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SUR DIVERSES DEFINITIONS
DE LA DIFFERENTIABILITE

par Maurice FRECHET

INTRODUCTION

L’exposé qui suit a un but purement didactique.

La définition usitée dans notre jeunesse, de la différentielle
d’une fonction f(x, y), supposait seulement I’existence des
dérivées partielles de f au point considéré.

Mais le recours & une rigueur croissante avait montré que
pour étendre au cas de plusieurs variables, les propriétés si utiles
de la différentielle d’une fonction d’une variable, il était nécessaire
d’introduire des hypothéses (variées avec les différents cas).

(C’est alors que plusieurs essais, couronnés de succes, ont
montré qu’on pouvait rétablir ce parallélisme en donnant a la
différentielle totale une définition plus stricte.

Il est alors curieux de constater que plusieurs de ces essais,
partant de considérations totalement différentes, donnant des
définitions de la différentiabilité de formes essentiellement
différentes (comme on va pouvoir s’en assurer plus loin), four-
nissent cependant des définitions égquivalentes comme nous avons
pu le prouver aux pages 198 & 206. Nous énoncerons les quatre
définitions qui sont parvenues & notre connaissance. Comme plu-
sieurs de ces définitions semblent étre assez connues et comme
la convergence de quatre d’entre elles est un cas assez rare en
mathématique, il nous a semblé que leur rappel pourrait inté-
resser les lecteurs d’une revue du type de «L’Enseignement,
Mathématique ».

Plusieurs des résultats exposés dans la suite ont été déja
publiés et on trouvera a la fin de ce mémoire, la liste de leurs
références bibliographiques. Mais on appréciera peut-étre de les
trouver ici rassemblés. De plus, quelques résultats, quelques
raisonnements présentés ici (en particulier la démonstration des

L’Enseignement mathém., t. X, fasc. 3-4. 12
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équivalences et celle de certaines propriétés des différentielles
secondes) sont inédits.

Le présent exposé est accessible aux étudiants de premiére
année.

Résultat

Nous montrerons la supériorité de la définition moderne sur
Iancienne en prouvant que: si, avec I'ancienne, il fallait ajouter
certaines hypothéses pour pouvoir établir le parallélisme des
propriétés de la différentielle en passant du cas d’une variable a
celui de plusieurs variables, ces hypothéses ne sont plus néces-
saires quand 1l s’agit de la définition moderne. Que d’autre part,
cette définition moderne garde un sens méme quand ces hypo-
theéses ne sont pas toutes vérifiées.

Répartition de I'exposé

Nous diviserons notre exposé en six sections:

I. Préliminaire et historique . . . . . . . . . . . 179

II. Définitions modernes de la différentielle d’une fonce-
tion de plusieurs variables . . . . . . . . . . . 183

ITI. Equivalence des quatre définitions de la différentielle 197

IV. Parallélisme entre le cas d’une variable et celui de
plusieurs variables pour les propriétés de la différen-
tielle sous sa forme moderne . . . . . . . . . . 206

V. Une application a la définition des fonctions mono-

gENEeS . . . . . . . . e e o215
VI. Différentielles successives. Dérivées partielles du
second ordre . . . . . . . . . . . . . . ... 27
Généralisations

Il n’est pas inutile de faire observer que nous avons pu
généraliser la notion de différentielle, I’étendre & des fonctions
abstraites de variables abstraites [19, 20]1), et que ces définitions

1) Voir la liste bibliographique a la fin de cet exposé.
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ont donné naissance a des applications. Mais une telle étude est
en dehors du sujet du présent article.

Avant d’aborder notre sujet principal, nous ferons quelques
remarques sur d’anciennes conceptions de la différentielle.

PREMIERE SECTION

Préliminaires et historique

Une Varvable

Considérons d’abord le cas des fonctions numériques d’une
variable numérique. La raison de 'introduction de la notion de
différentielle doit étre cherchée principalement dans deux direc-
tions.

I — En désignant, suivant la commodité, par I'une ou I’autre
des notations D f (), f., la dérivée de f(x), le théoréme des
fonctions composées s’écrit sous la forme:

Df (y () = f,¥5. (1)
Posons
dy (x) = y.dx
et de méme
df (y) = fydy, (2)
la formule (1) devient:
df(y (x) = fyyedx = fydy (x). (3)

De sorte que la méme formule (2) convient aussi bien pour le cas
ou y est une variable indépendante comme dans (2) que pour
le cas ol y est une fonction d’une autre variable, comme dans (3).

(’est la un premier avantage trés appréciable pour les
mathématiciens.
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II — D’autre part, on peut écrire

— =y_.4+¢ avec lim & =0,
Ax A4x - 0

ou, en posant dy = vy, Az,

Ay = dy +edx, (4)
ou
Ay edx g
==l =14 — (5
dy dy y' (%)

Donc, on peut dire que, si y, # 0, dy est la «partie principale»
de Ay quand Az— 0. C’est 1a un avantage particuliérement apprécié
des physiciens, qui pourront, quand Az est petit, remplacer
approximativement Ay, qui peut étre une fonction assez compli-
quée de Az, par dy =y, Az, qui est une fonction linéaire de Aw.

Critique

Il faut toutefois remarquer que ce raisonnement suppose
y.# 0. Ceci conduit donc a préférer a la formule (5), la formule

(4).

La signification de 'approximation de Ay par dy n’est plus
la méme, au lieu de dire que a—y — 1 quand 4x— 0, on dira que

1y
dy ne différe de Ay que par une quantité infiniment petite par

rapport & A4z.
Deux Variables

La formule des fonctions composées peut s’écrire:
Df(y®, z(®) = fiy: +frz.
En multipliant par d¢, on a: |
df (y (t) 2(t) = f,dy (i) +fadz (t)
Mais on peut aussi écrire:

(v, 2) = fydy + f.dz (6)
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qui a, comme pour (2), 'avantage d’étre écrite indépendamment
de la facon dont y et z dépendent de . C’est encore ici un avantage
appréciable pour les mathématiciens.

Quand f, f, existent el sont continues en z et y pres de o,
Yo, ON sait qu’on peut écrire:

Af (x, ) = Ax(fy,+e) + Ay (fy, +¢) (7)

ou ¢ et ¢ tendent vers zéro quand Az et Ay tendent simultane-
ment vers zéro. On peut donc écrire

Af i+ edx + &'dy
df f;oAx +f):0z1y '

Dés lors, on est tenté de dire que: lorsque Az et Ay tendent
4 S ,
vers zéro, Ej—ﬁ—» 1, ¢’est-a-dire que df est la partie principale de Aj.

Ici encore, df étant linéaire en Ax et Ay est en général plus
simple que Af, avantage encore apprécié par les physiciens.

Critique

Non seulement, comme dans le cas d’une variable, le raison-
nement tombe si fx et fy sont nuls, mais il tombe encore si, en
supposant, par exemple fy, # 0, on fait tendre Az et Ay vers
zéro en maintenant la relation

— fx,

Yo

4y = Ax

Des observations analogues se présenteraient dans le cas ot f
dépendrait de plus de deux variables numériques. On voit donc
quil serait préférable de ne pas définir la différentielle de f
comme la valeur principale de son accroissement.

Aulres critiques: La formule (7) peut s’écrire sous une forme
analogue a (4): |
Af = df + edx + &'Ay (7 bis)

) €
avec hm{ ,} =0
. g
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quand 4z et Ay tendent simultanément vers zéro. Mais pour
I'obtenir, on avait dit supposer, non seulement, comme pour (4),
I'existence des dérivées partielles au point considéré xz,, y,, mais
encore l'existence et la continuité de ces dérivées au voisinage
de ce point.

De méme, quand on essaie d’étendre au cas de deux variables,
les propriétés de la différentielle d’une fonction d’une variable,
on est amené, pour chacune, & faire une supposition plus stricte
que Pexistence des dérivées partielles au point considéré.

Ce sont ces diverses considérations préliminaires qui ont
amené 1indépendamment plusieurs auteurs & formuler des
définitions de la différentiabilité plus strictes. Il se trouve que
quoique de formes trés différentes elles conduisent cependant,
comme nous allons le voir — et c’est 1a, probablement, que se
placera surtout la nouveauté de nos résultats — & des définitions
équivalentes de la différentiabilité, et & des expressions identiqgues
de la différentielle. Mais chacune a son intérét et comme plu-
sieurs n’ont pas attiré l'attention, il nous a paru utile de les
faire connaitre.

Historique

Dans la premiere édition (datant de 1902) de son excellent
cours d’analyse mathématique [1], nous trouvons & la page 25,
tome I, sous la plume de Goursat, la définition suivante: « Soit
o = f(z, y, z) une fonction de trois variables indépendantes
z, Y, z; on appelle différentielle totale dw 1’expression suivante:

do = f, dz + f,dy + f.dz

ou dx, dy, dz, sont trois accroissements constants, d’ailleurs
arbitraires, attribués aux variables indépendantes z, y, z».

Telle était & cette époque (et antérieurement) la définition
généralement adoptée pour la différentielle d’une fonction de
plusieurs variables (voir par exemple, la premiere partie de notre
liste bibliographique a la fin de cet exposé). Elle supposait impli-
citement, 'existence des dérivées partielles au point consuiere
mais ne faisait aucune autre hypothése.

Mais déja en 1914, dans son cours d’analyse infinitésimale,
de la Vallée Poussin écrit & la page V du tome I de la troisiéme
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édition [13] « ... nous avons abandonné ’ancienne définition de
la différentielle totale et adopté celle de Stolz. La supériorité de
cette définition a 6t6 mise en lumiére par les travaux de M. M. S.
Pierpont, Fréchet et surtout W. H. Young. Elle est indiscutable:
les théorémes découlant plus directement des principes, la
théorie de la différentiation des fonctions explicites et implicites
devient plus serrée et, par le fait, plus satisfaisante». Cette
définition est d’ailleurs rappelée & la page 140 du méme tome.
Les mémes avantages s’appliquent aux autres définitions que
nous rappellerons plus loin, puisqu’elles sont équivalentes a
celle de Stolz. |

DEUXIEME SECTION

Définitions modernes
de la différentielle d’une fonection de plusieurs variables

Dans ce qui suit, nous nous limiterons au domaine des fonec-
tions numériques de deux variables numériques, le cas de plus de
deux variables numériques pouvant étre traité de la méme fagon.

Autrefois, la définition théorique de la différentiabilité de
f (x, y) en un point, consistait dans ’hypothése de I'existence
des deux dérivées partielles en ce point. Pratiquement, pour
établir un parallélisme des propriétés de la différentielle entre
le cas d’une et celui de plusieurs variables, on faisait générale-
ment 'hypothése H définie ci-dessous. Les définitions modernes
(qui vont suivre) de la différentiabilité (pour plusieurs variables)
se placent entre ces deux extrémes. Comme on le verra plus
loin, elles sont moins générales que la définition théorique
antérieure et plus générales que la définition pratique anté-
rieure. Le gain acquis par les définitions modernes consiste en ce
que, comme la définition pratique antérieure (voir pages 180-181,
et 207) plus étroite, elles réalisent le parallélisme cherché, ce
que ne faisait pas la définition théorique antérieure.

Considérons d’abord I'exemple A de la page 213; f (z, y) =

Y

22 g2 (avec f (0, 0) = 0), a bien ses deux dérivées partielles &
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’origine, mais n’est pas continue & ’origine, done (page 209) n’est
pas différentiable au sens moderne.

Plagons nous maintenant dans 'hypothése suivante:
Hypothése H: f(x, y) a ses deux dérivées partielles f,, f, au
voisinage du point (a, b) et celles-ci sont continues au point (a, b).
Alors on peut écrire

Af = f(a+h, b+k) —f(a, b) = f(a+h, b+k) — f(a, b+k)
+ f(a, b+k) — f(a, b)
Et en appliquant le théoréme des accroissements finis puisque

[ (z, b+Fk) et f(a, y) sont dérivables en x et y respectivement,
pour % et k assez petits, on aura:

’ , 0
Af = hf,(a+0h, b+k) + kf,(a, b+0'k), avec 0 < {H’} <1,
et puisque f, et f, sont continues au point (a, b) |

Af(= h[fe(a, b) +¢] +k[f,(a,b) +¢]

&
avec lim { ,} = ( quand % et & tendent vers zéro.
€

(’est pour éliminer I’hypothése H que 'on a commencé a
introduire une nouvelle définition de la différentiabilité, consis-
tant & partir de la formule précédente supposée vraie, sans tenir
compte de /. Le gain consiste en ce que sil’hypothése /i entraine
la formule ci-dessus, la réciproque n’est pas vraie comme le
montre ’exemple de la page 207.

La définttron de Stolz et celle de Fréchet

I — C’est en s’inspirant des considérations qui précedent et
restent dans le domaine de l'analyse classique que Stolz [7],
Pierpont [8] et Young [9] sont parvenus indépendamment et
successivement & la définition suivante:

Une fonction f (x, y) est différentiable au point (a, b) si

10 elle est dérivable en ce point par rapport a x et a vy,
20 on peut écrire:

Af =f(a+4x, b+4y) —f(a, b) = (fu+e) Ax+(fo+&) 4y, (8)
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ol ¢ et ¢ tendent vers zéro quand Az et Ay tendent simultané-
ment vers zéro.

Et s’il en est ainsi, on appelle différentielle de f (au point
(a, b) et correspondant aux accroissements Ax, 4y de z et y),
Vexpression

df = fadx + fudy €

(en prenant pour f, z, on a évidemment dx = 4x), on aurait de
méme dy = Ay, de sorte qu’on peut écrire:

df = fadx + fydy (10)

égalité qui n’est actuellement établie que lorsque x et y sont des
variables indépendantes, mais qui sera généralisée plus loin,
voir pages 194. 209.

En 1893, Stolz, aprés avoir donné sa définition, montre [7]
qu'elle permet immédiatement I’extension des propriétés de la
différentielle d’une fonction d’une variable. W. H. Young en
retrouvant indépendamment ces résultats en 1910, les a com-
plétés dans un excellent opuscule [9] consacré a ces questions?).

II faut ajouter que Stolz a eu aussi 'idée [7] d’une définition
équivalente & sa premiére mais de forme légérement différente.

11 dit que f (z, y) est différentiable au point (a, b), si 'on peut
écrire:

Af = AAx + BAy + ¢dx + &'Ay (11)

ou A, B sont indépendants de Az, Ay et ou &, & tendent vers
zéro quand Ax et Ay tendent vers zéro.
Et alors la différentielle de f en (a, b) sera:

df = Adx + BAy

Mais 1l fait observer que pour 4y = 0

fla+d4x,b) —f(a, b)

A
i + &

1) Nous avons nous-méme publié un exposé analogue [10] en 1912 avec quelques
compléments originaux reproduits ici dans la suite.
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de sorte que

1) f (x, y) a une dérivée partielle f, au point (a, b),
20) A est égal & cette dérivée partielle. On voit de méme que
f» existe et est égal & B.

Les deux définitions de Stolz sont bien équivalentes.

Stolz a aussi donné ( [7], page 134) une condition suffisante
tres générale pour la différentiabilité. Pour que f(x, y) soit
différentiable au point (a, b), il suffit que f ait en ce point ses
deux dérivées partielles et qu’en outre, 'une de ces dérivées, par
exemple f,, existe au voisinage de (a, b) et soit continue en ce
point. Gar on a:

fla+h, b+k) —f(a, b) = [fla+h, b+k) —f(a, b+k)] +
[fla, b+k) —f(a, b)] = hfe(a+0h, b+k) + k[f,(a,b)+7]

avec 0 < 0 <1, lim n = 0. Mais puisque f, est continue au
k-0

point, (a b):
fx@+6h,b+k) —f.(a,b) =¢

ou ¢~ 0 quand A et k£ tendent vers zéro. D’ou, comme annoncé:

fla+h, b+k) —f(a, b) = h[fda, b)+e] + k[f(a, b)+n]

ou 1 et ¢ tendent vers zéro quand £ et k tendent vers zéro.
Il est remarquable que, plus tard, Jordan ait eu une idée
analogue [5], mais sans en tirer I’extension de la différentiabilité.
I1 considére le cas ou Von aurait la formule (11) et il en tire:

A=f., B=f - (12)

Mais comment ? C’est apres avoir établi, comme ses prédécesseurs
(sauf Stolz) la formule (8) dans I’ hypothése H : f (x, y) a des déri-
vées partielles f,, f, au voisinage de (a, b) et celles-ci sont con-
tinues au point (a, b). Et alors, il refranche les expressions (8)
et (11) de Af et il fait tendre Az et Ay vers zéro de sorte que
%—) 0. Il retrouve bien ainsi les égalités (12), mais sous I’ hypo-

thése H. Alors que Stolz obtient ces égalités par le raisonnement
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plus simple, indiqué ci-dessus, sans faire I'hypothese A, ni d’ail-
leurs sans aucune hypothese supplémentaire.

IT — C’est par une voie tout a fait différente que nous sommes
parvenu & une définition équivalente et trés analogue, mais
d’une forme distincte, plus propre a la généralisation aux fonctions
abstraites. En effet, contrairement au processus habituel qui
consiste & passer du particulier au général, ¢’est en revenant du
cas général des espaces abstraits au cas particulier duplan que nous
avons obtenu la définition qui va suivre. Cela tient & ce que, au
départ, nous étions habitués aux définitions usuelles & cette
époque, mais que notre but était ’étude des fonctions abstraites.
Définissant d’abord la  différentielle d’une fonctionnelle [18],
puis d’une transformation d’espace abstrait dans un espace
abstrait, nous avons pu prouver, dans le cas d’une relation entre
deux espaces de Banach [19] que cette différentielle conservait
les propriétés principales de la différentielle d’une fonction
numérique d’une variable numérique. C’est seulement ensuite
(puisque notre but principal était, & cette époque, 'étude des
espaces abstraits) que nous nous sommes demandé si cette défini-
tion était bien une généralisation complete de la différentielle
classique. Et nous nous sommes apercu qu’il n’en était rien et
que nous obtenions la définition plus stricte suivante:

Une fonction f (z, y) est différentiable & notre sens, au point
(a, b), s1 son accroissement ne différe d’une certaine fonction
linéaire & (4x, Ay) des accroissements Ax, Ay des variables
z, y que par un infiniment petit par rapport & la distance r du
point (a, b) au point voisin (a4 Ax, b+ Ay).

Et, dans ce cas, la différentielle de f au point (a, b) sera cette
fonction & (4z, Ay). Autrement dit, en posant:

£ (4x , Ay) = AAx + Bdy ,

on aura
Af = AAx + BAy + or (13)
Imw=20
r—0
et

df = Adx + BAy . (14)
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On peut prendre pour r: r = /4x* + 4y* .

Mais puisque

1
ﬁ(ldxl + Ay ) < JAx* + 4y* <|4x| + |4y ]|

on peut prendre aussi
r=|dx| + |4y].

On peut aussi prendre pour r:

r = Max , ete. . ..
|4y |

Dés lors, en prenant dans (13), comme Stolz, Ay = 0, on voit que
f (z, y) est dérivable en x au point (a, b) et que A = f,. De méme
f (z, y) est dérivable en y au point (a, b) et 'on a B = f; et par
suite:

dfy = fodz+fody .

Finalement on voit qu’une fonction f (z, y) différentiable a notre
sens l'est aussi au sens de Stolz et avec la méme différentielle.
Comme dans la formule (13), s1 'on écrit

edx + ¢'dy = or

Ax Ay )
on a o] =le— +e& —|Z|e|l+1]¢&]
y r
&0t lim o = 0,
r—0

on voit que réciproquement, toute fonction différentiable au
sens de Stolz I’est aussi a notre sens, avec la méme différentielle.
C’est parce que ces deux définitions sont trés semblables que nous
n’avons pas reporté plus loin leur comparaison.

Mais notre expression (13) se préte mieux aux généralisations.
Car, ayant observé qu'on peut adopter plusieurs expressions
pour r, sans changer la définition, ces expressions conduisent au
contraire, chacune a une définition différente, dans le cas des
espaces fonctionnels.
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Définition géometrique de la différentielle

Pour les fonctions d’une variable, il y a équivalence entre
I'existence de la dérivée de f (x) pour x = a et I'existence d’une
tangente (non paralléle & Oy) & la courbe y = f (z) au point
x = a.

Mais pour les fonctions de deux variables ’équivalence n’est
plus totale. Elle a bien lieu partiellement; car, il est bien exact
que si la surface S: z = f(x,y) @ un plan tangent au point
(a,b,¢), ¢c=f(a,b) et si f(x,y) a des dérivées partielles au
point (a, b), alors I’équation du plan tangent est:

Z—c=X=-a)f+ (Y =bfy. (15)

En effet, la courbe intersection de S et du plan y =5, ayant pour
équation: z = f (z, b) a alors une tangente au point d’abscisse a,
qui est:

Z—c = fyla, b)(X—a).

Et de méme on a la tangente: Z—c = f, (Y —b) au point y = b
a la courbe intersection de § avec le plan X = a.

Dés lors, le plan tangent & § au point (a, b, ¢), devant con-
tenir ces deux tangentes, aura pour équation, I’équation (15).

Mais autrefois, on considérait comme allant de soi que:
si une fonction f(z, y) avait ses deux dérivées partielles f, (a, b),
/5 (@, b) au point (a, b), alors: 10 la surface S: z = f (x, y) avait
un plan tangent au point (a, b) et 20 'équation de ce plan tan-
gent était Z —c = f, (X —a) + £, (Y —=b).

Nous allons montrer qu'une telle affirmation est fausse en
donnant un exemple du contraire.

Définition d’un plan tangent

A cet effet, précisons d’abord que nous entendons par plan
tangent & § au point (a, b, ¢) un plan qui soit le lieu des tangentes
aux courbes situées sur S et passant par ce point (s’entendant
de celles de ces courbes qui ont effectivement une tangente en
ce point).




— 190 —

Une condition nécessaire pour qu’il en soit ainsi, ¢’est qu’il
existe un plan P passant par le point considéré Q et tel
d’abord qu’il contienne toutes les tangentes en Q aux courbes
tracées sur §, passant par Q) et qui ont effectivement une tangente
en (). Mais cette condition, U, n’est pas suffisante.

S’1l existait dans ce plan P une droite D passant par Q qui
ne soit tangente a aucune courbe située sur § et passant par Q,
alors D n’appartiendrait pas au lieu des tangentes précisées plus
haut, ce lieu ne serait qu'une partie de P.

Dés Jors, pour quun plan P soit tangent & S au point Q, il
faut et il suffit que deux conditions soient réalisées, la condi-
tion U ci-dessus et la condition V suivante: toute droite D
située dans P et passant par Q doit étre tangente en (@, & au
moins une courbe située sur S et passant par (. Voici mainte-
nant 'exemple annoncé & la page 189.

Exemple

Prenons pour exemple, le cas ou f (z, y)
22 4+y? #0. \/x T

On a

= pour

| xy | < | xy |

£l = 1xy]

donc | f|— 0 avec x2+y>. Alors, en prenant f (0, 0) = 0 la fonc-
tion f (z, y) sera partout continue.

On 5 1 & 0) -7 (0, 0)

n a
x—0

tielle en x a lorigine O et celle-ci est nulle; de méme f, (0, 0)
existe et est nulle.

Si donc la surface § a un plan tangent & lorigine, alors
d’apres ce qui précéde, ce plan aura pour équation

Z =f:(0,0X +£,(0,0) Y,

= 0, donec f (z,y) a une dérivée par-

¢’ est-a-dire - Z = 0.

Dans la méme hypothése, la droite D du plan tangent située
dans le plan X = Y et qui, par suite passe par 0, devrait étre
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tangente a une courbe C de S passant par 0. Soit M un point de
de coordonnées z, y, et z = f (x, y), distinct de 0. Les cosinus
directeurs de OM sont:

] b4

,ou k = /x* +y* + 2%,

=

| =
bl

et ils devraient tendre vers les cosinus directeurs de D, ¢’est-a-dire:
1 1 0
NERNEI
1
Dés lors, puisque x/k 7> 0, et méme — \/—2- # 0, alors

X—>1et—z-—>0.0r

X X .
y + y/x + 1 1
— — — = i S
RGN ) Jivl /2
X

et non vers zéro. Ainsi, § n’a pas un véritable plan tangent au
point O: il existe au moins une surface S représentée par I’équa-
tion z = f (z, y) ou f (z, y) est continue partout et a en un point
particulier x = 0, y = O, deux dérivées partielles ' (O, 0O),
1,(0, O) sans que cette surface ait un plan tangent au point
considéré. Ainsi 'ancienne condition pour lexistence du plan
tangent n’est pas assez stricte.

Définition géométrique de la différentielle

Pour rétablir ’analogie avec le cas des fonctions d’une
variable (page 180)e t avecn otre premiére définition (page 187) de
la différentiabilité d’une fonction de deux variables, nous dirons
[10, page 438, 439] qu’une fonction f (z, y) est différentiable au
point (a, b) si la surface §: z = f (x, y) a un plan tangent 7', non
paralléle a Oz, au point de coordonnées a, b, et ¢ = f (a, b). Et
alors, I’équation de ce plan étant nécessairement de la forme

Z—c=A(X—a) +B(Y —b),
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on appellera différentielle de f au point (a, b) 'expression

df = A Aa + B 4b (ou da =x —a,4b =y —b).

Existence du plan tangent

Pour savoir si la fonction f (z, y) est différentiable au point
(a, b), tout revient & chercher & quelle condition la surface
z=f(z, y) a un plan tangent non parallele & Oz, au point
(a, b, c).

Il faudra qu’il passe au point (a, b, ¢), un plan non paralléle &
Oz vérifiant les conditions Uet V de la page 190. Mais on devra
tenir compte explicitement de deux conditions liées implicitement
a la notion de surface représentable par la fonction z = f (z, y).
On supposera:

10) que f (z, y) qui n’est pas nécessairement définie partout,
soit définie au voisinage du point Q considéré, c’est-a-dire a
I'intérieur d’un cercle de rayon r positif (x —a)? -+ (y —b)* < r?;

29) que f (x, y) soit continue au point (a, b). Par exemple, on
ne pourra pas prendre ¢ = b = 0 et f = /2%, qui n’est définie
dans aucun voisinage complet de (0, 0) et qui a pourtant deux
dérivées partielles (qui sont nulles) a 1’origine.

Par exemple encore, on ne pourra prendre pour f (z, ¥) une
fonction définie partout sauf sur x = o, y > O et nulle ailleurs,

bien qu’elle vérifie les conditions V et U de la page 190.

Définition du plan tangent

Soit M un point quelconque d’une surface S et Q un point
fixe de S. Soit enfin ¢ ’angle aigu de la corde QM avec un plan
P. Si § a un plan tangent en Q et si celui-ci est P; si d’autre
part, il passe par Q et 8’il y a une courbe située sur §, ayant une
tangente T en Q, telle que T soit située sur P, alors I’angle aigu,
Y de QM et de T tend vers zéro quand M— Q. Or, quand ¢ est
Pangle de QM avec le plan P, on a O < ¢ < ¥. Donc quand
M- Q, ¥ tendant vers zéro, il en sera de méme de ¢.

Réciproquement, sans savoir si P est tangent & S en Q,
supposons que @ = (QM?P)—» O avec QM, quelle que soit la
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facon dont M —Q sur S. Alors, soit, 4, une droite du plan P
passant par Q. Le plan R perpendiculaire & P et passant par 4
coupe S suivant une courbe C passant par ¢. Soit M un point
de C, distinct de Q. L’angle ¢ de MQ avec P est aussi 'angle de
MQ avec 4. Quand M —Q, ¢—0 par hypotheése. C'est dire que la
corde MQ de C tend vers 4 quand M— Q, autrement dit que la
condition V est vérifiée par P. Soit, d’autre part, I', une courbe
sur S passant par Q et ayant une tangente § en Q. Si M est un
point de I'" alors I'angle ¢ de QM avec P tend vers zéro avec QM
et il en est de méme de angle ¥ de QM avec 6.

Prenons sur QM, dans la direction de ¢ vers M, un point M’
tel que QM' = 1. Puisque la droite portant QM tend vers 6, M’
va tendre vers un point N de o tel que QNN = 1. Or puisque
¢ — 0, la distance de M’ au plan P tend vers zéro. Et comme
cette distance tend vers la distance constante de /V au plan P,
cette derniére tend vers zéro, c¢’est-a-dire que 6 est dans le plan
P et par suite que P vérifie aussi la condition U.

Dans le raisonnement précédent, nous avons supposé que le
plan R coupe effectivement § suivant une courbe C. C’est que
nous avons admis implicitement que P vérifie une condition
analogue a 1°, de la page 192, soit W: si 'on projette S sur P,ily
a au moins un voisinage de Q qui appartient entiérement a cette
projection.

D’autre part, quand nous supposons que le point M de S
tend vers , nous admettons implicitement une condition 7" ana-
logue a la condition 2° de la page 192.

En résumé, on peut définir un plan tangent de la maniére
suivante:

Un plan P passant par un point @ d’une surface S est, par
définition, tangent & § en Q si,

1°) M étant un point quelconque de S, distinet de Q, I’angle
aigu de M avec P tend vers zéro quand M tend vers Q,

20) La condition W ci-dessus est satisfaite.

Définitions opérationnelle par Hadamard

Aux pages 2 et 3 du tome I de son cours d’analyse [16],
M. Hadamard rappelle en 1927, briévement mais nettement,

L’Enseignement mathém., t. X, fasc. 3-4. 13
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deux définitions de la différentielle. La seconde est celle ou Stolz
et moi-méme considérons la différentielle de f (z, y) comme une
expression approchée, mais plus simple, de ’accroissement de f.

La premiere procéde d’une idée tout & fait différente qu’il
avait déja introduite en 1923 [11].

Pour Hadamard, l'introduction de la différentielle a pour
effet d’exprimer plus simplement les théoremes des fonctions de
fonctions et des fonctions composées.

Au moyen de la notion de dérivée, on écrit, sous certaines
conditions :

Df(x (), y (@) = faxs + fo 11 - (16)

En introduisant la notion de différentielle, on écrit, sous les
meémes conditions:

df (x-, y) = fadx + fydy (17)

que z et y soient des variables indépendantes ou qu’elles soient
des fonctions d’une variable indépendante. C’est 1a un avantage
précieux qui non seulement abrége a la fois I’écriture de la for-
mule, mais aussi rend les démonstrations plus simples, plus
intuitives et plus générales.

Cette utilité de la notion de différentielle étant admise,
notons que, dans notre jeunesse, la formule (16) était démontrée
dans ’hypothése H ou la fonction f (z, y) admettait des dérivées
partielles, non seulement au point (a, b), mais en son voisinage
et ou, en outre, ces dérivées partielles étaient continues en ce
point. (On suppose, bien entendu, que pour la valeur de ¢ consi-
dérée, x (t) et y (t) sont dérivables et respectivement égaux & a
et b). Or la formule (16) peut rester exacte sans que toutes les
hypothéses de H soient vérifiées.

Par exemple, il suffit de prendre:
£(0,0) = 0 et f(x, y) = (x* + »?) sin—\7—:2—1———2—pour x>+ 3y £ 0

X +y
Cette fonction est continue partout et a, & Dorigine,
deux dérivées partielles. Mais celles-ci ne sont pas continues a
Iorigine. Comme elles sont nulles & l'origine, la formule (16)
exprime que f (z (t) ), ¥ () ) (ou z (0) = y (0) = O) a une dérivée
a Porigine et que celle-ci est nulle, ce quia lieu. Ainsi pour cette
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fonction, la formule (16) est exacte sans que les dérivées par-
tielles de f soient continues a Iorigine.

Inversement, il ne suffit pas que la formule (16) ait un sens —
¢’est-a-dire que z (¢) et y (¢) étant dérivables et égaux respective-
ment & a, b pour la valeur de ¢ considérée, la fonction f (z, y) ait
ses deux dérivées partielles pour x = a, y = b. Par exemple
prenons x(f) = y(f) =t,a = b = x(0) = y(o) = 0et, comme
a la page 190,

Flx,y) = ——2  pour x> 4+ y2 #0 et £(0,0) = 0.
x? + y?
On voit comme plus haut que f,(0, 0) = f,(0, 0) = 0. On
devrait donc avoir

_ 7l
NN

done f(t, ) n’est méme pas dérivable pour t = 0, contrairement
& (17). Ainsi pour conserver (16), il ne suffit pas que cette formule
ait un sens et 1l n’est pas nécessaire non plus que les hypotheéses
restrictives, faites plus haut, sur f au voisinage de (a, b) soient
vérifiées. Il en est de méme pour la formule (17).

Pour étre sir que cette derniére formule soit wvalable,
Hadamard — admettant la définition usuelle de la différentielle
d’une fonction d’une varisble — dit, tout simplement que la
fonction f (z, y) est différentiable au point (a, b) si la formule (16)
est axacte. C’est a dire:

f@, 0

10) Si f (x, y) admet ses deux dérivées partielles au“point (a, b);
29) S1, quelles que soient les fonctions x (t), y (¢) dérivables et
respectivement égales & a et b pour la valeur de ¢ considérée, la
fonction f (z (¢), y (t) ) est dérivable pour cette méme valeur de

t et s1 la dérivée est égale au second membre de (16) pour la
valeur de ¢ considérée.

S’1l en est ainsi, la différentielle de f sera donnée par défini-
tion, par la formule:

df(x , y) = fadx + fydy (19)

pour la valeur de ¢ considérée.




— 196 —

Remarque : Comme Stolz I'avait fait, (voir p. 186), on pourrait se
dispenser d’introduire dans la définition précédente, I'hypothése
de I'existence des dérivées partielles de f (z, y) au point (a, b).
On supprimerait 1° et 20, on dirait que pour la valeur de ¢
considérée, la dérivée de f (x (¢), y (¢) ) est de la forme:

Ax, + By, .
En effet, en appliquant cette définition au cas ou
x(t) =1t et y(t) = b, on devrait avoir Df (¢, b) = A;

¢’est dire que f (z, y) a une dérivée partielle en x au point (a, b)
et que celle-ci est égale & A. On verrait de méme que B = f, (a, b)
et I’on verrait ainsi que la seconde forme de la définition de Hada-
mard est équivalente & la premiére.

Définition analogique par Severi

Severi [12] a réussi & donner la définition moderne de la
différentiabilité la plus analogue & la définition antérieure. Au
lieu de supposer seulement l’existence de dérivées partielles au
point considéré, il exige I’existence en ce point de dérivées par-
tielles restreintes (plus tard, Ostrowski a été conduit & la méme
définition & une nuance pres dans la définition équivalente, des
dérivées partielles restreintes).

Nous dirons, avec Severi, que f (2, y) a au point (a, b), une
dérivée partielle restreinte par rapport a x si le rapport:

f(x,y) —fla,y)

X —a

tend vers une limite finie et déterminée A, quand (r —a) %+ (y —b) 2
y—>b

X—a
ainsi, cela aura lieu, en particulier, quand y = b, c¢’est-a-dire que

tend vers zéro de facon que reste bornée ). S’il en est

1) En réalité, Severi suppose que ce rapport a une limite, mais qu’il reste borné
suffit.
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f(x, b) —f(a, b)

X —da

— A quand x —a.

Autrement dit, quand f(z,y) a au point (@, b) une dérivée
partielle restreinte, par rapport & a, elle a aussi une dérivée par-
tielle au sens ordinaire par rapport a a et la premiere est égale
a la seconde f,.

On dira de méme que f (z, y) a au point (a, b) une dérivée
partielle restreinte par rapport a y, si le rapport

f(xa y) —f(x>b)

20
e (20)
X—a
a une limite quand (rx—a)?+ (y—0)2— 0 de sorte que b

reste bornée. Et alors f (z, y) a une dérivée partielle f, au sens
ordinaire au point (a, b) et le rapport (20) tend vers f,.

Ceci étant, nous dirons que f (x, y) est différentiable au point
(a, b) au sens de Severt, si en ce point, f (z, y) a ses deux dérivées
partielles restreintes par rapport & = et y. Et alors la différentielle
de f (z, y) au point {a, b) au sens de Severi sera encore

df = f.dx + f, 4y . (19)

TroOISIEME SECTION

Equivalence des quatre définitions de la différentielle

Les quatre définitions précédentes de la différentielle d’une
fonction f (z,y) en un point (e, b) quoique différentes dans la
forme présentent cependant dans cette méme forme deux traits
communs. |

D’une part, ou bien elles présupposent Dexistence des
dérivées partielles de f (z, y) au point (a, b), ou bien cette exis-
tence résulte-t-elle directement de la définition.
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D’autre part, toutes ces définitions conduisent & la méme
expression de la différentielle:

df(x, y) = fadx + fydy .

Les différences entre les quatre définitions de la différentielle se
réduisent donc aux différences entre les définitions de la diffé-
rentiabilité. C’est donc celles-ci qu’il nous suffira de comparer
pour conclure qu’elles sont équivalentes.

Equivalence des quatre définitions
de la différentiabilité

I — Comparons, par exemple, la définition de Stolz, a celle
de Hadamard. Si, au point (a, b), f(x, y) est différentiable au
sens de Stolz, on aura: :

Af = (fo+e)dx + (f, +&') Ay

. € :
avec Iim { ,} = 0.
Ax2 + A4y2 > 0 e

Done si x (t), y (t) sont des fonctions de t dérivables et respec-
tivement égales & a et b pour { = «, on aura

F(x(®,y @) — f(a, b)
At

o)X 4 (f +e) 2
= g) — g)—= -
a At P At

Adx A
Quand 4t— 0’21_t et Z%tendent vers 2’ (), y'(«), donc Az et Ay

tendent vers zéro et par suite aussi ¢ et &’. Dés lors, le second
membre tend vers

faxi + fo e (21)

donc .aussi le premier.

Par suite, f (z (), y (1) ) est dérivable pour ¢t = « et sa dérivée
est égale a (21). C’est & dire que toute fonction différentiable au
sens de Stolz I'est aussi au sens d’Hadamard.
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La démonstration de la réciproque est moins simple. Nous
considérons une fonction f (z, y) différentiable au sens d’Hada-
mard au point (a, b). C’est-a-dire qu’on peut écrire:

df(x (), y (1) = Ax, + By, (22)

pour la valeur de ¢ considérée, soit ¢ = «. Il suffit de montrer
qu’on a

R , — f(a, b) — AAdx — B4 )
T ACER) R ACEIL Y =0 (22bis)
ro0 T r—=0 r
en posant:

r = \/sz + Ay?.

A cet effet, nous allons montrer qu’on arrive & une contradic-

R
tion si ’on suppose que — ne tend pas vers zéro et que par con-
r

séquent, 1l existe une suite de points (z,, ¥y, correspon-

dant aux valeurs 4,z, 4,y, r,, R, de Az, Ay, r, R telles que
o _

“| reste supérieur & un nombre positif fixe £, quand r,— 0.
r

n

Pour cela, admettons pour commencer qu’on puisse définir
deux fonctions z (¢), y (!) dérivables pour ¢t = o et prenant les
valeurs respectives a, b, z,, y,, pourt = a et t, = r,+o. On aura

;R_n_ = f(x (tn) > V (tn)) _f(x (O() ’ y(OC)) - AAnx — BAny

ry r

(23)

n

R, R
— est donc la valeur pour t =, de — dans (22bis) quand on k
n r . :

n

r

y remplace ¢ par ¢,. Et I'on a (23). Or,on a >k et la relation

n

(22) qui peut s’écrire dans le cas actuel:

fx@®, y@) —f(x(@), y() S lim A Ax (1) + B Ay (1)
t— o At At
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ou

Iim — =0,
r—> 0 r

d’ou en particulier

lim — =0 avec

rp—>0 Fn

R,
—| >k>0. (24)

Les deux relations (24) fournissent la contradiction
annoncée. Reste a démontrer l'existence des fonctions z (2),
y (t) décrites plus haut. On a fixé d’avance les valeurs de z (¢),
y (¢) pour les valeurs ¢ = ¢, = r,+o. Mais pour que les ¢, soient
distincts, on pourra ne retenir de la suite des r,(#0) qui tendent
vers zéro qu'une suite de valeurs distinctes et méme décrois-
santes. On a évidemment:

X (tn) - X(OC) <1 y(tn) - y(OC) <1
rn = > rn ) — >
ce qui peut s’écrire
X(t) —x(@| _ y(t) —y@| _ 25)
t —o | t, — o =

On peut donc extraire de la nouvelle suite des ¢, une suite
telle que les deux premiers membres de (25) tendent vers deux
limites finies respectives, 4 et u.

A cette troisiéme suite de valeurs de ¢, correspondra une suite
de points M,, (z (t,), y(t,)) avec t,—t,+1> 0. Pour définir com-
plétement x (¢), ¥ (¢), nous les prendrons fonctions linéaires de
t, de t, & t,+, égales respectivement a x (¢,), y (¢,) et a x (£, + 1),
y (t,+,) pour t =t, et ¢, ,. La courbe lieu du point z (¢), y () sera
une ligne polygonale tendant vers le point (a, b). Alors

x(t) — x ()

r— o

sera une fonction homographique de ¢ de ¢, & t, 4 ; dont les valeurs
resteront comprises entre ses valeurs pour t = ¢, et ¢t =1, Or
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celles-ci tendent vers 1 quand f,— «. Il en résulte que x () est
bien dérivable pour ¢ = o; et de méme pour ¥y (%).

Ainsi toute fonction f (z, y) différentiable au point (a, b) au
sens d’Hadamard est aussi différentiable en ce point au sens de
Stolz et au mien. B

. En résumé, les définitions de la différentiabilité au sens de
Stolz et au sens d’ Hadamard sont équivalentes.
II—Comparons notre définition géométrique (page 191) de la
différentiabilité avec notre premiére définition. |

10) Supposons d’abord que f(z, y) soit différentiable au
point (a, b) au sens de notre premiére définition. Alors on aura
une relation de la forme:

Af = AAx + B4y + er (26)

avec r = /Ax* + Ay* et lim & = 0 .
r—0
Condition U—Si I' est une courbe, lieu des points z (), y (¢),
z (¢), qui pour ¢t = a, passe par le point (a, b, ¢ = f (a, b)) de la
surface §: z = f (x, y) et qui a une tangente en ce point, on aura,
d’apres (26)

Az — AAx — BAy r -
At B SAt (27)
Quand 4t— 0, le premier membre tend vers.
z, — Ax, — By, . (28)
r J4x® + 4y? -
Dans le second: — = + 2 2,
At At > Pty

Dongc le second membre de (27) tend vers zéro avec At et par
suite

z, = Ax, + By, .
Donc la tangente en Q a I' appartient au plan P:
Z—-—c=AX-a)+B(Y-b),

fixe et non paralléle a Oxz.
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Condition V : Inversement considérons une droite 7' passant par
Q et contenue dans le plan P. Soient [, m, n ses coefficients direc-
teurs. On aura (26) Al+Bm = n avec [24+m?+#0. Il existe dans
le plan zoy une infinité de courbes passant par le point (a, b) et
tangentes & la projection 7" de T sur zoy. Choisissons-en une,
soit C. Il y aura donc, pour cette courbe, une représentation
paramétrique ou ses coordonnées & (), #n (¢) sont égales a a et b
pour ¢{ = B et sont dérivables pour ¢t = f avec 6},2 + 11',,2 # 0 et

2=t (29)
m ' t

Soit maintenant la courbe I' de la surface § qui se projette sui-
vant la courbe C sur xz Oy. Sa.cote correspondant a ¢, sera

S =/CEW, n@)
et en vertu de (24), on aura

AS (¢ AAE (t) + BAn (t P
() _ A4E® +Ban@) P 0
At At At

P AE(D)\? An (H)\?

Quand 4t -0,

P
Finalement 7 — 0. Donc d’aprés (30), § (¢) est dérivable pour

t =B et sa dérivée est
Sp = Ap+ g | (31)

et puisque \/é;gz + 45 # 0, les trois dérivées &5, 15, S; ne
sont pas toutes nulles et la courbe I' a bien une tangente au
& M

| point t = B. Puisque T m on aura d’apres (29) et (30)

m
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= = ="F.q y a bien une courbe I' sur S passant par Q
m n

et tangente en Q & la droite 7" donnée située dans P. Dés lors les
conditions U et V étant remplies par P, S a bien au point ¢, un
plan tangent: le plan P, non paralléle & Oz: la fonction f (z, y)
est bien différentiable au sens de notre définition géométrique.

20) Inversement, supposons que f (z, ) soit différentiable au
point (a, b) & notre sens géométrique. Cest-a-dire que la surface S
ait au point Q, un plan tangent non paralléle & Oz, soit le plan P:

Z—c=AX—a) +B(Y—-b).

Nous voulons démontrer que f (z, y) est au point Q différen-
tiable a4 notre premier sens, et méme, plus précisément que

(Af~AAx —BAy> 0

r

Iim

r—-0
avec ro= Jd4x? + 4y*.

En effet, dans le cas contraire, il existerait une borne £ >0
et une suite de valeurs h,, k, de Az et Ay telle que en posant
R, A4,.f— Ah, — Bk, |
;;— B rn
quand r,— 0.

Soient A4,, p,, v, les cosinus directeurs de la droite Q Q,,
(Q, ayant pour coordonnées a-+h,,b+k,, c+1,=f (a+h,, b-+k,).

On pourra toujours extraire de la suite o des points de coor-
données A,, w,, v, (qui restent sur une sphére de rayon 1) une
suite ¢’ qui converge vers un point de coordonnées A, u, v,
(avec A%24-pu2+4-v2? = 1). Remplacons la suite des Q, par la suite
correspondant a ¢'. Ceci étant, considérons une courbe C
du plan de zy passant par les projections des points Q,, Q.,, ...
Q, ... Q. Sur z oy, ce sera par exemple la ligne polygonale dont
les sommets sont ces projections. Ce sera la projection, C, d’une
courbe I' de la surface S. Pour celle-ci 4,, u,, v, tendant vers
Ay W, v, la droite Q@ @, tend vers la droite d passant par Q et de
cosinus directeur A, u, v. Si nous supposons, en outre (condition

T), que f(z, y) est continu au point @, on voit que le point O,

IR
ou rn=\/h,f+k;f‘,|~—" reste > k > 0

n
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tend vers Q et que la corde Q Q, de I' a une limite 6. Dés lors la
courbe I' a une tangente au point Q et par hypothése cette
tangente est dans le plan P. On a done

v = AA + Bu . (32)
h k [
Mais 2 ="=2L=C,
In Mn
avec C, = Jh + K2 + (4,/) .
D’ou
R, C, C,
- = —(vn_—Aln—B:un) = — "
rn rn rn

ou d’apres (32), y,—> 0. Or

C, \/,1,3 + w2 4+ v? 1
rﬂ

-ﬁ—_-_——-_’l
A2+l NZEE

Si A24-p? était nul, on aurait d’apres (32) v = 0 alors que

A2+ pu2ty2 =1, Donc — a une limite finie et — — , alors
I r, ~

rn

De 19, p. 201 et 20, p. 203, il résulte que notre définition géo-
métrique de la différentiabilité est équivalente & notre premiére
définition, comme a celle de Stolz.

qu’on a supposé que > k > 0. Il y a bien contradiction.

III— Comparons enfin la définition de Severi a celle de Stolz.

10) Si f(x, y) est différentiable au point (a, b) au sens de
Stolz, on a

f(x,y) —f(a, b) =(x—a)f, +(—=bf, +e(x—a) + & (y—b)
avec lim {:} =0 quand (x—a)*> +(y—b)*>>0. Alors
1

fG,y) —f@,y =[ft,» —fla, b)] —[fla,y)—f(a, b)]
= (x—a)(f, +8) + (&, —&;) (y —b)
ou ¢, & et g, —» 0 avec (x—a)*> + (y —b)*.

|
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Done

|

y —b
+181_82

f(xa y) —f(a’ y) _

X —d

&

fa

IA

X —da

reste borné, le

Quand (x—a)2+4(y —b)%2—~ 0 de sorte que z »

second membre tend vers zéro, donc aussi le premier. Par suite
f (z, y) a, au point (a, b) une dérivée partielle au sens de Severti,
par rapport a . On verrait qu’il en est de méme par rapport a v.
Ainsi f (z, y) est différentiable au point (a, b) au sens de Severi.
Les différentielles de f (x, y) au point (@, b) sont évidemment les
meémes aux deux sens.

20) Si f(x, y) est différentiable au point (a, b) au sens de
Severi, écrivons

f(x,y) —fla,b) = [f

(x.»~fa, y>] ma

X —dad

+[f(a, y)—f(a, b)

VD)6 = i +a] -0+ [ 407 6.

y—>b

Alors, quand (x —a)?+(y —b)* = 0 de sorte que reste <1,

X—a
on voit que w et o’ tendront vers zéro. De méme on peut écrire

fx, ) =f@@,b) = (f+0)(x—a) + (f, +0) (y —b)

, 6
avec hm{g,}zo quand (r—a)® 4 (y—b)2— 0 de sorte que
X—a <1
y—b '

Dés lors on pourra écrire

fx,9) =fla, b) = (fat+e)(x~a) + (f,+¢)(y—b)

R
avec lim {e’} = 0 quand (x —a)? + (y—b)*> - 0, quelle que soit

la valeur du rapport entre x—a et y —b. Autrement dit f (z, y)
est aussi différentiable au sens de Stolz.
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Finalement, les différentiabilités aux sens de Stolz et de
Severi sont équivalentes. Et les différentielles correspondantes
sont égales.

Conclusion

Finalement, nous avons démontré que les définitions de la
différentielle aux quatre sens:

d’approximation de Stolz et Fréchet,
géométrique de Fréchet,
opérationnel d’Hadamard,
analogique de Severi,

quoique de formes absolument différentes, sont équivalentes.

Pour abréger, nous donnerons le nom générique de définition
de la différentielle au sens moderne a chacune des définitions
ci-dessus.

QUATRIEME SECTION

Parallélisme entre le cas d’une variable et celui de
plusieurs variables pour les propriétés de la différentielle
sous sa forme moderne.

Nous rappellerons d’abord les propriétés de la différentielle
dans les deux cas d’une ou de plusieurs variables en renvoyant le
lecteur pour les démonstrations aux traités récents qui utilisent
les définitions modernes (nous indiquerons, comme exemple, les
pages correspondantes de la troisiéme édition, 1914, du tome I du
cours d’Analyse Infinitésimale [13] de la Vallée-Poussin, et du
tome I, 1942 du cours d’analyse mathématique de Valiron [14].
Et nous montrerons par des exemples pour plusieurs de ces pro-
priétés qu’elles disparaissent quand on emploie I’ancienne
définition de la différentielle d’une fonction de plusiéurs variables,
¢’est-a-dire quand on suppose seulement I'existence des dérivées
~partielles au point considéré. ' ’




— 207 —

Les traités d’analyse parus, avant—disons—1910, établis-
saient le parallélisme des propriétés de la différentielle en un
point, du cas d’une variable au cas de plusieurs variables en
ajoutant a ’hypothése de I’existence des dérivées partielles en
ce point, des hypothéses variées qui, toutes, comprenaient
Ihypothese de 'existence d’au moins 'une des dérivées partielles
au voisinage du point considéré. Nous allons montrer que ces
démonstrations reposaient sur des hypotheéses effectivement plus
strictes que I’existence d’une différentielle au sens moderne. Pour
cela il nous suffira de donner un exemple d’une fonction f (x, )
qui, en un point déterminé, est différentiable au sens moderne
sans avoir ses deux dérivées partielles au voisinage de ce point.
Ezxemple: On doit & Weierstrass le premier exemple d’une fonc-
tion ¢ (x) qui est partout continue et qui n’est nulle part déri-
vable. Depuis lors, on en a cité d’autres exemples. Soit 6 (z) I'une
d’elles. Puisque 0 (z) est continue partout, elle est bornée au
voisinage de x = 0.

Ceci étant, considérons la fonction

fx, ) =p*0(p) avec p = /x> + y*.

‘Ona

G, 0 =f(o, 0) _x*0(Ix])

X X

=x0(|x]) -

Quand z— o, 0 ( ]x |) reste borné, donc x 0 ( | z|)— 0. Par suite,
f(z, y) posséde une dérivée partielle par rapport & x, (qui est
nulle) & I'origine, de méme par rapport & y. On a donc:

fdx, 4y) = f(0, 0) =fi(o, 0)4x —f,(0, 0)dy

JAx* + Ay?

Q/Ax-z‘-}— Ay* 0 (\/sz + Ayz)

Ce rapport tend done vers zéro quand Az2+Ay2— 0: f (z, Y)
est différentiable au sens de Stolz a origine.

Mais en aucun autre point (a, b) voisin de I'origine, f (z, y)
n’a ses deux dérivées partielles. Car si a2+-b2 # 0, on a par
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exemple, a # 0. Alors:

f((l—l-h,b) _f(aa b)_
p —

1
- {[_(a +h)? +b%] 0(p +4p) — (a* +b?) O(p)} = (33)

O(p+4p)—0 h)% + b%] —(a? + b)?
[(a+h)2+b2][ (p Z) (p)] N [[(a+ )2 + h] (a® + ):Ie(p).
Quand £— o le dernier terme tend vers 2a 0 (p), avec

p? = a* + b2.

L’avant-dernier terme est égal a

2

2a + h 1 6@ + 4p) — 0(p)
2 2
{[(%Lh) o] J(a +h)2+b2+\/a2+b2} Ap

Iaccolade tend vers a \/a2—l—bz # 0 quand /# — 0. Dans le second
rapport '

Ap = J@+h? +b* — Ja* + b?

tend vers zéro quand h— 0. Et par suite ce second rapport n’a
pas une limite finie et déterminée quand ~2— 0. Il en est donc de
[ (a+h, b)—7 (a, b)
h
n’a pas de dérivée partielle en z.. De méme pour b # 0, f (z, y)
n’a pas de dérivées partielles en y au point (a, b). ; |
Ainsi f (z, y) est différentiable au sens de Stolz & l’origine,
mais n’a, en aucun autre point voisin, deux dérivées partielles.
Apreés cet exemple, nous montrerons que les principales pro-
priétés de la différentielle subsistent quand on passe du cas
d’une variable au cas de plusieurs variables, lorsqu’il s’agit de
la différentielle au sens moderne. Puis nous montrerons, par des
exemples, qu’'il n’en était pas de méme si la différentiabilité en
un point signifiait seulement l’existence en ce point des deux
dérivées partielles.

, ¢’est-a-dire que pour a # 0, f (, y)

méme de
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Quelques propriéiés des fonctions différentiables

I — Différentielle au sens moderne en un point

Fonctions d’une seule
variable

Fonctions de plusieurs variables

Une fonction f (z) est con-
tinue en tout point ou elle
est difféerentiable

Si f(x) est différentiable
pour z = a et si ¢ (t) est
différentiable pour = a,
avec @ () = a, alors F (2)
f(p(t)) est différen-
tiable pour ¢t = a et dF (1)
= f d@(t) pour t = a.

A

En tout point ou une fonction est
différentiable elle est continue. C’est
une conséquence immédiate de la for-
mule de Stolz (8).

B

Si f(x, y) est différentiable au point
(a, b) et si @ (¢, u,v), ¥ (¢, u, ¢) sont dif-
férentiables au point (x, f, y) avec
¢ (o, B, v) =a; ¥ (a, B,y) = b, alors
F(a, o, w)=f(0 (u,v,w), k4 (u, v, w))
est différentiable au point («, 8, 7) et
dF (u, v, w) = fodzx + [ dy.

(Cest ce qu’exprime la définition
d’Hadamard.

G

Soit une fonction F (x, y, z) qui au
point (a, b, c) soit nulle et différentiable
avec F_ (a, b, ¢) # 0 et quisoit continue
au voisinage de ce point. Alors il
existe au moins une fonction ¢ (z, y)
différentiable au point (a, b) égale en ce
point a ¢ et qui vérifie I’équation

F(x,y,z)z()

au voisinage du point (@, b) pour z =
¢ (z,y). Quand F existe et est % 0 au
votsinage du point (a, b, ¢) la fonction
@ (z, y) est la seule qui vérifie les mémes
conditions.

Si de plus F est différentiable au
votsinage de (a, b, c), la solution ¢ (z, y)

L’Enseignement mathém., t. X, fasc. 3-4. 14
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Fonctions d’une seule
variable

Fonctions de plusieurs variables

sera aussi différentiable au voisinage de
(a, b, c).

Voir, pour les démonstrations, de la
Vallée-Poussin [13, page 168].

C’ (généralisation de C)

Soient n fonctions F,, ... F, des n
variables [,,...1, et de m autres
variables z, y, ...

Supposons qu’au point (C,...C,, a,
p ...) les fonctions F soient nulles, dif-
férentiables et que le déterminant

D(F,, ... F)
D, ..1)
Alors il existe au moins un systéme de
fonctions L, (x,y ... ), ..., L, (x,y ...) se
réduisant 4/, ... [, pourz = o,y = B, ...
et tel que
Fi(Ly...L,, 2,y ...) =0 pour

=1 ... 1%

F = (y) soit # 0.

Tout systeme tel que L,...L, est
différentiable au point («, f,...). En-
fin siles dérivées partielles qui figurent
dans le déterminant J sont continues
au point (Cy...C,, «, B,...), J ne
s’annule pas au voisinage de ce point
et le systeme des solutions L, ... L, est
unique.

Pour la démonstration, voir de la
Vallée-Poussin (I, page 169).

Le théoreme précédent subsiste si 1'on
remplace deux fois le mot différen-
tiable par continue et si I’on suppose
que les dérivées partielles de F; par
rapport aux [; existent non seulement
au point (C;...a,...) mais en son
voisinage et sont continues en ce point.
Pour la démonstration, voir Valiron [14,
page 246]
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Fonctions d’une seule
variable

Fonctions de plusieurs variables

Si f (x) est différentiable au
point a, lacourbey = f(z) a
une tangente, non paralléle
a Oy, au point (a, b = [ (a)).

D

Si f(z, y) est différentiable au point
(a, b), la surface z = f (z, y) a un plan
tangent non parallele a 0z, au point
(a, b, c = f(a, b))

(Cela résulte de l’equivalenoe démon-
trée plus haut de notre définition géo-
métrique avec la définition de Stolz).

Difiérentielle au sens moderne au voisinage d’'un point.

Fonctions d’une seule
variable

Fonctions de plusieurs variables

Si f (x) est continue sur le
segment @ = x = b et sielle
est, différentiable a I'inté-
rieur de ce segment, on peut
écrire [ (b)—f (a) = (b—a)
f' (a+06h) avec 0 < 6 < 1,
h=b—a.

Soit f(x, ) une fonction in-
tégrable en « dans I'inter-
valle ¢ = z =< b pour o' =
o =o', qui est différen-
tiable en o pour ce méme

E
Si f (z, y) est continue sur le rectangle
Ria=zx=d;b=y=0

et si elle est différentiable & 'intérieur
de R, on peut écrire:

f(d+h, ,8+k) —-]((O(, :B) =
A (ot Ok, B+ 61) +
kfp (e + Ok, B+ OF)

avec 0 < 0 < 1, quand les deux points
(o, B), (e+h, f+Fk) sont intérieurs & R.
Pour le démontrer il suffit d’appliquer
la formule ¢ (1) — ¢ (0) = (p "(0),0 <0
<1 a la fonction ¢ (1) = f (a1t
B-+kt) et & calculer ¢’(t ) au moyen du
théoreme B ci-dessus.

F

Soit f (x, «, f) une fonction intégrable
en x dans l'intervalle I: ¢ == x < b quand
le point (o, B) est sur le rectangle R:
o« =a=a',f'=p=p".Sif(z, 0 p)
est différentiable en o, f dans R pour
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Fonctions d’une seule
variable

Fonctions de plusieurs variables

ensemble de valeurs de z et
de «.
Alors si f, (x, a) est continue

sur ’ensemble £, 'intégrale
b

Fa)={ f(z, o) dz est

différentiable pour
o' < o <a”etona

F' =

a

R G, O

f. (x, a) dx .

o4

x dans [ et si sa différentielle est con-
tinue pour x dans [ et (o, ) dans R,
b

alors F (a, B) = [ f(z, o, B) dz est

a
différentiable dans R et sa différen-
tielle est

o

F(a, B)= | df dz

b a

= [/, B) Ao+ f; (x,a, B) AB] dx.
En effet

b
AF = [[f (z,0+4o, f+A4B)—f (%, «, )] dw

b
— [[dof, (z, 0+ 0da, B+ 04B) +

ABfy -+ 0, B+ 04)) dr.
D’ou '

b
AF — [ dfde =

b
[ Aalf, (z, o+ 04c, B+ 04B) —

b
fo(a, o, )ldz+ [ AB[f; (%, a4 040, +
b
04B) — 1, (x, o, B)] dz = Ao [ Adx +
b a
AB | Bdzx .
Et comme on a supposé df continu,
A et B sont deux fonctions de z qui
convergent uniformément vers zéro

quand Ao, Af tendent vers zéro. Il en
est donc de méme de -

b b
s=jAdx, ) =_dex.

|
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Fonctions d’une seule

: Fonctions de plusieurs variables
variable

On aura done
b
AF = [ dfdx + edo + ndp

ol €, 7 tendent vers zéro avec |da| -+
|AB|. Cest-a-dire que F (a, ) est dif-
férentiable (pour («, ) sur R) et qu’on
a

b b
dF (o, B) = [ dfdx = [ [daf; (z, o, f) +
4Bf (&, o, B)] da.

Remargue: On peut démontrer directement, trés facilement, les
égalités suivantes qui nous seront utiles par la suite, ou les déduire du
théoréme ci-dessus sur les fonctions composées.

Si y et z sont différentiables:

d(y+2) = dy+dz; d(zy) = zdy+ydz.

Critiques de Uancienne définition de la différentielle

Nous allons montrer que le parallélisme qui vient d’étre
illustré par les théorémes A, B, ... F, n’existe plus quand on
définit, comme autrefois, la différentiabilité de f (z, y) au point
(a, b) seulement par l'existence des dérivées partielles f',, f'p-
Nous en avons déja cité un exemple page 190.

- Rappelons que si f(x) a une différentielle pour z = a, la
courbe y = f (x) a au point ol z = @ une tangente non paralléle
a oy. Or, & la méme page, nous avons montré qu'une fonction
f (z, y) peut étre continue partout et avoir en un point Q deux
dérivées partielles sans avoir un plan tangent en ce point.
Donnons d’autres exemples.

A. Sif(x) a une différentielle pour z = a, elle est continue
Y

pour x = a. Mais considérons la fonction f (x, y) =
x2__l_y2

pour
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z24y2% # o0 et f(0,0) = 0. Elle a ses deux dérivées partielles
pour z = 0, y = 0. Pourtant elle n’est pas continue en ce point,
puisque f (z, ) = % pour x # o et f (0, 0) = O.

B. Si f (z) a une différentielle pour z = o0 et si z = ¢ (¢) est égal
& a pour t = « et est différentiable pour ¢t = o, alors f (o (¢) ) est

différentiable pour ¢ = «. Mais posons f(z, y) = ﬁ xy | log
(z2-+y?2) pour z2+4y? # o et f (0, 0) = 0. Cette fonction est con-
tinue et a deux dérivées partielles, d’ailleurs nulles, pour z = y
= 0. Pourtant si Vonprende =t,y = t, F (t) = f(i,1) = |t‘ log 2¢2
pour ¢ # o, I (0) = o et F (t) n’est pas différentiable pour ¢ = o.

C. Considérons la fonction F (x,y,z). Supposons que 'équation
F(z,y, z) = 0 ait une solution z = ¢ (z, y) continue au point
(@, b). Supposons en outre que I (z, y, z) ait ses trois dérivées
partielles au point (a, b, ¢ = ¢ (a, b)) et que F, (a, b, ¢) soit # o.
Il s’agit de montrer que le théoreme C cesse d’étre valable si la
définition de la différentiabilité d’une fonction en un certain
point consiste seulement en la condition que la fonction ait des
dérivées partielles en ce point. Nous allons donc montrer qu’il
existe au moins une fonction F (z, y, z) satisfaisant aux condi-
tions ci-dessus et pour laquelle aucune solution ¢ (z, ¥) ne possede
ses dérivées partielles au point (a, b) ou bien est telle que, si elle
posséde en ce point deux dérivées partielles, celles-ci ne vérifient
pas les relations:

F,a+F,c¢’a:O F/b+Flc§0,b=0'

A cet effet, appelohs ¢ () une fonction nulle, continue,
mais non dérivable pour x = 0, non nulle pour x # 0 et telle
x

¢ (2) L

prendre ¢ (x) = \/l x|.
Introduisons maintenant une fonction o (x, y) bornée au
voisinage de (0, 0), différente de zéro & I’origine: « (0, 0) =k > o

que soit bornée pour |z | borné. Par exemple, on peut

et telle que a(x, 0) = pour x # 0. Par exemple,

Xl
¢ (x)

a(x,y) = /Ix+1y] (34)
pour |x| + |y| # 0 et x(o, 0) = k.
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Enfin, prenons pour F (z, y, z) la fonction:
F(X, Vs Z) = OC(X, y)[z—qo(x)]
La fonction o (x, y) est bornée au voisinage de I’origine, on, aura
donc F(x, y, ¢ (x)) = 0 et en particulier F(o, 0, 0) = 0.
Cette fonction F (z, y, z) est différentiable & I’ancien sens théori-
que & Dorigine. Cest-a-dire que ses trois dérivées partielles
existent & I'origine. En effet:

F(x,0,0 —F(0,0,0 a(x,o0fo—¢x] _
x B x|

Donec F’ (o, 0, 0) existe et est égal & —1.

F(0,y,0 ~F(0,0,0 _a(0,y[o=0]

=0.
y y
Donc F’, (o, o, 0) existe et est nul.
Enfin
F (o, 0, z) —F(o, 0, 0) B (o, 0)(z—o0) _ .

Z A

Donc F,(0, 0, 0) existe et est égal & k£ # 0. Toutes les conditions
du théoréeme C sont vérifiées au sens ancien de la différentiabilité.
A ce méme sens, puisque la solution ¢ (x) n’est pas dérivable, la
conclusion du théoréme (que ¢ (z) est différentiable & I’origine)
n’est pas exacte.

CINQUIEME SECTION

Une application & la définition des fonctions monogénes

On dit avec Emile Borel qu’une fonction complexe f (z) de la
variable complexe z = z-+1iy est monogéne au point ¢ = a--ib,
si cette fonction est dérivable en ce point. C’est-a-dire que

Af .
— =f'.4+¢& avec lim ¢ = 0.
Az Az s
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En posant f(z) = P(x, y) + iQ(x, y); cherchons & quelles con-
ditions doivent satisfaire P et Q pour que f (z) soit monogene
pour z = c. Conformément & 'usage en vigueur a son époque,
Goursat [1] résoud le probléme aux pages 6 & 9 de I’édition de
1905 du tome II de son cours d’analyse, en prouvant d’abord
que les fonctions P (z, y), O (z,y) doivent avoir des dérivées par-
tielles au point considéré et alors en supposant (hypothéses H)

10) qu’elles en ont encore au voisinage de ce point,

20) que ces dérivées partielles sont continues au point con-
sidéré.

Nous allons voir que la définition moderne de la différentielle
permet de”réduire considérablement cette hypothése H et méme
d’obtenir une condition nécessaire et suffisante.

En effet, si f (z) est monogeéne au point ¢, on peut écrire

Af = (f'.+e)dz ou AP +idQ = (A+iB+¢ +ig")(4dx +idy),
d’ou

AP = (A+¢&')Ax — (B+¢e") Ay
et .
A0 = (B+&")Ax + (A+¢') Ay

8/
avec lim { ”} = 0.
4z >0 (&
D’aprés la définition donnée plus haut, page 185, il en résulte

que P et Q sont différentiables au sens moderne au point (a, b)
et que leurs différentielles

dP = P',dx + P'ydy
dQ = Q'qdx + Q'ydy
sont telles que P', = A, P’y = —B,Q', =B, Q' = 4.
Ceci exige que ’on ait:
P\, =0Q%, Phy=-20,. (35)

Réciproquement si 1°) P et Q sont différentiables au point (a, b),
ce qui implique qu’elles ont chacune leurs deux dérivées partielles
au point (e, b), 2°) ces dérivées partielles vérifient les condi-
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tions (35) dites de Cauchy-Riemann, alors la fonction f (z) sera
monogeéne pour z = 0, car on aura:

Af = AP +i4Q = (A+¢&)Ax — (B+¢") Ay + i[(B+e,) 4x
+ (A+e,) Ay] + (¢' +ig)) Ax + (—¢&" +igy) 4y,

Af |
— = A +1iB + 1
Az
avec
e +ig)dx + (—¢&" +iey) A4y | , ,
p| = (&) Ax + DA o + Loyl + 167] + &)

|4z |

et par suite, lim n = 0, c¢’est-a-dire que f(2) est dérivable pour
4z - 0O .

g == §,

En résumé: Pour que la fonction f (z) = P (z, y) + 10Q (, y)
soit monogéne pour z = ¢ = a + b, il faut et il suffit:

19) que P et Q soient différentiables au sens moderne au
point (a, b),

20) que, ces fonctions ayant alors nécessairement des déri-
vées partielles au point (a, b), celles-ci vérifient les conditions
de Cauchy-Riemann

P'y=0Q%, Phy=—0Q,.
Remarque : Nous avons établi ce théoreme en 1919 [17]. Quelques
années plus tard, Mrs. Chisholm Young l’a indépendamment
redécouvert et I’a appelé « Théoréme fondamental de la théorie
des fonctions complexes ».

SIX1EME SECTION

Différentielles suceessives.
Dérivées partielles du second ordre.

Avant de nous occuper des différentielles, disons quelques
mots des dérivées partielles. On a longtemps admis implicite-
ment que si f,, et f,, existent, elles sont égales. Pourtant leurs
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conditions d’existence sont différentes. Pour que f,, existe au
point (a, b), il faut, et il suffit que f. (z, y) existe pour y voisiu
de b et ait une dérivée en y pour y = b, Pour que f,, existe an
point (a, b), les conditions s’obtiennent en permutant x avec y,
a avec b, dans les conditions précédentes.

C’est ce qui a permis & H. A. Schwarz de donner I"exemple
de la fonction:

f(z,y) = x? arctg -y——y2 arctg f, quand x*+y*+ 0, et f(0,0) =0
X Y

pour laquelle

fo(@,0 =1 et f(o,0=—1.

Plus tard, Peano a donné, en 1834, I’exemple suivant:

2 2

X y
f(x,y) :xyxT“—*

> pour x* +y* #0,f(0,0 =0
+ )

pour lequel on a encore:

f;y(oa 0) = 1> f;x(oa 0) = —1.

Mais le méme H. A. Schwarz a donné ensuite des conditions tres
générales sous lesquelles f.;, = fr,. Sous une forme simple, on
peut dire: il suffit que f, et f,, existent au voisinage du point
(a, b) et solent continues en ce point.

Thomae et Peano prouvent ensuite des conditions suffisantes
trés analogues, mais un peu plus générales: si f,, existe au
voisinage de (a, b) et est continu en ce point, alors, f,, existe
et est égal & f.

Enfin, en 1877, Dini obtient une condition encore trés géné-
rale, mais un peu différente: pour que fu, = fuq, il suffit que

19) 1., existe au voisinage de (a, b) et ait une limite quand
le point (z, y) tend vers le point (a, b) et alors i1l montre que
f.» existe nécessairement et est égal & cette limite, c’est-a-dire
que f,, est continu au point a, b;

20) f, (z, b) a une dérivée en z pour z = a.

Nous renverrons pour les démonstrations de ces différentes
propositions, aux pages 147-5 de ’ouvrage de Stolz [7].
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Nous voyons que ces théorémes ne supposent pas I’existence
de f.., ni de f,,.

Nous allons voir que W. H. Young a pu établir la méme
égalité dans un cas différent en utilisant la notion de différen-

tielle.
Différentielle seconde: Par définition, une fonction f(x, y)
admet une différentielle seconde au point (a, b) si

10) f (x, y) admet une différentielle du premier ordre df au
voisinage du point (a, b); -

20) si pour Az, Ay, constants, cette différentielle f, Az -+
f, 4y admet elle-méme une différentielle (correspondant & des
accroissements A'z, A’y, en général, nouveaux).

Et alors cette derniéere différentielle, nécessairement de la
forme

d'df = (df')dx + (df')dy =

(fad'x + fuA'y) A% + (foad'X +f12d'y) Ay
sera appelée la différentielle seconde de f (x, y) au point (a, b).
Une simplification : on vient de voir qu’en supposant I'existence
des dérivées partielles du premier et du second ordre de f (z, y)
au voisinage du point (a, b) et la continuité en ce point de f., et
fyx, o0 démontrait autrefois (1) que fup = fper W. H. Young [9]

a montré que cette égalité subsiste quand on suppose seulement
que f (z, y) est différentiable au second ordre au point (a, b). Soit

0 =fla+h,b+h) —f(a+h,b) —f(a,b+h) +f(a, b).
Posons:
60() =fla+h,b+ht) —f(a+h, b) —f(a, b+ht) + f(a, b).

On a6 (o) =0, 6 (1) = 4. Or, d’aprés le théoréme sur les fone-
tions composées 6 (¢) est dérivable et

6'(®) = h[f'y(a+h, b+ht) —f',(a, b+ht)].
En appliquant le théoréme de Rolle,

5 =6(1)—6(0) =5 (0) avee 0<6 <1.
Done 6 =h[f,(a+h, b+h6)—f,(a, b+ho)].
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Et puiéque f, (z, y) est différentiable au point (a, b),

5 . ” ”
73 (fba+8) b G(sz +¢&') — O(sz_'_g”)

h2
ou
0 .
Z’z’sza“Lw’ (36)
avec
lo| =]e+ 0@ —e)| = lel + 1| +1e"],

ou g, &, ¢’ tendent vers zéro avec h et ou, par suite, il en est de
méme de .
Or, on obtiendrait de facon analogue

5 ”
'}? = fab + o’ ou lim w = 0. (37)
h—0

Dés lors en retranchant (36) de (37),
0 =fro —fu + 00
et quand h -0,
foa = Fab - (38)

Remarque : 1,’égalité (38) est prouvée par H. A. Schwarz en
supposant que f, et f,, existent au voisinage de (a, b) et sont
continues en ce point et par W. H. Young, en supposant que
f a une différentielle seconde au point (a, b).

Ces deux conditions coincident quand elles sont vérifiées &
la fois, mais Schwarz ne suppose pas Pexistence de f., et de
f;z, méme au point (a, b) et W. H. Young ne suppose pas que
fxy €6 [, existent prés de (a, b) et y sont continues.

Suivant les cas, on pourra utiliser 'une ou ’autre des con-
ditions de ces deux auteurs.

De I'égalité (38), on tire

d'df = AxA'xf., + (4xA"y +Ax'Ay) fop + AyA'y f,,
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et en particulier
d*f = AX*f, + 24x4yfs, + 4Y*f, .

Grace a cette simplification (38), on peut, connaissant seulement
d*f, reformer d'df; tandis que sans la relation (38), on ne pourrait
déduire de d?f une expression unique de d’df.

Différence seconde : Nous avons pu obtenir en 1912 [10, page
439] une formule qui montre qu’on pourrait calculer directement
d'df sans connaitre df. Nous allons en rappeler ici la démonstra-
tion avec une petite variante.

La différence premiére de f étant de la forme:

Af =¥ (x,y) =fx+h,y+k) —f(x, ),

la différence seconde de f sera de la forme
A'Adf =y(@a+h', b+k") —Y(a, b)

ou
A'Af = [fla+h+h', b+k+k)—f(a+h', b+k')] —
B [f(a+h,b+k)—f(a,b)].
En posant: .
E@®) =[fla+ht+h', b+kt+k")—f(a+ht, b+kt)] —

‘ [_f(a+h” b+k')—f(a’ b)] ’

on a
(o) =0, &) = A'Af
d’ou \
A'Af = E(1) — £(o)
et puisque f (z, y) est différentiable prés de (a, b), alors si & et k&

sont assez petits, en vertu du théoréme des fonctions composées,
¢ (t) sera dérivable, et 'on aura d’aprés le théoréme de Rolle

A'Af = ¢ () avee 0<0 <1,
d’ott
A'Af = [hfe(@+h0+h', b+kO+K') + kfy(@+h0+h', b+k0+k')] —
[hfi(@+h0, b+k6)+kf,(a+h0, b+k6)].
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Et si f,, f, sont différentiables pour x = a, y = b:

fe(@+4x, b+4y) — fo(a, b) = Ax[fo+e] + Ay [fup+¢']

. & /
avec lim {s'} = 0 quand |4x| + |4y | — 0 et de méme pour f,.

D’ou

A'Af =h{(hO+h)(f.o+e) + (kKO+K) (foo +&) — hO(f.o+&1) —
kO (fop+ €0} + k{(hO+h") (foa+8) + kO+K)(fy+835) —
hO(fpy +&3) — kO(frs +€'5)} = hh'f o + hk'f oy + kh'fy, + kk'f o + 11

ol & &, 8,8, €, &y, &3, &3 tendent vers zéro avec | & |+| & |

B |+| K | et ou

In| < |h||(hO0+h")e+(kO+k')e —hOe; —kOe; |+ | k| |(hO+h')e, +
(kO +k') e — hes — ke, | <2(|h| + [kD)([h] + [B'| + | k| +

k') (lel+1e" | +le [ +len | +lep | +lea | +Hlesl +les) =r(r+7) A
ou r = |h|+|k|,r =|h"|+|k'|etou i —>0quand r +7r" = 0.

On peut donec écrire

AAf —d'df =n =r(r+rHu
ou|u| <4, donc p—0 avec r4r.
Mais de méme en permutant 4, k avec #’, k' on a

A'Af=d'df =r' (r+r)y’ ou u -0 avec r+r'.

Orr(r+r)=rr (1 ~+ ;,) et r'(r+r)=rr (1 - ;) L’un des

r r :
rapports —, — est <1, on peut donc écrire:
r'or

4,Af_,d'df| <2(lul + 1)

rr

D’ou finalement
ANAf = d'df + ver' (39)
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oulimv = 0quand r + r' - 0, et out v est une distance entre (a, b)
et (a+h, b+Xk), v une distance entre (a, b) et (a+h', b-+k’). De
méme qu’a la page 188, on peut prendre r = \/hz—i—kz ou r = max
(|h]et|k]), aussi bien que r = | & |+]| k|. Et de méme.pour
r’ exprimé en fonction de A" et £’. On notera l'analogie de la
formule (39), avec la formule de Stolz pour le premier ordre:

Af —df =ar ou llma = 0.

r—>0

Si dans (39) on suppose 2’ = h, k' = k, on aura

A*f — d*f = pr* avec lim p = 0. (40)

r—-0
En écrivant:

h=rcosep, k=rsing,

on aura.

. _ . , A2
cos> ¢ f, + 2 sin ¢ cos ¢ f,;, + sin? ¢f,: = lim —Z—Jj (41)
r

r—-0
ou s
A = f(a+2h, b+2k) — 2f(a+h, b+k) + f(a, b)
et
=R KR,

En particulier pour £ = 0, pour 2 = 0 et pour k¥ = A, on obtient:

™ fa+2h,b)y—2f(a+h, b) + f(a, b)

£ Z:L 12 (42)
" , , b+2k) —2f(a, b+k :
£ = G ) f(c: tk) +f(a, b) 43)
ko k
. +2h, b+2h) — 2 h,
P Ilmf(a +2h) fh(2a+ b+h) +f(a, b) (44)
h—>o

On a d’ailleurs obtenu plus haut, une autre expression

lim f@a+h, b+h) —f(a, b+h) — f(a+h, b)+ f(a, b)

h->o h2

fab =
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On voit ainsi qu’au moyen de la formule (39) ou des formules
(42), (43), (44), on peut calculer d?f sans connaitre la différentielle
premiére df.

Unicité. 1°) Restant encore dans le cas ou f (z, y) a une diffé-
rentielle seconde au point (a, b), supposons qu’il existe trois
nombres fixes, L, M, N, tels que:

A%f = LAx* + 2MAxAy + NAy* + B (45)

avec lim f = 0.

r—>o

Alors en comparant avec (40),7 on a
(L —fp) dx* + 2(M —f) AxAy + (N —f,2) 4y> = r*(B—p).
On pourra encore poser

Ax =rcos 9,4y =rsing@, dou
(L —f5) cos® ¢ +2(M —fz) sinp cos ¢ + (N —f;,) sin® ¢, = (8 —p).

Pour sin ¢ constamment nul, on voit qu’en faisant tendre r vers
zéro, on aura, puisque f—p — 0 avec r, L = f,,. De méme pour
cos ¢ constamment nul, N = f,,.

En tenant compte de ces deux relations, il restera pour
sin o =1, M—f,=8—p, dou M=Ff,.

Ainsi, sous la seule hypothese que f a une différentielle
seconde au point (a, b), la formule (45) n’est valable que pour une
seule forme quadratique en Ax, Ay, soit LAx? 4 ..., & savoir

Bf = [Ax* + 2f,dxAy + f,4y* .

20) On peut obtenir, moins simplement, il est vrai, un résultat
plus général en partant de la formule ci-dessous, mais en sup-
posant seulement que f a une différentielle premiere au voisinage
(a, b) sans supposer d’avance l'existence d’une différentielle
seconde au point (@, b). Ainsi on suppose que:

AAf =
fa+h+h,b+k+kY—fla+h, b+k)—fla+h', b+k’)+f(a,b)=
Lhh' + Mh'k + Mhk' + Nkk' +vrr' (46)

ou v—=o0 avec r +r'.
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Ceci étant, on aura en prenant &' = o dans (46),

[fla+h+h ,b+k)—f(a+h, b+k)] — [fla+h",b)=f(a,b)] =
Lhh' + Mh'k + pr |h’|

ou, pour tout ¢ > 0, on peut prendre 7 tel que | p| <& pour
|hl + R |+ k] <7.

En particulier prenons |A'| < g, on aura

fla+h+h',b+k)—f(a+h,b+k) _,f(a +h',b)—f(a, b)
h' h'

= Lh+ Mk +vr
. 1
ou |v| < ¢, pourr=[h[—}—|k|<—2—.

Quand A’'— o, les deux premiers termes du premier membre ont
chacun une limite, (si n fixe est assez petit) et on a

fi(a+h,b+k) —f.(a,b) = Lh + Mk +vr  (47)

avec encore | v| < epourr = |h| 4 | k| <gounaétéchoisi

convenablement apreés que ¢ a été choisi arbitrairement. C’est-
a-dire, lim v = o et par suite: 19) que f, est différentiable au

r—>o

point (a, b) et: 20) que L = f.,, M = f,,. De la méme maniére,
on trouverait que f, est différentiable au point (a,d) et que

M' = fys, N =f,,. Donc | a une différentielle seconde au point
(a, b). Ainsi f, = fi. et

Lhh' + M (hk' + h'k) + Nkk' = f,hh' + fo, (hk' + B'K) + f,, hK'.
Ainst, quand on o la formule (46), il suffit de supposer que f

est différentiable au voisinage du point (a, b) pour étre assuré

10) que f a une différentielle seconde au point (a, b),

20) gu’il W’y a qu'une expression Lhh' ... vérifiant la formule
(46),

| 39) que cette expression est identique a la différentielle seconde
‘ de f au point (a, b).

i‘ L’Enseignement mathém., t. X, fasc. 3-4. 15
\
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On notera méme qu’on n’a pas eu a se servir de la différentia-
bilité de f, mais seulement de I’existence au voisinage de (a, b)
des deux dérivées partielles f.(x, ), f, (, y) de f.

Formule de Taylor :

Supposons que f (z, y) ait une différentielle seconde au point
a, b. D’aprés la formule (39), on a en particulier, en y remplacant
h,k,h,k',par h, 0,0, k,

fla+h,b+k) —f(a+h, b) —f(a, b+k) + f(a, b)= hk(f,,+¢)

avec lim ¢ =0,
]h|+]k]—>0

Or on a les formules classiques de Taylor & une variable

2

fla+h,b) =f(a, b) +hf,(a,b) +%—(fa"2(a, b) + 2&,),

2

fa, b+h) = fla, B+ kfi (@, B) + (i@, b) + 26

avec lim g =0, lim ¢ = 0. De ces trois relations, on tire

h—>o k—>o
fl@a+h,b+k)=f(a,b) + hf,(a, b) +kfy(a, b) + 1[h*f,(a,b) +
2hkfy(a, b) + K*f,.(a, b)] + &h* + ehk + &,k (48)

ou le dernier membre peut se mettre sous la forme w (h*+ k?)
ot @ — o avec h?+ k2 (48) est la forme de Taylor limitée au
second ordre, pour deux variables.

Différentielle d’ordre quelconque

Nous dirons qu’une fonction f (z, y) est différentiable a4 ’ordre
n au point (a, b) si:

10) elle est différentiable au voisinage de ce point jﬁsqu’é
Pordre n—1,

20) si sa différentielle d’ordre n —1 est différentiable au point
(a, b) pour toutes valeurs fixées des accroissements de x et .
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Nous avons défini plus haut les différentielles du premier et du
second ordre. La définition précédente permet donc de définir
successivement de facon précise les différentielles d’ordre 3, 4 ...

Ici encore, on retrouve les formes anciennes des différentielles
d’ordre n et en particulier la formule symbolique ancienne:

0 0 "
df(x, y) = (&dx +5dy> f

ou 'on doit remplacer les puissances de d comme des indices de
dérivation.

Ce qui distinguera les définitions anciennes des définitions
modernes, ce sera encore, pour les différentielles d’ordre n comme
pour les différentielles premiéres, les conditions de différentia-
bilité et les propriétés des différentielles.

Pour ces derniéres, nous renverrons encore aux cours d’ana-
lyse les plus récents, [14, 15, 16], qui établissent bien le parallé-
lisme des propriétés des différentielles d’ordre supérieur entre
le cas d’une et le cas de plusieurs variables. Il n’est pas utile de
citer des exemples ou 'ancienne définition de la différentiabilité
d’ordre supérieur (réduite a Ihypothése de I’existence des
dérivées partielles correspondantes) ne suffit pas a établir ce
parallélisme, puisque déja ce résultat a été obtenu plus tot pour
la différentielle premiére dont l'existence est nécessaire pour
celle des différentielles successives.
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