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édition [13] «... nous avons abandonné l'ancienne définition de

la différentielle totale et adopté celle de Stolz. La supériorité de

cette définition a été mise en lumière par les travaux de M. M. S.

Pierpont, Fréchet et surtout W. H. Young. Elle est indiscutable:
les théorèmes découlant plus directement des principes, la

théorie de la differentiation des fonctions explicites et implicites
devient plus serrée et, par le fait, plus satisfaisante ». Cette

définition est d'ailleurs rappelée à la page 140 du même tome.
Les mêmes avantages s'appliquent aux autres définitions que
nous rappellerons plus loin, puisqu'elles sont équivalentes à

celle de Stolz.

Deuxième Section

Définitions modernes

de la différentielle d'une fonction de plusieurs variables

Dans ce qui suit, nous nous limiterons au domaine des fonctions

numériques de deux variables numériques, le cas de plus de

deux variables numériques pouvant être traité de la même façon.
Autrefois, la définition théorique de la différentiabilité de

/ (#, y) en un point, consistait dans l'hypothèse de l'existence
des deux dérivées partielles en ce point. Pratiquement, pour
établir un parallélisme des propriétés de la différentielle entre
le cas d'une et celui de plusieurs variables, on faisait généralement

l'hypothèse H définie ci-dessous. Les définitions modernes

(qui vont suivre) de la différentiabilité (pour plusieurs variables)
se placent entre ces deux extrêmes. Comme on le verra plus
loin, elles sont moins générales que la définition théorique
antérieure et plus générales que la définition pratique
antérieure. Le gain acquis par les définitions modernes consiste en ce

que, comme la définition pratique antérieure (voir pages 180-181,
et 207) plus étroite, elles réalisent le parallélisme cherché, ce

que ne faisait pas la définition théorique antérieure.
Considérons d'abord l'exemple A de la page 213; / (#, y) —

xy
2 2 j (avec / (o, o) o), a bien ses deux dérivées partielles à

x ~t y
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l'origine, mais n'est pas continue à l'origine, donc (page 209) n'est
pas difïérentiable au sens moderne.

Plaçons nous maintenant dans l'hypothèse suivante:
Hypothèse H: f (x, y) a ses deux dérivées partielles fx, fy au
voisinage du point (a, b) et celles-ci sont continues au point (a, b).
Alors on peut écrire

Af =/(a +h9 b+k) -f{a, b) f(a+h, b+k) - fia, b+k)
+ fia, b+k) -fia, b)

Et en appliquant le théorème des accroissements finis puisque
/ (#, &+&) et / (a, y) sont dérivables en x et y respectivement,
pour h et k assez petits, on aura:

4f — hf'x ia + 0h, b+k) + kf'y (a, b + 0'k), avec 0 < |^,| < *
>

et puisque fx et fy sont continues au point (a, b)

4/ h [f'x ia b) + e] + k [fy ia b) + ef]

avec lim 1^ 0 quand h et k tendent vers zéro.

C'est pour éliminer l'hypothèse H que l'on a commencé à

introduire une nouvelle définition de la difïérentiabilité, consistant

à partir de la formule précédente supposée vraie, sans tenir
compte de H. Le gain consiste en ce que si l'hypothèse H entraîne
la formule ci-dessus, la réciproque n'est pas vraie comme le
montre l'exemple de la page 207.

La définition de Stolz et celle de Fréchet

I — C'est en s'inspirant des considérations qui précèdent et
restent dans le domaine de l'analyse classique que Stolz [7],
Pierpont [8] et Young [9] sont parvenus indépendamment et
successivement à la définition suivante:

Une fonction / (x, y) est difïérentiable au point (a, b) si

1° elle est dérivable en ce point par rapport à x et à y,
2° on peut écrire:

Af=fia+Ax, b+Ay) - fia b) ifa +è) Ax+ifb +e') Ay (8)
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où s et s' tendent vers zéro quand Ax et Ay tendent simultanément

vers zéro.

Et s'il en est ainsi, on appelle différentielle de / (au point
(a, b) et correspondant aux accroissements Ax, Ay de x et, y),
l'expression

df faAx +fbAy (9)

(en prenant pour f, x, on a évidemment dx — Ax), on aurait de

même dy Ay, de sorte qu'on peut écrire:

df fadx + fbdy (10)

égalité qui n'est actuellement établie que lorsque x et y sont des

variables indépendantes, mais qui sera généralisée plus loin,
voir pages 194. 209.

En 1893, Stolz, après avoir donné sa définition, montre [7]
qu'elle permet immédiatement l'extension des propriétés de la
différentielle d'une fonction d'une variable. W. H. Young en
retrouvant indépendamment ces résultats en 1910, les a
complétés dans un excellent opuscule [9] consacré à ces questions1).

Il faut ajouter que Stolz a eu aussi l'idée [7] d'une définition
équivalente à sa première mais de forme légèrement différente.

Il dit que f (x, y) est différentiable au point {a, b), si l'on peut
écrire :

Af AAx + BAy + sAx + s'Ay (11)

où A, B sont indépendants de Ax, Ay et où s, s' tendent vers
zéro quand Ax et Ay tendent vers zéro.

Et alors la différentielle de / en (a, b) sera:

df AAx -h BAy

Mais il fait observer que pour Ay 0

f(a+Ax b) - f(a b)
A + 8

Ax

i) Nous avons nous-même publié un exposé analogue [101 en 1912 avec quelaues
compléments originaux reproduits ici dans la suite.
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de sorte que

1°) / (#, y) a une dérivée partielle fa au point (a, b),

2°) A est égal à cette dérivée partielle. On voit de même que
fb existe et est égal à B.

Les deux définitions de Stolz sont bien équivalentes.
Stolz a aussi donné [7], page 134) une condition suffisante

très générale pour la différentiabilité. Pour que / (x, y) soit
difïérentiable au point (a, 6), il suffit que / ait en ce point ses

deux dérivées partielles et qu'en outre, l'une de ces dérivées, par
exemple fx, existe au voisinage de (a, b) et soit continue en ce

point. Car on a:

f(a+h, b+k) — fia b) [f(fi+h, b+k) — /(a b + k)\ +

[/(a j b+k) - fia b)] hf'x(a+6h, b+k) + k [fy (a,b) + rj]

avec 0 < 9 < 1, lim rj — 0. Mais puisque fx est continue au

point, (a b) :

f'x(a+6h, b+k) -f'x(a b) e

où 8—> 0 quand h et k tendent vers zéro. D'où, comme annoncé:

fia +h b+k) - fia 6) h [f'x(a 6) + e] + k [fy(a fc) + rç]

où fy et 8 tendent vers zéro quand h et k tendent vers zéro.

Il est remarquable que, plus tard, Jordan ait eu une idée

analogue [5], mais sans en tirer l'extension de la différentiabilité.
Il considère le cas où l'on aurait la formule (11) et il en tire:

A=f'x, B=f'b (12)

Mais comment? C'est après avoir établi, comme ses prédécesseurs
(sauf Stolz) la formule (8) dans Vhypothèse H : f (x, y) a des dérivées

partielles fXJ fy au voisinage de (a, b) et celles-ci sont
continues au point (a, b). Et alors, il retranche les expressions (8)
et (11) de Af et il fait tendre Ax et Ay vers zéro de sorte que
Ay

» 0. Il retrouve bien ainsi les égalités (12), mais sous Vhypo-
Ax
thèse H. Alors que Stolz obtient ces égalités par le raisonnement
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plus simple, indiqué ci-dessus, sans faire l'hypothèse H, ni d'ailleurs

sans aucune hypothèse supplémentaire.

II — C'est par une voie tout à fait différente que nous sommes

parvenu à une définition équivalente et très analogue, mais
d'une forme distincte, plus propre à la généralisation aux fonctions
abstraites. En effet, contrairement au processus habituel qui
consiste à passer du particulier au général, c'est en revenant du

cas général des espaces abstraits au cas particulier du plan que nous
avons obtenu la définition qui va suivre. Cela tient à ce que, au

départ, nous étions habitués aux définitions usuelles à cette
époque, mais que notre but était l'étude des fonctions abstraites.
Définissant d'abord la différentielle d'une fonctionnelle [18],
puis d'une transformation d'espace abstrait dans un espace
abstrait, nous avons pu prouver, dans le cas d'une relation entre
deux espaces de Banach [19] que cette différentielle conservait
les propriétés principales de la différentielle d'une fonction
numérique d'une variable numérique. C'est seulement ensuite

(puisque notre but principal était, à cette époque, l'étude des

espaces abstraits) que nous nous sommes demandé si cette définition

était bien une généralisation complète de la différentielle
classique. Et nous nous sommes aperçu qu'il n'en était rien et
que nous obtenions la définition plus stricte suivante:

Une fonction / (x, y) est différentiable à notre sens1 au point
(a, b), si son accroissement ne diffère d'une certaine fonction
linéaire if (Ax, Ay) des accroissements Ax, Ay des variables
x, y que par un infiniment petit par rapport à la distance r du
point (a, b) au point voisin (a'+dir, b-{-Ay).

Et, dans ce cas, la différentielle de / au point (a, b) sera cette
fonction if (Ax, Ay). Autrement dit, en posant:

if (Ax Ay) AAx + BAy
on aura

Af AAx + BAy + cor (13)

lim œ 0
r-+0

et

df AAx + BAy (14)
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On peut prendre pour r — -s/dx2 +
Mais puisque

1

(I Ax I + I AyI) < ^/dx2 + < | j

on peut prendre aussi

r I Ax I + I Ay |

On peut aussi prendre pour r:
I Ax

\Ay
r — Max etc.

Dès lors, en prenant dans (13), comme Stolz, Ay 0, on voit que
/ (x, y) est dérivable en x au point (a, b) et que A — fa. De même

/ (x, y) est dérivable en y au point (a, b) et Ton a B fb et par
suite :

dfa faAx+fbAy •

Finalement on voit qu;une fonction / (#, y) difïérentiable à notre
sens Test aussi an sens de Stolz et avec la même différentielle.

Comme dans la formule (13), si Ton écrit

on a

d'où

co

sAx + s'Ay

Ax Ay
e h s' —

r r

cor

£ I e I + | s'

lim co — 0,
r—>0

on voit que réciproquement, toute fonction difïérentiable au
sens de Stolz l'est aussi à notre sens, avec la même différentielle.
C'est parce que ces deux définitions sont très semblables que nous
n'avons pas reporté plus loin leur comparaison.

Mais notre expression (13) se prête mieux aux généralisations.
Car, ayant observé qu'on peut adopter plusieurs expressions

pour r, sans changer la définition, ces expressions conduisent au
contraire, chacune à une définition différente, dans le cas des

espaces fonctionnels.
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Définition géométrique de la différentielle

Pour les fonctions d'une variable, il y a équivalence entre
l'existence de la dérivée de f (x) pour x a et l'existence d'une

tangente (non parallèle à Oy) à la courbe y f (x) au point
x — a.

Mais pour les fonctions de deux variables l'équivalence n'est

plus totaie. Elle a bien lieu partiellement; car, il est bien exact

que si la surface S : z f (x, y) a un plan tangent au point
(a, &, c), c f(a,b) et si f(xyy) a des dérivées partielles au

point (a, b), alors l'équation du plan tangent est:

Z _c (X-a)f'a+(Y-b)fb. (15)

En effet, la courbe intersection de S et du plan y — b, ayant pour
équation: z — f (x, b) a alors une tangente au point d'abscisse a,
qui est:

Z — c — fb(a b) (X — a)

Et de même on a la tangente: Z — c — fb(Y — b) au point y — b

à la courbe intersection de S avec le plan X a.
Dès lors, le plan tangent à S au point (a, b, c), devant

contenir ces deux tangentes, aura pour équation, l'équation (15).
Mais autrefois, on considérait comme allant de soi que:

si une fonction f(x, y) avait ses deux dérivées partielles fa (a, b),
fb (a, b) au point (a, 6), alors: 1° la surface S: z f (x, y) avait
un plan tangent au point (a, b) et 2° l'équation de ce plan
tangent était Z — c fa (Z — a) -f fe (Y — b).

Nous allons montrer qu'une telle affirmation est fausse en
donnant un exemple du contraire.

Définition dé un plan tangent

A cet effet, précisons d'abord que nous entendons par plan
tangent à S au point (a, b, c) un plan qui soit le lieu des tangentes
aux courbes situées sur S et passant par ce point (s'entendant
de celles de ces courbes qui ont effectivement une tangente en
ce point).
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Une condition nécessaire pour qu'il en soit ainsi, c'est qu'il
existe un plan P passant par le point considéré Q et tel
d'abord qu'il contienne toutes les tangentes en Q aux courbes
tracées sur passant par Q et qui ont effectivement une tangente
en Q. Mais cette condition, t/, n'est pas suffisante.

S'il existait dans ce plan P une droite D passant par Q qui
ne soit tangente à aucune courbe située sur S et passant par Q,

alors D n'appartiendrait pas au lieu des tangentes précisées plus
haut, ce lieu ne serait qu'une partie de P.

Dès lors, pour qu'un plan P soit tangent à S au point Q, il
faut et il suffit que deux conditions soient réalisées, la condition

U ci-dessus et la condition V suivante: toute droite D
située dans P et passant par Q doit être tangente en Q, à au
moins une courbe située sur S et passant par Q. Voici maintenant

l'exemple annoncé à la page 189.

Exemple

xy
Prenons pour exemple, le cas où / (#, y) pour

x2-\-y2 # 0 V* + y

On a

m

donc | / | 0 avec x2jry2. Alors, en prenant / (0, 0) 0 la fonction

/ (x, y) sera partout continue.

On a
^ ^^ 0, donc / (x, y) a une dérivée par-

x — 0

tielle en x à l'origine 0 et celle-ci est nulle; de même fy (0, 0)
existe et est nulle.

Si donc la surface a un plan tangent à l'origine, alors

d'après ce qui précède, ce plan aura pour équation

Z =/;(0,0)X +/;(0,0)7,
c'est-à-dire Z 0

Dans la même hypothèse, la droite D du plan tangent située
dans le plan X — Y et qui, par suite passe par 0, devrait être
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tangente à une courbe C de S passant par 0. Soit M un point de C

de coordonnées #, y, et 2 / (x, y), distinct de 0. Les cosinus

directeurs de OM sont:

x y z
y T /—= 5 2

/c'/c'^'°U + ^ + Z '

et ils devraient tendre vers les cosinus directeurs de D, c'est-à-dire :

1 1

7^'°'
1

Dès lors, puisque x/k -/-+ 0, et même — —^ 0, alors

V z
- -» 1 et > 0 Or
v v

z
_ J ± y/x ^ ± 1

+ _J_

*
~ 7^7 ~

+
" V7T1 " ~ V2

et non vers zéro. Ainsi, 5 n'a pas un véritable plan tangent au

point 0: il existe au moins une surface S représentée par l'équation

z / (x, y) où / (x, y) est continue partout et a en un point
particulier x 0, y 0, deux dérivées partielles /'x(0, 0),
fy(0, 0) sans que cette surface ait un plan tangent au point
considéré. Ainsi Vancienne condition pour Vexistence du plan
tangent n'est pas assez stricte.

Définition géométrique de la différentielle

Pour rétablir l'analogie avec le cas des fonctions d'une
variable (page 180)e t avecn otre première définition (page 187) de

la difîérentiabilité d'une fonction de deux variables, nous dirons
[10, page 438, 439] qu'une fonction / (#, y) est différentiable au
point (a, b) si la surface S: z / (x, y) a un plan tangent T, non
parallèle à Oz, au point de coordonnées a, br et c / (a, b). Et
alors, l'équation de ce plan étant nécessairement de la forme

Z - c A(X-a) +B(Y-b),
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on appellera différentielle de / au point (a, b) l'expression

df A Aa -f B Ab (où Aa — x — a Ab y — b)

Existence du plan tangent

Pour savoir si la fonction f (x, y) est difïérentiable au point
(a, è), tout revient à chercher à quelle condition la surface
z — f (x, y) a un plan tangent non parallèle à Oz, au point
(a, b, c).

Il faudra qu'il passe au point (a, è, c), un plan non parallèle à

Oz vérifiant les conditions U et V de la page 190. Mais on devra
tenir compte explicitement de deux conditions liées implicitement
à la notion de surface représentable par la fonction z f (#, y).
On supposera:

1°) que f (x, y) qui n'est pas nécessairement définie partout,
soit définie au voisinage du point Q considéré, c'est-à-dire à

l'intérieur d'un cercle de rayon r positif (x — a)2 -f (y — b)2 < r2;
2°) que / (#, y) soit continue au point (a, b). Par exemple, on

ne pourra pas prendre a b 0 et / sfx3y3, qui n'est définie
dans aucun voisinage complet de (0, 0) et qui a pourtant deux
dérivées partielles (qui sont nulles) à l'origine.

Par exemple encore, on ne pourra prendre pour / (x, y) une
fonction définie partout sauf sur x o, y > 0 et nulle ailleurs,

bien qu'elle vérifie les conditions V et U de la page 190.

Définition du plan tangent

Soit M un point quelconque d'une surface S et Q un point
fixe de S. Soit enfin <p l'angle aigu de la corde QM avec un plan
P. Si S a un plan tangent en Q et si celui-ci est P ; si d'autre
part, il passe par Q et s'il y a une courbe située sur 5, ayant une
tangente T en Q, telle que T soit située sur P, alors l'angle aigu,
W de QM et de T tend vers zéro quand M-+ Q. Or, quand (p est

l'angle de QM avec le plan P, on a 0 < ç < W. Donc quand
M-+ Q, T tendant vers zéro, il en sera de même de (p.

Réciproquement, sans savoir si P est tangent à S en Ç?

supposons que (p (QM^P) - 0 avec QM, quelle que soit la
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façon dont M ->(? sur S. Alors, soit, A, une droite du plan P

passant par Q. Le plan R perpendiculaire à P et passant par A

coupe S suivant une courbe C passant par Q. Soit M un point
de C, distinct de Q. L'angle <p de MQ avec P est aussi l'angle de

MQ avec A. Quand M-+Q, q>-+0 par hypothèse. C'est dire que la
corde MQ de C tend vers A quand Q, autrement dit que la
condition V est vérifiée par P. Soit, d'autre part, T, une courbe

sur S passant par Q et ayant une tangente S en Q. Si M est un
point de T alors l'angle cp de QM avec P tend vers zéro avec QM
et il en est de même de l'angle W de QM avec <5.

Prenons sur QM, dans la direction de Q vers M, un point M'
tel que QM' 1. Puisque la droite portant QM tend vers <5, M'
va tendre vers un point TV de <5 tel que QN — 1. Or puisque
q>-+ 0, la distance de M' au plan P tend vers zéro. Et comme
cette distance tend vers la distance constante de N au plan P,
cette dernière tend vers zéro, c'est-à-dire que <5 est dans le plan
P et par suite que P vérifie aussi la condition U.

Dans le raisonnement précédent, nous avons supposé que le

plan R coupe effectivement S suivant une courbe C. C'est que
nous avons admis implicitement que P vérifie une condition
analogue à 1°, de la page 192, soit W: si l'on projette S sur P, il y
a au moins un voisinage de Q qui appartient entièrement à cette
projection.

D'autre part, quand nous supposons que le point M de S
tend vers Q, nous admettons implicitement une condition T
analogue à la condition 2° de la page 192.

En résumé, on peut définir un plan tangent de la manière
suivante :

Un plan P passant par un point Q d'une surface S est, par
définition, tangent à S en Q si,

1°) M étant un point quelconque de S, distinct de Q, Tangle
aigu de M avec P tend vers zéro quand M tend vers Q,

2°) La condition W ci-dessus est satisfaite.

Définitions opérationnelle par Hadamard

Aux pages 2 et 3 du tome I de son cours d'analyse [16],
M. Hadamard rappelle en 1927, brièvement mais nettement,

L'Enseignement mathém., t. X, fasc. 3-4. 13
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deux définitions de la différentielle. La seconde est celle où Stolz
et moi-même considérons la différentielle de f (x, y) comme une
expression approchée, mais plus simple, de Y accroissement de /.

La première procède d'une idée tout à fait différente qu'il
avait déjà introduite en 1923 [11].

Pour Hadamard, l'introduction de la différentielle a pour
effet d'exprimer plus simplement les théorèmes des fonctions de

fonctions et des fonctions composées.
Au moyen de la notion de dérivée, on écrit, sous certaines

conditions :

Df(x (t), y (0) fa + fb (16)

En introduisant la notion de différentielle, on écrit, sous les

mêmes conditions:

d/O, y) f'adx +fbdy (17)

que x et y soient des variables indépendantes ou qu'elles soient
des fonctions d'une variable indépendante. C'est là un avantage
précieux qui non seulement abrège à la fois l'écriture de la
formule, mais aussi rend les démonstrations plus simples, plus
intuitives et plus générales.

Cette utilité de la notion de différentielle étant admise,
notons que, dans notre jeunesse, la formule (16) était démontrée
dans l'hypothèse H où la fonction / (x, y) admettait des dérivées

partielles, non seulement au point (a, &), mais en son voisinage
et où, en outre, ces dérivées partielles étaient continues en ce

point. (On suppose, bien entendu, que pour la valeur de t
considérée, x (t) et y (t) sont dérivables et respectivement égaux à a

et b). Or la formule (16) peut rester exacte sans que toutes les

hypothèses de H soient vérifiées.
Par exemple, il suffit de prendre:

/(0,0) 0 et/(x, y)(x2 + y2) sin pour x2 + # 0

Vx + y

Cette fonction est continue partout et a, à l'origine,
deux dérivées partielles. Mais celles-ci ne sont pas continues à

l'origine. Comme elles sont nulles à l'origine, la formule (16)

exprime que / (x (t) y (t) (où x (o) y (o) 0) a une dérivée
à l'origine et que celle-ci est nulle, ce qui a lieu. Ainsi pour cette
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fonction, la formule (16) est exacte sans que les dérivées
partielles de / soient continues à F origine.

Inversement, il ne suffit pas que la formule (16) ait un sens —
c'est-à-dire que x (t) et y (t) étant dérivables et égaux respectivement

à a, à pour la valeur de t considérée, la fonction f (x, y) ait
ses deux dérivées partielles pour x a, y — b. Par exemple

prenons x(t) y (t) — t, a b x(o) .y (o) 0 et, comme
à la page 190,

f(x y)
Xy

pour x2 + y2 ^ 0 et /(0,0) 0

V*2 + F2

On voit comme plus haut que fa(0, O) fh(0, O) — O. On

devrait donc avoir

M"
/2'fit, t)

donc fit, t) n'est même pas dérivable pour t 0, contrairement
à (17). Ainsi pour conserver (16), il ne suffit pas que cette formule
ait un sens et il n'est pas nécessaire non plus que les hypothèses
restrictives, faites plus haut, sur / au voisinage de (a, b) soient
vérifiées. Il en est de même pour la formule (17).

Pour être sûr que cette dernière formule soit valable,
Hadamard — admettant la définition usuel]e de la différentielle
d'une fonction d'une variable — dit, tout simplement que la
fonction / (x, y) est différentiable au point (a, b) si la formule (16)
est axacte. C'est à dire:

1°) Si / (x, y) admet ses deux dérivées partielles au point (a, b) ;

2°) Si, quelles que soient les fonctions x (t), y (t) dérivables et
respectivement égales à a et à pour la valeur de t considérée, la
fonction / (x (t), y (t) est dérivable pour cette même valeur de
t et si la dérivée est égale au second membre de (16) pour la
valeur de t considérée.

S'il en est ainsi, la différentielle de f sera donnée par définition,

par la formule :

df (x y) fadx +fbdy (19)

pour la valeur de t considérée.
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Remarque: Comme Stolz l'avait fait, (voir p. 186), on pourrait se

dispenser d'introduire dans la définition précédente, l'hypothèse
de l'existence des dérivées partielles de f (x, y) au point (a, b).

On supprimerait 1° et 2°, on dirait que pour la valeur de t
considérée, la dérivée de / (x (t), y (t) est de la forme:

Axt + Byt

En effet, en appliquant cette définition au cas où

x (t) t et y (t) — 6, on devrait avoir Df (£, b) A ;

c'est dire que / (x, y) a une dérivée partielle en x au point (a, b)

et que celle-ci est égale à A. On verrait de même que B — f'y (a, b)

et l'on verrait ainsi que la seconde forme de la définition de Hada-
mard est équivalente à la première.

Définition analogique par Severi

Severi [12] a réussi à donner la définition moderne de la
difîérentiabilité la plus analogue à la définition antérieure. Au
lieu de supposer seulement l'existence de dérivées partielles au

point considéré, il exige l'existence en ce point de dérivées
partielles restreintes (plus tard, Ostrowski a été conduit à la même
définition à une nuance près dans la définition équivalente, des

dérivées partielles restreintes).
Nous dirons, avec Severi, que f (x, y) a au point (a, 6), une

dérivée partielle restreinte par rapport à x si le rapport:

/(*, y) "fia > y)

tend vers une limite finie et déterminée A, quand (x — a)2 + (y — b)2

y-btend vers zéro de façon que reste bornée x). S'il en est
x — a

ainsi, cela aura lieu, en particulier, quand y 6, c'est-à-dire que

En réalité, Severi suppose que ce rapport a une limite, mais qu'il reste borné
suffit.
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/(* > fr) - /( > q„,„d

Autrement dit, quand / (x, y) a au point (a, b) une dérivée

partielle restreinte, par rapport à a, elle a aussi une dérivée
partielle au sens ordinaire par rapport k a et la première est égale
à la seconde fa.

On dira de même que / (x, y) a au point (a, b) une dérivée

partielle restreinte par rapport à ?/, si le rapport

/(», y)
(20)

y - b

x —a

y-b
reste bornée. Et alors f (x, y) a une dérivée partielle fb au sens

ordinaire au point (a, b) et le rapport (20) tend vers fb.

Ceci étant, nous dirons que / (x, y) est différentiable au point
(a, b) au sens de Severi, si en ce point, / (x, y) a ses deux dérivées

partielles restreintes par rapport k x et y. Et alors la différentielle
de / (x, y) au point (a, b) au sens de Severi sera encore

une limite quand (x — a)2 + (y — b) 2-> 0 de sorte que

df =faAx +fbAy (19)

Troisième Section

Equivalence des quatre définitions de la différentielle

Les quatre définitions précédentes de la différentielle d'une
fonction / (#, y) en un point (a, b) quoique différentes dans la
forme présentent, cependant dans cette même forme deux traits
communs.

D'une part, ou bien elles présupposent l'existence des
dérivées partielles de / (x, y) au point (a, 6), ou bien cette
existence résulte-t-elle directement de la définition.
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