (x, y) en un point, consistait dans ’hypothése de I'existence
des deux dérivées partielles en ce point. Pratiquement, pour
établir un parallélisme des propriétés de la différentielle entre
le cas d’une et celui de plusieurs variables, on faisait générale-
ment 'hypothése H définie ci-dessous. Les définitions modernes
(qui vont suivre) de la différentiabilité (pour plusieurs variables)
se placent entre ces deux extrémes. Comme on le verra plus
loin, elles sont moins générales que la définition théorique
antérieure et plus générales que la définition pratique anté-
rieure. Le gain acquis par les définitions modernes consiste en ce
que, comme la définition pratique antérieure (voir pages 180-181,
et 207) plus étroite, elles réalisent le parallélisme cherché, ce
que ne faisait pas la définition théorique antérieure.

Considérons d’abord I'exemple A de la page 213; f (z, y) =

Y

22 g2 (avec f (0, 0) = 0), a bien ses deux dérivées partielles &
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’origine, mais n’est pas continue & ’origine, done (page 209) n’est
pas différentiable au sens moderne.

Plagons nous maintenant dans 'hypothése suivante:
Hypothése H: f(x, y) a ses deux dérivées partielles f,, f, au
voisinage du point (a, b) et celles-ci sont continues au point (a, b).
Alors on peut écrire

Af = f(a+h, b+k) —f(a, b) = f(a+h, b+k) — f(a, b+k)
+ f(a, b+k) — f(a, b)
Et en appliquant le théoréme des accroissements finis puisque

[ (z, b+Fk) et f(a, y) sont dérivables en x et y respectivement,
pour % et k assez petits, on aura:

’ , 0
Af = hf,(a+0h, b+k) + kf,(a, b+0'k), avec 0 < {H’} <1,
et puisque f, et f, sont continues au point (a, b) |

Af(= h[fe(a, b) +¢] +k[f,(a,b) +¢]

&
avec lim { ,} = ( quand % et & tendent vers zéro.
€

(’est pour éliminer I’hypothése H que 'on a commencé a
introduire une nouvelle définition de la différentiabilité, consis-
tant & partir de la formule précédente supposée vraie, sans tenir
compte de /. Le gain consiste en ce que sil’hypothése /i entraine
la formule ci-dessus, la réciproque n’est pas vraie comme le
montre ’exemple de la page 207.

La définttron de Stolz et celle de Fréchet

I — C’est en s’inspirant des considérations qui précedent et
restent dans le domaine de l'analyse classique que Stolz [7],
Pierpont [8] et Young [9] sont parvenus indépendamment et
successivement & la définition suivante:

Une fonction f (x, y) est différentiable au point (a, b) si

10 elle est dérivable en ce point par rapport a x et a vy,
20 on peut écrire:

Af =f(a+4x, b+4y) —f(a, b) = (fu+e) Ax+(fo+&) 4y, (8)
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ol ¢ et ¢ tendent vers zéro quand Az et Ay tendent simultané-
ment vers zéro.

Et s’il en est ainsi, on appelle différentielle de f (au point
(a, b) et correspondant aux accroissements Ax, 4y de z et y),
Vexpression

df = fadx + fudy €

(en prenant pour f, z, on a évidemment dx = 4x), on aurait de
méme dy = Ay, de sorte qu’on peut écrire:

df = fadx + fydy (10)

égalité qui n’est actuellement établie que lorsque x et y sont des
variables indépendantes, mais qui sera généralisée plus loin,
voir pages 194. 209.

En 1893, Stolz, aprés avoir donné sa définition, montre [7]
qu'elle permet immédiatement I’extension des propriétés de la
différentielle d’une fonction d’une variable. W. H. Young en
retrouvant indépendamment ces résultats en 1910, les a com-
plétés dans un excellent opuscule [9] consacré a ces questions?).

II faut ajouter que Stolz a eu aussi 'idée [7] d’une définition
équivalente & sa premiére mais de forme légérement différente.

11 dit que f (z, y) est différentiable au point (a, b), si 'on peut
écrire:

Af = AAx + BAy + ¢dx + &'Ay (11)

ou A, B sont indépendants de Az, Ay et ou &, & tendent vers
zéro quand Ax et Ay tendent vers zéro.
Et alors la différentielle de f en (a, b) sera:

df = Adx + BAy

Mais 1l fait observer que pour 4y = 0

fla+d4x,b) —f(a, b)

A
i + &

1) Nous avons nous-méme publié un exposé analogue [10] en 1912 avec quelques
compléments originaux reproduits ici dans la suite.
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de sorte que

1) f (x, y) a une dérivée partielle f, au point (a, b),
20) A est égal & cette dérivée partielle. On voit de méme que
f» existe et est égal & B.

Les deux définitions de Stolz sont bien équivalentes.

Stolz a aussi donné ( [7], page 134) une condition suffisante
tres générale pour la différentiabilité. Pour que f(x, y) soit
différentiable au point (a, b), il suffit que f ait en ce point ses
deux dérivées partielles et qu’en outre, 'une de ces dérivées, par
exemple f,, existe au voisinage de (a, b) et soit continue en ce
point. Gar on a:

fla+h, b+k) —f(a, b) = [fla+h, b+k) —f(a, b+k)] +
[fla, b+k) —f(a, b)] = hfe(a+0h, b+k) + k[f,(a,b)+7]

avec 0 < 0 <1, lim n = 0. Mais puisque f, est continue au
k-0

point, (a b):
fx@+6h,b+k) —f.(a,b) =¢

ou ¢~ 0 quand A et k£ tendent vers zéro. D’ou, comme annoncé:

fla+h, b+k) —f(a, b) = h[fda, b)+e] + k[f(a, b)+n]

ou 1 et ¢ tendent vers zéro quand £ et k tendent vers zéro.
Il est remarquable que, plus tard, Jordan ait eu une idée
analogue [5], mais sans en tirer I’extension de la différentiabilité.
I1 considére le cas ou Von aurait la formule (11) et il en tire:

A=f., B=f - (12)

Mais comment ? C’est apres avoir établi, comme ses prédécesseurs
(sauf Stolz) la formule (8) dans I’ hypothése H : f (x, y) a des déri-
vées partielles f,, f, au voisinage de (a, b) et celles-ci sont con-
tinues au point (a, b). Et alors, il refranche les expressions (8)
et (11) de Af et il fait tendre Az et Ay vers zéro de sorte que
%—) 0. Il retrouve bien ainsi les égalités (12), mais sous I’ hypo-

thése H. Alors que Stolz obtient ces égalités par le raisonnement
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plus simple, indiqué ci-dessus, sans faire I'hypothese A, ni d’ail-
leurs sans aucune hypothese supplémentaire.

IT — C’est par une voie tout a fait différente que nous sommes
parvenu & une définition équivalente et trés analogue, mais
d’une forme distincte, plus propre a la généralisation aux fonctions
abstraites. En effet, contrairement au processus habituel qui
consiste & passer du particulier au général, ¢’est en revenant du
cas général des espaces abstraits au cas particulier duplan que nous
avons obtenu la définition qui va suivre. Cela tient & ce que, au
départ, nous étions habitués aux définitions usuelles & cette
époque, mais que notre but était ’étude des fonctions abstraites.
Définissant d’abord la  différentielle d’une fonctionnelle [18],
puis d’une transformation d’espace abstrait dans un espace
abstrait, nous avons pu prouver, dans le cas d’une relation entre
deux espaces de Banach [19] que cette différentielle conservait
les propriétés principales de la différentielle d’une fonction
numérique d’une variable numérique. C’est seulement ensuite
(puisque notre but principal était, & cette époque, 'étude des
espaces abstraits) que nous nous sommes demandé si cette défini-
tion était bien une généralisation complete de la différentielle
classique. Et nous nous sommes apercu qu’il n’en était rien et
que nous obtenions la définition plus stricte suivante:

Une fonction f (z, y) est différentiable & notre sens, au point
(a, b), s1 son accroissement ne différe d’une certaine fonction
linéaire & (4x, Ay) des accroissements Ax, Ay des variables
z, y que par un infiniment petit par rapport & la distance r du
point (a, b) au point voisin (a4 Ax, b+ Ay).

Et, dans ce cas, la différentielle de f au point (a, b) sera cette
fonction & (4z, Ay). Autrement dit, en posant:

£ (4x , Ay) = AAx + Bdy ,

on aura
Af = AAx + BAy + or (13)
Imw=20
r—0
et

df = Adx + BAy . (14)
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On peut prendre pour r: r = /4x* + 4y* .

Mais puisque

1
ﬁ(ldxl + Ay ) < JAx* + 4y* <|4x| + |4y ]|

on peut prendre aussi
r=|dx| + |4y].

On peut aussi prendre pour r:

r = Max , ete. . ..
|4y |

Dés lors, en prenant dans (13), comme Stolz, Ay = 0, on voit que
f (z, y) est dérivable en x au point (a, b) et que A = f,. De méme
f (z, y) est dérivable en y au point (a, b) et 'on a B = f; et par
suite:

dfy = fodz+fody .

Finalement on voit qu’une fonction f (z, y) différentiable a notre
sens l'est aussi au sens de Stolz et avec la méme différentielle.
Comme dans la formule (13), s1 'on écrit

edx + ¢'dy = or

Ax Ay )
on a o] =le— +e& —|Z|e|l+1]¢&]
y r
&0t lim o = 0,
r—0

on voit que réciproquement, toute fonction différentiable au
sens de Stolz I’est aussi a notre sens, avec la méme différentielle.
C’est parce que ces deux définitions sont trés semblables que nous
n’avons pas reporté plus loin leur comparaison.

Mais notre expression (13) se préte mieux aux généralisations.
Car, ayant observé qu'on peut adopter plusieurs expressions
pour r, sans changer la définition, ces expressions conduisent au
contraire, chacune a une définition différente, dans le cas des
espaces fonctionnels.
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Définition géometrique de la différentielle

Pour les fonctions d’une variable, il y a équivalence entre
I'existence de la dérivée de f (x) pour x = a et I'existence d’une
tangente (non paralléle & Oy) & la courbe y = f (z) au point
x = a.

Mais pour les fonctions de deux variables ’équivalence n’est
plus totale. Elle a bien lieu partiellement; car, il est bien exact
que si la surface S: z = f(x,y) @ un plan tangent au point
(a,b,¢), ¢c=f(a,b) et si f(x,y) a des dérivées partielles au
point (a, b), alors I’équation du plan tangent est:

Z—c=X=-a)f+ (Y =bfy. (15)

En effet, la courbe intersection de S et du plan y =5, ayant pour
équation: z = f (z, b) a alors une tangente au point d’abscisse a,
qui est:

Z—c = fyla, b)(X—a).

Et de méme on a la tangente: Z—c = f, (Y —b) au point y = b
a la courbe intersection de § avec le plan X = a.

Dés lors, le plan tangent & § au point (a, b, ¢), devant con-
tenir ces deux tangentes, aura pour équation, I’équation (15).

Mais autrefois, on considérait comme allant de soi que:
si une fonction f(z, y) avait ses deux dérivées partielles f, (a, b),
/5 (@, b) au point (a, b), alors: 10 la surface S: z = f (x, y) avait
un plan tangent au point (a, b) et 20 'équation de ce plan tan-
gent était Z —c = f, (X —a) + £, (Y —=b).

Nous allons montrer qu'une telle affirmation est fausse en
donnant un exemple du contraire.

Définition d’un plan tangent

A cet effet, précisons d’abord que nous entendons par plan
tangent & § au point (a, b, ¢) un plan qui soit le lieu des tangentes
aux courbes situées sur S et passant par ce point (s’entendant
de celles de ces courbes qui ont effectivement une tangente en
ce point).
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Une condition nécessaire pour qu’il en soit ainsi, ¢’est qu’il
existe un plan P passant par le point considéré Q et tel
d’abord qu’il contienne toutes les tangentes en Q aux courbes
tracées sur §, passant par Q) et qui ont effectivement une tangente
en (). Mais cette condition, U, n’est pas suffisante.

S’1l existait dans ce plan P une droite D passant par Q qui
ne soit tangente a aucune courbe située sur § et passant par Q,
alors D n’appartiendrait pas au lieu des tangentes précisées plus
haut, ce lieu ne serait qu'une partie de P.

Dés Jors, pour quun plan P soit tangent & S au point Q, il
faut et il suffit que deux conditions soient réalisées, la condi-
tion U ci-dessus et la condition V suivante: toute droite D
située dans P et passant par Q doit étre tangente en (@, & au
moins une courbe située sur S et passant par (. Voici mainte-
nant 'exemple annoncé & la page 189.

Exemple

Prenons pour exemple, le cas ou f (z, y)
22 4+y? #0. \/x T

On a

= pour

| xy | < | xy |

£l = 1xy]

donc | f|— 0 avec x2+y>. Alors, en prenant f (0, 0) = 0 la fonc-
tion f (z, y) sera partout continue.

On 5 1 & 0) -7 (0, 0)

n a
x—0

tielle en x a lorigine O et celle-ci est nulle; de méme f, (0, 0)
existe et est nulle.

Si donc la surface § a un plan tangent & lorigine, alors
d’apres ce qui précéde, ce plan aura pour équation

Z =f:(0,0X +£,(0,0) Y,

= 0, donec f (z,y) a une dérivée par-

¢’ est-a-dire - Z = 0.

Dans la méme hypothése, la droite D du plan tangent située
dans le plan X = Y et qui, par suite passe par 0, devrait étre
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tangente a une courbe C de S passant par 0. Soit M un point de
de coordonnées z, y, et z = f (x, y), distinct de 0. Les cosinus
directeurs de OM sont:

] b4

,ou k = /x* +y* + 2%,

=

| =
bl

et ils devraient tendre vers les cosinus directeurs de D, ¢’est-a-dire:
1 1 0
NERNEI
1
Dés lors, puisque x/k 7> 0, et méme — \/—2- # 0, alors

X—>1et—z-—>0.0r

X X .
y + y/x + 1 1
— — — = i S
RGN ) Jivl /2
X

et non vers zéro. Ainsi, § n’a pas un véritable plan tangent au
point O: il existe au moins une surface S représentée par I’équa-
tion z = f (z, y) ou f (z, y) est continue partout et a en un point
particulier x = 0, y = O, deux dérivées partielles ' (O, 0O),
1,(0, O) sans que cette surface ait un plan tangent au point
considéré. Ainsi 'ancienne condition pour lexistence du plan
tangent n’est pas assez stricte.

Définition géométrique de la différentielle

Pour rétablir ’analogie avec le cas des fonctions d’une
variable (page 180)e t avecn otre premiére définition (page 187) de
la différentiabilité d’une fonction de deux variables, nous dirons
[10, page 438, 439] qu’une fonction f (z, y) est différentiable au
point (a, b) si la surface §: z = f (x, y) a un plan tangent 7', non
paralléle a Oz, au point de coordonnées a, b, et ¢ = f (a, b). Et
alors, I’équation de ce plan étant nécessairement de la forme

Z—c=A(X—a) +B(Y —b),
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on appellera différentielle de f au point (a, b) 'expression

df = A Aa + B 4b (ou da =x —a,4b =y —b).

Existence du plan tangent

Pour savoir si la fonction f (z, y) est différentiable au point
(a, b), tout revient & chercher & quelle condition la surface
z=f(z, y) a un plan tangent non parallele & Oz, au point
(a, b, c).

Il faudra qu’il passe au point (a, b, ¢), un plan non paralléle &
Oz vérifiant les conditions Uet V de la page 190. Mais on devra
tenir compte explicitement de deux conditions liées implicitement
a la notion de surface représentable par la fonction z = f (z, y).
On supposera:

10) que f (z, y) qui n’est pas nécessairement définie partout,
soit définie au voisinage du point Q considéré, c’est-a-dire a
I'intérieur d’un cercle de rayon r positif (x —a)? -+ (y —b)* < r?;

29) que f (x, y) soit continue au point (a, b). Par exemple, on
ne pourra pas prendre ¢ = b = 0 et f = /2%, qui n’est définie
dans aucun voisinage complet de (0, 0) et qui a pourtant deux
dérivées partielles (qui sont nulles) a 1’origine.

Par exemple encore, on ne pourra prendre pour f (z, ¥) une
fonction définie partout sauf sur x = o, y > O et nulle ailleurs,

bien qu’elle vérifie les conditions V et U de la page 190.

Définition du plan tangent

Soit M un point quelconque d’une surface S et Q un point
fixe de S. Soit enfin ¢ ’angle aigu de la corde QM avec un plan
P. Si § a un plan tangent en Q et si celui-ci est P; si d’autre
part, il passe par Q et 8’il y a une courbe située sur §, ayant une
tangente T en Q, telle que T soit située sur P, alors I’angle aigu,
Y de QM et de T tend vers zéro quand M— Q. Or, quand ¢ est
Pangle de QM avec le plan P, on a O < ¢ < ¥. Donc quand
M- Q, ¥ tendant vers zéro, il en sera de méme de ¢.

Réciproquement, sans savoir si P est tangent & S en Q,
supposons que @ = (QM?P)—» O avec QM, quelle que soit la
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facon dont M —Q sur S. Alors, soit, 4, une droite du plan P
passant par Q. Le plan R perpendiculaire & P et passant par 4
coupe S suivant une courbe C passant par ¢. Soit M un point
de C, distinct de Q. L’angle ¢ de MQ avec P est aussi 'angle de
MQ avec 4. Quand M —Q, ¢—0 par hypotheése. C'est dire que la
corde MQ de C tend vers 4 quand M— Q, autrement dit que la
condition V est vérifiée par P. Soit, d’autre part, I', une courbe
sur S passant par Q et ayant une tangente § en Q. Si M est un
point de I'" alors I'angle ¢ de QM avec P tend vers zéro avec QM
et il en est de méme de angle ¥ de QM avec 6.

Prenons sur QM, dans la direction de ¢ vers M, un point M’
tel que QM' = 1. Puisque la droite portant QM tend vers 6, M’
va tendre vers un point N de o tel que QNN = 1. Or puisque
¢ — 0, la distance de M’ au plan P tend vers zéro. Et comme
cette distance tend vers la distance constante de /V au plan P,
cette derniére tend vers zéro, c¢’est-a-dire que 6 est dans le plan
P et par suite que P vérifie aussi la condition U.

Dans le raisonnement précédent, nous avons supposé que le
plan R coupe effectivement § suivant une courbe C. C’est que
nous avons admis implicitement que P vérifie une condition
analogue a 1°, de la page 192, soit W: si 'on projette S sur P,ily
a au moins un voisinage de Q qui appartient entiérement a cette
projection.

D’autre part, quand nous supposons que le point M de S
tend vers , nous admettons implicitement une condition 7" ana-
logue a la condition 2° de la page 192.

En résumé, on peut définir un plan tangent de la maniére
suivante:

Un plan P passant par un point @ d’une surface S est, par
définition, tangent & § en Q si,

1°) M étant un point quelconque de S, distinet de Q, I’angle
aigu de M avec P tend vers zéro quand M tend vers Q,

20) La condition W ci-dessus est satisfaite.

Définitions opérationnelle par Hadamard

Aux pages 2 et 3 du tome I de son cours d’analyse [16],
M. Hadamard rappelle en 1927, briévement mais nettement,

L’Enseignement mathém., t. X, fasc. 3-4. 13
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deux définitions de la différentielle. La seconde est celle ou Stolz
et moi-méme considérons la différentielle de f (z, y) comme une
expression approchée, mais plus simple, de ’accroissement de f.

La premiere procéde d’une idée tout & fait différente qu’il
avait déja introduite en 1923 [11].

Pour Hadamard, l'introduction de la différentielle a pour
effet d’exprimer plus simplement les théoremes des fonctions de
fonctions et des fonctions composées.

Au moyen de la notion de dérivée, on écrit, sous certaines
conditions :

Df(x (), y (@) = faxs + fo 11 - (16)

En introduisant la notion de différentielle, on écrit, sous les
meémes conditions:

df (x-, y) = fadx + fydy (17)

que z et y soient des variables indépendantes ou qu’elles soient
des fonctions d’une variable indépendante. C’est 1a un avantage
précieux qui non seulement abrége a la fois I’écriture de la for-
mule, mais aussi rend les démonstrations plus simples, plus
intuitives et plus générales.

Cette utilité de la notion de différentielle étant admise,
notons que, dans notre jeunesse, la formule (16) était démontrée
dans ’hypothése H ou la fonction f (z, y) admettait des dérivées
partielles, non seulement au point (a, b), mais en son voisinage
et ou, en outre, ces dérivées partielles étaient continues en ce
point. (On suppose, bien entendu, que pour la valeur de ¢ consi-
dérée, x (t) et y (t) sont dérivables et respectivement égaux & a
et b). Or la formule (16) peut rester exacte sans que toutes les
hypothéses de H soient vérifiées.

Par exemple, il suffit de prendre:
£(0,0) = 0 et f(x, y) = (x* + »?) sin—\7—:2—1———2—pour x>+ 3y £ 0

X +y
Cette fonction est continue partout et a, & Dorigine,
deux dérivées partielles. Mais celles-ci ne sont pas continues a
Iorigine. Comme elles sont nulles & l'origine, la formule (16)
exprime que f (z (t) ), ¥ () ) (ou z (0) = y (0) = O) a une dérivée
a Porigine et que celle-ci est nulle, ce quia lieu. Ainsi pour cette
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fonction, la formule (16) est exacte sans que les dérivées par-
tielles de f soient continues a Iorigine.

Inversement, il ne suffit pas que la formule (16) ait un sens —
¢’est-a-dire que z (¢) et y (¢) étant dérivables et égaux respective-
ment & a, b pour la valeur de ¢ considérée, la fonction f (z, y) ait
ses deux dérivées partielles pour x = a, y = b. Par exemple
prenons x(f) = y(f) =t,a = b = x(0) = y(o) = 0et, comme
a la page 190,

Flx,y) = ——2  pour x> 4+ y2 #0 et £(0,0) = 0.
x? + y?
On voit comme plus haut que f,(0, 0) = f,(0, 0) = 0. On
devrait donc avoir

_ 7l
NN

done f(t, ) n’est méme pas dérivable pour t = 0, contrairement
& (17). Ainsi pour conserver (16), il ne suffit pas que cette formule
ait un sens et 1l n’est pas nécessaire non plus que les hypotheéses
restrictives, faites plus haut, sur f au voisinage de (a, b) soient
vérifiées. Il en est de méme pour la formule (17).

Pour étre sir que cette derniére formule soit wvalable,
Hadamard — admettant la définition usuelle de la différentielle
d’une fonction d’une varisble — dit, tout simplement que la
fonction f (z, y) est différentiable au point (a, b) si la formule (16)
est axacte. C’est a dire:

f@, 0

10) Si f (x, y) admet ses deux dérivées partielles au“point (a, b);
29) S1, quelles que soient les fonctions x (t), y (¢) dérivables et
respectivement égales & a et b pour la valeur de ¢ considérée, la
fonction f (z (¢), y (t) ) est dérivable pour cette méme valeur de

t et s1 la dérivée est égale au second membre de (16) pour la
valeur de ¢ considérée.

S’1l en est ainsi, la différentielle de f sera donnée par défini-
tion, par la formule:

df(x , y) = fadx + fydy (19)

pour la valeur de ¢ considérée.
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Remarque : Comme Stolz I'avait fait, (voir p. 186), on pourrait se
dispenser d’introduire dans la définition précédente, I'hypothése
de I'existence des dérivées partielles de f (z, y) au point (a, b).
On supprimerait 1° et 20, on dirait que pour la valeur de ¢
considérée, la dérivée de f (x (¢), y (¢) ) est de la forme:

Ax, + By, .
En effet, en appliquant cette définition au cas ou
x(t) =1t et y(t) = b, on devrait avoir Df (¢, b) = A;

¢’est dire que f (z, y) a une dérivée partielle en x au point (a, b)
et que celle-ci est égale & A. On verrait de méme que B = f, (a, b)
et I’on verrait ainsi que la seconde forme de la définition de Hada-
mard est équivalente & la premiére.

Définition analogique par Severi

Severi [12] a réussi & donner la définition moderne de la
différentiabilité la plus analogue & la définition antérieure. Au
lieu de supposer seulement l’existence de dérivées partielles au
point considéré, il exige I’existence en ce point de dérivées par-
tielles restreintes (plus tard, Ostrowski a été conduit & la méme
définition & une nuance pres dans la définition équivalente, des
dérivées partielles restreintes).

Nous dirons, avec Severi, que f (2, y) a au point (a, b), une
dérivée partielle restreinte par rapport a x si le rapport:

f(x,y) —fla,y)

X —a

tend vers une limite finie et déterminée A, quand (r —a) %+ (y —b) 2
y—>b

X—a
ainsi, cela aura lieu, en particulier, quand y = b, c¢’est-a-dire que

tend vers zéro de facon que reste bornée ). S’il en est

1) En réalité, Severi suppose que ce rapport a une limite, mais qu’il reste borné
suffit.
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f(x, b) —f(a, b)

X —da

— A quand x —a.

Autrement dit, quand f(z,y) a au point (@, b) une dérivée
partielle restreinte, par rapport & a, elle a aussi une dérivée par-
tielle au sens ordinaire par rapport a a et la premiere est égale
a la seconde f,.

On dira de méme que f (z, y) a au point (a, b) une dérivée
partielle restreinte par rapport a y, si le rapport

f(xa y) —f(x>b)

20
e (20)
X—a
a une limite quand (rx—a)?+ (y—0)2— 0 de sorte que b

reste bornée. Et alors f (z, y) a une dérivée partielle f, au sens
ordinaire au point (a, b) et le rapport (20) tend vers f,.

Ceci étant, nous dirons que f (x, y) est différentiable au point
(a, b) au sens de Severt, si en ce point, f (z, y) a ses deux dérivées
partielles restreintes par rapport & = et y. Et alors la différentielle
de f (z, y) au point {a, b) au sens de Severi sera encore

df = f.dx + f, 4y . (19)

TroOISIEME SECTION

Equivalence des quatre définitions de la différentielle

Les quatre définitions précédentes de la différentielle d’une
fonction f (z,y) en un point (e, b) quoique différentes dans la
forme présentent cependant dans cette méme forme deux traits
communs. |

D’une part, ou bien elles présupposent Dexistence des
dérivées partielles de f (z, y) au point (a, b), ou bien cette exis-
tence résulte-t-elle directement de la définition.
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