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SUR DIVERSES DÉFINITIONS
DE LA DIFFÈRENTIABILITË

par Maurice Fréchet

INTRODUCTION

L'exposé qui suit a un but purement didactique.
La définition usitée dans notre jeunesse, de la différentielle

d'une fonction f (x, y), supposait seulement l'existence des

dérivées partielles de / au point considéré.
Mais le recours à une rigueur croissante avait montré que

pour étendre au cas de plusieurs variables, les propriétés si utiles
de la différentielle d'une fonction d'une variable, il était nécessaire

d'introduire des hypothèses (variées avec les différents cas).
C'est alors que plusieurs essais, couronnés de succès, ont

montré qu'on pouvait rétablir ce parallélisme en donnant à la
différentielle totale une définition plus stricte.

Il est alors curieux de constater que plusieurs de ces essais,

partant de considérations totalement différentes, donnant des

définitions de la différentiabilité de formes essentiellement

différentes (comme on va pouvoir s'en assurer plus loin),
fournissent cependant des définitions équivalentes comme nous avons
pu le prouver aux pages 198 à 206. Nous énoncerons les quatre
définitions qui sont parvenues à notre connaissance. Comme
plusieurs de ces définitions semblent être assez connues et comme
la convergence de quatre d'entre elles est un cas assez rare en
mathématique, il nous a semblé que leur rappel pourrait
intéresser les lecteurs d'une revue du type de « L'Enseignement
Mathématique ».

Plusieurs des résultats exposés dans la suite ont été déjà
publiés et on trouvera à la fin de ce mémoire, la liste de leurs
références bibliographiques. Mais on appréciera peut-être de les
trouver ici rassemblés. De plus, quelques résultats, quelques
raisonnements présentés ici (en particulier la démonstration des

L'Enseignement mathém., t. X, fasc. 3-4. 12
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équivalences et celle de certaines propriétés des différentielles
secondes) sont inédits.

Le présent exposé est accessible aux étudiants de première
année.

Résultat

Nous montrerons la supériorité de la définition moderne sur
V ancienne en prouvant que: si, avec Y ancienne, il fallait ajouter
certaines hypothèses pour pouvoir établir le parallélisme des

propriétés de la différentielle en passant du cas d'une variable à

celui de plusieurs variables, ces hypothèses ne sont plus nécessaires

quand il s'agit de la définition moderne. Que d'autre part,
cette définition moderne garde un sens même quand ces
hypothèses ne sont pas toutes vérifiées.

Répartition de Vexposé

Nous diviserons notre exposé en six sections:

I. Préliminaire et historique 179

II. Définitions modernes de la différentielle d'une fonc¬

tion de plusieurs variables 183

III. Equivalence des quatre définitions de la différentielle 197

IV. Parallélisme entre le cas d'une variable et celui de

plusieurs variables pour les propriétés de la différentielle

sous sa forme moderne 206

V. Une application à la définition des fonctions mono¬

gènes 215

VI. Différentielles successives. Dérivées partielles du
second ordre 217

Généralisations

Il n'est pas inutile de faire observer que nous avons pu
généraliser la notion de différentielle, l'étendre à des fonctions
abstraites de variables abstraites [19, 20]1), et que ces définitions

i) Voir la liste bibliographique à la fin de cet exposé.
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ont donné naissance à des applications. Mais une telle étude est

en dehors du sujet du présent article.
Avant d'aborder notre sujet principal, nous ferons quelques

remarques sur d'anciennes conceptions de la différentielle.

Première Section

Préliminaires et historique

Une Variable

Considérons d'abord le cas des fonctions numériques d'une
variable numérique. La raison de l'introduction de la notion de

différentielle doit être cherchée principalement dans deux directions.

I — En désignant, suivant la commodité, par l'une ou l'autre
des notations D f (x), fx, la dérivée de / (#), le théorème des
fonctions composées s'écrit sous la forme:

Df (>' (x)) fyyx (1)

Posons

dy (x) y'xdx

et de même

df(y) (2)

la formule (1) devient:

df(y O)) fyy'xdx f'ydy (x) (3)

De sorte que la même formule (2) convient aussi bien pour le cas
où y est une variable indépendante comme dans (2) que pour
le cas où y est une fonction d'une autre variable, comme dans (3).

C'est là un premier avantage très appréciable pour les
mathématiciens.
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II — D'autre part, on peut écrire

Ay
— yx + s avec lim e 0
A* Ax^O

ou, en posant dy yx Ax,

Ay dy + sAx (4)

ou
Ay sAx s
— 1 + —-- 14——- • (5)
dy dy y (x)

Donc, on peut dire que, si yx # 0, dy est la «partie principale»
de Ay quand Ax-+ 0. C'est là un avantage particulièrement apprécié
des physiciens, qui pourront, quand Ax est petit, remplacer
approximativement Ay, qui peut être une fonction assez compliquée

de Ax, par dy yxAx, qui est une fonction linéaire de Ax.

Critique

Il faut toutefois remarquer que ce raisonnement suppose
yx 7^ 0. Ceci conduit donc à préférer à la formule (5), la formule
(4)-

La signification de l'approximation de Ay par dy n'est plus
Ay

la même, au lieu de dire que -—» 1 quand Ax-+ 0, on dira que
dy

dy ne diffère de Ay que par une quantité infiniment petite par
rapport à Ax.

Deux Variables

La formule des fonctions composées peut s'écrire:

Df(y (0, z (0) +

En multipliant par dt, on a:

df(y 0) z (0) f'ydy +fzdz

Mais on peut aussi écrire:

df(y, z) f'ydy + jldz (6)
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qui a, comme pour (2), l'avantage d'être écrite indépendamment
de la façon dont y et z dépendent de t. C'est encore ici un avantage
appréciable pour les mathématiciens.

Quand fx, fy existent et sont continues en x et y près de x0l

y0, on sait qu'on peut écrire:

Af(x, y) Ax (f'XQ + e) + Ay (fyQ + s') (7)

où s et ef tendent vers zéro quand Ax et Ay tendent simultanément

vers zéro. On peut donc écrire

Af sAx + s'Ay

df
+

f'Xt)Ax +

Dès lors, on est tenté de dire que: lorsque Ax et Ay tendent
Af

vers zéro, — -» 1, c'est-à-dire que dfest la partie principale de Af.

Ici encore, df étant linéaire en Ax et Ay est en général plus
simple que Af, avantage encore apprécié par les physiciens.

Critique

Non seulement, comme dans le cas d'une variable, le
raisonnement tombe si fXQ et fyo sont nuls, mais il tombe encore si, en

supposant, par exemple, fyo ^ 0, on fait tendre Ax et Ay vers
zéro en maintenant la relation

Ay
•^o

Des observations analogues se présenteraient dans le cas où /
dépendrait de plus de deux variables numériques. On voit donc
qu'il serait préférable de ne pas définir la différentielle de /
comme la valeur principale de son accroissement.
Autres critiques: La formule (7) peut s'écrire sous une forme
analogue à (4) :

Af df + sAx + s'Ay (7 bis)
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quand Ax et Ay tendent simultanément vers zéro. Mais pour
l'obtenir, on avait dû supposer, non seulement, comme pour (4),
l'existence des dérivées partielles au point considéré x0l y0, mais
encore l'existence et la continuité de ces dérivées au voisinage
de ce point.

De même, quand on essaie d'étendre au cas de deux variables,
les propriétés de la différentielle d'une fonction d'une variable,
on est amené* pour chacune, à faire une supposition plus stricte
que l'existence des dérivées partielles au point considéré.

Ce sont ces diverses considérations préliminaires qui ont
amené indépendamment plusieurs auteurs à formuler des

définitions de la différentiabilité plus strictes. Il se trouve que
quoique de formes très différentes elles conduisent cependant,
comme nous allons le voir — et c'est là, probablement, que se

placera surtout la nouveauté de nos résultats — à des définitions
équivalentes de la différentiabilité, et à des expressions identiques
de la différentielle. Mais chacune a son intérêt et comme
plusieurs n'ont pas attiré l'attention, il nous a paru utile de les

faire connaître.

Historique

Dans la première édition (datant de 1902) de son excellent
cours d'analyse mathématique [1], nous trouvons à la page 25,
tome I, sous la plume de Goursat, la définition suivante: « Soit
cd f (x, y, z) une fonction de trois variables indépendantes
x, y, js; on appelle différentielle totale dœ l'expression suivante:

dœ — fx dx -f fydy + f 'zdz

où dx, dy, dz, sont trois accroissements constants, d'ailleurs
arbitraires, attribués aux variables indépendantes x, y, z».

Telle était à cette époque (et antérieurement) la définition
généralement adoptée pour la différentielle d'une fonction de

plusieurs variables (voir par exemple, la première partie de notre
liste bibliographique à la fin de cet exposé). Elle supposait
implicitement, l'existence des dérivées partielles au point considéré
mais ne faisait aucune autre hypothèse.

Mais déjà en 1914, dans son cours d'analyse infinitésimale,
de la Vallée Poussin écrit à la page V du tome I de la troisième
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édition [13] «... nous avons abandonné l'ancienne définition de

la différentielle totale et adopté celle de Stolz. La supériorité de

cette définition a été mise en lumière par les travaux de M. M. S.

Pierpont, Fréchet et surtout W. H. Young. Elle est indiscutable:
les théorèmes découlant plus directement des principes, la

théorie de la differentiation des fonctions explicites et implicites
devient plus serrée et, par le fait, plus satisfaisante ». Cette

définition est d'ailleurs rappelée à la page 140 du même tome.
Les mêmes avantages s'appliquent aux autres définitions que
nous rappellerons plus loin, puisqu'elles sont équivalentes à

celle de Stolz.

Deuxième Section

Définitions modernes

de la différentielle d'une fonction de plusieurs variables

Dans ce qui suit, nous nous limiterons au domaine des fonctions

numériques de deux variables numériques, le cas de plus de

deux variables numériques pouvant être traité de la même façon.
Autrefois, la définition théorique de la différentiabilité de

/ (#, y) en un point, consistait dans l'hypothèse de l'existence
des deux dérivées partielles en ce point. Pratiquement, pour
établir un parallélisme des propriétés de la différentielle entre
le cas d'une et celui de plusieurs variables, on faisait généralement

l'hypothèse H définie ci-dessous. Les définitions modernes

(qui vont suivre) de la différentiabilité (pour plusieurs variables)
se placent entre ces deux extrêmes. Comme on le verra plus
loin, elles sont moins générales que la définition théorique
antérieure et plus générales que la définition pratique
antérieure. Le gain acquis par les définitions modernes consiste en ce

que, comme la définition pratique antérieure (voir pages 180-181,
et 207) plus étroite, elles réalisent le parallélisme cherché, ce

que ne faisait pas la définition théorique antérieure.
Considérons d'abord l'exemple A de la page 213; / (#, y) —

xy
2 2 j (avec / (o, o) o), a bien ses deux dérivées partielles à

x ~t y
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l'origine, mais n'est pas continue à l'origine, donc (page 209) n'est
pas difïérentiable au sens moderne.

Plaçons nous maintenant dans l'hypothèse suivante:
Hypothèse H: f (x, y) a ses deux dérivées partielles fx, fy au
voisinage du point (a, b) et celles-ci sont continues au point (a, b).
Alors on peut écrire

Af =/(a +h9 b+k) -f{a, b) f(a+h, b+k) - fia, b+k)
+ fia, b+k) -fia, b)

Et en appliquant le théorème des accroissements finis puisque
/ (#, &+&) et / (a, y) sont dérivables en x et y respectivement,
pour h et k assez petits, on aura:

4f — hf'x ia + 0h, b+k) + kf'y (a, b + 0'k), avec 0 < |^,| < *
>

et puisque fx et fy sont continues au point (a, b)

4/ h [f'x ia b) + e] + k [fy ia b) + ef]

avec lim 1^ 0 quand h et k tendent vers zéro.

C'est pour éliminer l'hypothèse H que l'on a commencé à

introduire une nouvelle définition de la difïérentiabilité, consistant

à partir de la formule précédente supposée vraie, sans tenir
compte de H. Le gain consiste en ce que si l'hypothèse H entraîne
la formule ci-dessus, la réciproque n'est pas vraie comme le
montre l'exemple de la page 207.

La définition de Stolz et celle de Fréchet

I — C'est en s'inspirant des considérations qui précèdent et
restent dans le domaine de l'analyse classique que Stolz [7],
Pierpont [8] et Young [9] sont parvenus indépendamment et
successivement à la définition suivante:

Une fonction / (x, y) est difïérentiable au point (a, b) si

1° elle est dérivable en ce point par rapport à x et à y,
2° on peut écrire:

Af=fia+Ax, b+Ay) - fia b) ifa +è) Ax+ifb +e') Ay (8)
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où s et s' tendent vers zéro quand Ax et Ay tendent simultanément

vers zéro.

Et s'il en est ainsi, on appelle différentielle de / (au point
(a, b) et correspondant aux accroissements Ax, Ay de x et, y),
l'expression

df faAx +fbAy (9)

(en prenant pour f, x, on a évidemment dx — Ax), on aurait de

même dy Ay, de sorte qu'on peut écrire:

df fadx + fbdy (10)

égalité qui n'est actuellement établie que lorsque x et y sont des

variables indépendantes, mais qui sera généralisée plus loin,
voir pages 194. 209.

En 1893, Stolz, après avoir donné sa définition, montre [7]
qu'elle permet immédiatement l'extension des propriétés de la
différentielle d'une fonction d'une variable. W. H. Young en
retrouvant indépendamment ces résultats en 1910, les a
complétés dans un excellent opuscule [9] consacré à ces questions1).

Il faut ajouter que Stolz a eu aussi l'idée [7] d'une définition
équivalente à sa première mais de forme légèrement différente.

Il dit que f (x, y) est différentiable au point {a, b), si l'on peut
écrire :

Af AAx + BAy + sAx + s'Ay (11)

où A, B sont indépendants de Ax, Ay et où s, s' tendent vers
zéro quand Ax et Ay tendent vers zéro.

Et alors la différentielle de / en (a, b) sera:

df AAx -h BAy

Mais il fait observer que pour Ay 0

f(a+Ax b) - f(a b)
A + 8

Ax

i) Nous avons nous-même publié un exposé analogue [101 en 1912 avec quelaues
compléments originaux reproduits ici dans la suite.
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de sorte que

1°) / (#, y) a une dérivée partielle fa au point (a, b),

2°) A est égal à cette dérivée partielle. On voit de même que
fb existe et est égal à B.

Les deux définitions de Stolz sont bien équivalentes.
Stolz a aussi donné [7], page 134) une condition suffisante

très générale pour la différentiabilité. Pour que / (x, y) soit
difïérentiable au point (a, 6), il suffit que / ait en ce point ses

deux dérivées partielles et qu'en outre, l'une de ces dérivées, par
exemple fx, existe au voisinage de (a, b) et soit continue en ce

point. Car on a:

f(a+h, b+k) — fia b) [f(fi+h, b+k) — /(a b + k)\ +

[/(a j b+k) - fia b)] hf'x(a+6h, b+k) + k [fy (a,b) + rj]

avec 0 < 9 < 1, lim rj — 0. Mais puisque fx est continue au

point, (a b) :

f'x(a+6h, b+k) -f'x(a b) e

où 8—> 0 quand h et k tendent vers zéro. D'où, comme annoncé:

fia +h b+k) - fia 6) h [f'x(a 6) + e] + k [fy(a fc) + rç]

où fy et 8 tendent vers zéro quand h et k tendent vers zéro.

Il est remarquable que, plus tard, Jordan ait eu une idée

analogue [5], mais sans en tirer l'extension de la différentiabilité.
Il considère le cas où l'on aurait la formule (11) et il en tire:

A=f'x, B=f'b (12)

Mais comment? C'est après avoir établi, comme ses prédécesseurs
(sauf Stolz) la formule (8) dans Vhypothèse H : f (x, y) a des dérivées

partielles fXJ fy au voisinage de (a, b) et celles-ci sont
continues au point (a, b). Et alors, il retranche les expressions (8)
et (11) de Af et il fait tendre Ax et Ay vers zéro de sorte que
Ay

» 0. Il retrouve bien ainsi les égalités (12), mais sous Vhypo-
Ax
thèse H. Alors que Stolz obtient ces égalités par le raisonnement
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plus simple, indiqué ci-dessus, sans faire l'hypothèse H, ni d'ailleurs

sans aucune hypothèse supplémentaire.

II — C'est par une voie tout à fait différente que nous sommes

parvenu à une définition équivalente et très analogue, mais
d'une forme distincte, plus propre à la généralisation aux fonctions
abstraites. En effet, contrairement au processus habituel qui
consiste à passer du particulier au général, c'est en revenant du

cas général des espaces abstraits au cas particulier du plan que nous
avons obtenu la définition qui va suivre. Cela tient à ce que, au

départ, nous étions habitués aux définitions usuelles à cette
époque, mais que notre but était l'étude des fonctions abstraites.
Définissant d'abord la différentielle d'une fonctionnelle [18],
puis d'une transformation d'espace abstrait dans un espace
abstrait, nous avons pu prouver, dans le cas d'une relation entre
deux espaces de Banach [19] que cette différentielle conservait
les propriétés principales de la différentielle d'une fonction
numérique d'une variable numérique. C'est seulement ensuite

(puisque notre but principal était, à cette époque, l'étude des

espaces abstraits) que nous nous sommes demandé si cette définition

était bien une généralisation complète de la différentielle
classique. Et nous nous sommes aperçu qu'il n'en était rien et
que nous obtenions la définition plus stricte suivante:

Une fonction / (x, y) est différentiable à notre sens1 au point
(a, b), si son accroissement ne diffère d'une certaine fonction
linéaire if (Ax, Ay) des accroissements Ax, Ay des variables
x, y que par un infiniment petit par rapport à la distance r du
point (a, b) au point voisin (a'+dir, b-{-Ay).

Et, dans ce cas, la différentielle de / au point (a, b) sera cette
fonction if (Ax, Ay). Autrement dit, en posant:

if (Ax Ay) AAx + BAy
on aura

Af AAx + BAy + cor (13)

lim œ 0
r-+0

et

df AAx + BAy (14)
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On peut prendre pour r — -s/dx2 +
Mais puisque

1

(I Ax I + I AyI) < ^/dx2 + < | j

on peut prendre aussi

r I Ax I + I Ay |

On peut aussi prendre pour r:
I Ax

\Ay
r — Max etc.

Dès lors, en prenant dans (13), comme Stolz, Ay 0, on voit que
/ (x, y) est dérivable en x au point (a, b) et que A — fa. De même

/ (x, y) est dérivable en y au point (a, b) et Ton a B fb et par
suite :

dfa faAx+fbAy •

Finalement on voit qu;une fonction / (#, y) difïérentiable à notre
sens Test aussi an sens de Stolz et avec la même différentielle.

Comme dans la formule (13), si Ton écrit

on a

d'où

co

sAx + s'Ay

Ax Ay
e h s' —

r r

cor

£ I e I + | s'

lim co — 0,
r—>0

on voit que réciproquement, toute fonction difïérentiable au
sens de Stolz l'est aussi à notre sens, avec la même différentielle.
C'est parce que ces deux définitions sont très semblables que nous
n'avons pas reporté plus loin leur comparaison.

Mais notre expression (13) se prête mieux aux généralisations.
Car, ayant observé qu'on peut adopter plusieurs expressions

pour r, sans changer la définition, ces expressions conduisent au
contraire, chacune à une définition différente, dans le cas des

espaces fonctionnels.
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Définition géométrique de la différentielle

Pour les fonctions d'une variable, il y a équivalence entre
l'existence de la dérivée de f (x) pour x a et l'existence d'une

tangente (non parallèle à Oy) à la courbe y f (x) au point
x — a.

Mais pour les fonctions de deux variables l'équivalence n'est

plus totaie. Elle a bien lieu partiellement; car, il est bien exact

que si la surface S : z f (x, y) a un plan tangent au point
(a, &, c), c f(a,b) et si f(xyy) a des dérivées partielles au

point (a, b), alors l'équation du plan tangent est:

Z _c (X-a)f'a+(Y-b)fb. (15)

En effet, la courbe intersection de S et du plan y — b, ayant pour
équation: z — f (x, b) a alors une tangente au point d'abscisse a,
qui est:

Z — c — fb(a b) (X — a)

Et de même on a la tangente: Z — c — fb(Y — b) au point y — b

à la courbe intersection de S avec le plan X a.
Dès lors, le plan tangent à S au point (a, b, c), devant

contenir ces deux tangentes, aura pour équation, l'équation (15).
Mais autrefois, on considérait comme allant de soi que:

si une fonction f(x, y) avait ses deux dérivées partielles fa (a, b),
fb (a, b) au point (a, 6), alors: 1° la surface S: z f (x, y) avait
un plan tangent au point (a, b) et 2° l'équation de ce plan
tangent était Z — c fa (Z — a) -f fe (Y — b).

Nous allons montrer qu'une telle affirmation est fausse en
donnant un exemple du contraire.

Définition dé un plan tangent

A cet effet, précisons d'abord que nous entendons par plan
tangent à S au point (a, b, c) un plan qui soit le lieu des tangentes
aux courbes situées sur S et passant par ce point (s'entendant
de celles de ces courbes qui ont effectivement une tangente en
ce point).



- 190 —

Une condition nécessaire pour qu'il en soit ainsi, c'est qu'il
existe un plan P passant par le point considéré Q et tel
d'abord qu'il contienne toutes les tangentes en Q aux courbes
tracées sur passant par Q et qui ont effectivement une tangente
en Q. Mais cette condition, t/, n'est pas suffisante.

S'il existait dans ce plan P une droite D passant par Q qui
ne soit tangente à aucune courbe située sur S et passant par Q,

alors D n'appartiendrait pas au lieu des tangentes précisées plus
haut, ce lieu ne serait qu'une partie de P.

Dès lors, pour qu'un plan P soit tangent à S au point Q, il
faut et il suffit que deux conditions soient réalisées, la condition

U ci-dessus et la condition V suivante: toute droite D
située dans P et passant par Q doit être tangente en Q, à au
moins une courbe située sur S et passant par Q. Voici maintenant

l'exemple annoncé à la page 189.

Exemple

xy
Prenons pour exemple, le cas où / (#, y) pour

x2-\-y2 # 0 V* + y

On a

m

donc | / | 0 avec x2jry2. Alors, en prenant / (0, 0) 0 la fonction

/ (x, y) sera partout continue.

On a
^ ^^ 0, donc / (x, y) a une dérivée par-

x — 0

tielle en x à l'origine 0 et celle-ci est nulle; de même fy (0, 0)
existe et est nulle.

Si donc la surface a un plan tangent à l'origine, alors

d'après ce qui précède, ce plan aura pour équation

Z =/;(0,0)X +/;(0,0)7,
c'est-à-dire Z 0

Dans la même hypothèse, la droite D du plan tangent située
dans le plan X — Y et qui, par suite passe par 0, devrait être
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tangente à une courbe C de S passant par 0. Soit M un point de C

de coordonnées #, y, et 2 / (x, y), distinct de 0. Les cosinus

directeurs de OM sont:

x y z
y T /—= 5 2

/c'/c'^'°U + ^ + Z '

et ils devraient tendre vers les cosinus directeurs de D, c'est-à-dire :

1 1

7^'°'
1

Dès lors, puisque x/k -/-+ 0, et même — —^ 0, alors

V z
- -» 1 et > 0 Or
v v

z
_ J ± y/x ^ ± 1

+ _J_

*
~ 7^7 ~

+
" V7T1 " ~ V2

et non vers zéro. Ainsi, 5 n'a pas un véritable plan tangent au

point 0: il existe au moins une surface S représentée par l'équation

z / (x, y) où / (x, y) est continue partout et a en un point
particulier x 0, y 0, deux dérivées partielles /'x(0, 0),
fy(0, 0) sans que cette surface ait un plan tangent au point
considéré. Ainsi Vancienne condition pour Vexistence du plan
tangent n'est pas assez stricte.

Définition géométrique de la différentielle

Pour rétablir l'analogie avec le cas des fonctions d'une
variable (page 180)e t avecn otre première définition (page 187) de

la difîérentiabilité d'une fonction de deux variables, nous dirons
[10, page 438, 439] qu'une fonction / (#, y) est différentiable au
point (a, b) si la surface S: z / (x, y) a un plan tangent T, non
parallèle à Oz, au point de coordonnées a, br et c / (a, b). Et
alors, l'équation de ce plan étant nécessairement de la forme

Z - c A(X-a) +B(Y-b),
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on appellera différentielle de / au point (a, b) l'expression

df A Aa -f B Ab (où Aa — x — a Ab y — b)

Existence du plan tangent

Pour savoir si la fonction f (x, y) est difïérentiable au point
(a, è), tout revient à chercher à quelle condition la surface
z — f (x, y) a un plan tangent non parallèle à Oz, au point
(a, b, c).

Il faudra qu'il passe au point (a, è, c), un plan non parallèle à

Oz vérifiant les conditions U et V de la page 190. Mais on devra
tenir compte explicitement de deux conditions liées implicitement
à la notion de surface représentable par la fonction z f (#, y).
On supposera:

1°) que f (x, y) qui n'est pas nécessairement définie partout,
soit définie au voisinage du point Q considéré, c'est-à-dire à

l'intérieur d'un cercle de rayon r positif (x — a)2 -f (y — b)2 < r2;
2°) que / (#, y) soit continue au point (a, b). Par exemple, on

ne pourra pas prendre a b 0 et / sfx3y3, qui n'est définie
dans aucun voisinage complet de (0, 0) et qui a pourtant deux
dérivées partielles (qui sont nulles) à l'origine.

Par exemple encore, on ne pourra prendre pour / (x, y) une
fonction définie partout sauf sur x o, y > 0 et nulle ailleurs,

bien qu'elle vérifie les conditions V et U de la page 190.

Définition du plan tangent

Soit M un point quelconque d'une surface S et Q un point
fixe de S. Soit enfin <p l'angle aigu de la corde QM avec un plan
P. Si S a un plan tangent en Q et si celui-ci est P ; si d'autre
part, il passe par Q et s'il y a une courbe située sur 5, ayant une
tangente T en Q, telle que T soit située sur P, alors l'angle aigu,
W de QM et de T tend vers zéro quand M-+ Q. Or, quand (p est

l'angle de QM avec le plan P, on a 0 < ç < W. Donc quand
M-+ Q, T tendant vers zéro, il en sera de même de (p.

Réciproquement, sans savoir si P est tangent à S en Ç?

supposons que (p (QM^P) - 0 avec QM, quelle que soit la
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façon dont M ->(? sur S. Alors, soit, A, une droite du plan P

passant par Q. Le plan R perpendiculaire à P et passant par A

coupe S suivant une courbe C passant par Q. Soit M un point
de C, distinct de Q. L'angle <p de MQ avec P est aussi l'angle de

MQ avec A. Quand M-+Q, q>-+0 par hypothèse. C'est dire que la
corde MQ de C tend vers A quand Q, autrement dit que la
condition V est vérifiée par P. Soit, d'autre part, T, une courbe

sur S passant par Q et ayant une tangente S en Q. Si M est un
point de T alors l'angle cp de QM avec P tend vers zéro avec QM
et il en est de même de l'angle W de QM avec <5.

Prenons sur QM, dans la direction de Q vers M, un point M'
tel que QM' 1. Puisque la droite portant QM tend vers <5, M'
va tendre vers un point TV de <5 tel que QN — 1. Or puisque
q>-+ 0, la distance de M' au plan P tend vers zéro. Et comme
cette distance tend vers la distance constante de N au plan P,
cette dernière tend vers zéro, c'est-à-dire que <5 est dans le plan
P et par suite que P vérifie aussi la condition U.

Dans le raisonnement précédent, nous avons supposé que le

plan R coupe effectivement S suivant une courbe C. C'est que
nous avons admis implicitement que P vérifie une condition
analogue à 1°, de la page 192, soit W: si l'on projette S sur P, il y
a au moins un voisinage de Q qui appartient entièrement à cette
projection.

D'autre part, quand nous supposons que le point M de S
tend vers Q, nous admettons implicitement une condition T
analogue à la condition 2° de la page 192.

En résumé, on peut définir un plan tangent de la manière
suivante :

Un plan P passant par un point Q d'une surface S est, par
définition, tangent à S en Q si,

1°) M étant un point quelconque de S, distinct de Q, Tangle
aigu de M avec P tend vers zéro quand M tend vers Q,

2°) La condition W ci-dessus est satisfaite.

Définitions opérationnelle par Hadamard

Aux pages 2 et 3 du tome I de son cours d'analyse [16],
M. Hadamard rappelle en 1927, brièvement mais nettement,

L'Enseignement mathém., t. X, fasc. 3-4. 13
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deux définitions de la différentielle. La seconde est celle où Stolz
et moi-même considérons la différentielle de f (x, y) comme une
expression approchée, mais plus simple, de Y accroissement de /.

La première procède d'une idée tout à fait différente qu'il
avait déjà introduite en 1923 [11].

Pour Hadamard, l'introduction de la différentielle a pour
effet d'exprimer plus simplement les théorèmes des fonctions de

fonctions et des fonctions composées.
Au moyen de la notion de dérivée, on écrit, sous certaines

conditions :

Df(x (t), y (0) fa + fb (16)

En introduisant la notion de différentielle, on écrit, sous les

mêmes conditions:

d/O, y) f'adx +fbdy (17)

que x et y soient des variables indépendantes ou qu'elles soient
des fonctions d'une variable indépendante. C'est là un avantage
précieux qui non seulement abrège à la fois l'écriture de la
formule, mais aussi rend les démonstrations plus simples, plus
intuitives et plus générales.

Cette utilité de la notion de différentielle étant admise,
notons que, dans notre jeunesse, la formule (16) était démontrée
dans l'hypothèse H où la fonction / (x, y) admettait des dérivées

partielles, non seulement au point (a, &), mais en son voisinage
et où, en outre, ces dérivées partielles étaient continues en ce

point. (On suppose, bien entendu, que pour la valeur de t
considérée, x (t) et y (t) sont dérivables et respectivement égaux à a

et b). Or la formule (16) peut rester exacte sans que toutes les

hypothèses de H soient vérifiées.
Par exemple, il suffit de prendre:

/(0,0) 0 et/(x, y)(x2 + y2) sin pour x2 + # 0

Vx + y

Cette fonction est continue partout et a, à l'origine,
deux dérivées partielles. Mais celles-ci ne sont pas continues à

l'origine. Comme elles sont nulles à l'origine, la formule (16)

exprime que / (x (t) y (t) (où x (o) y (o) 0) a une dérivée
à l'origine et que celle-ci est nulle, ce qui a lieu. Ainsi pour cette
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fonction, la formule (16) est exacte sans que les dérivées
partielles de / soient continues à F origine.

Inversement, il ne suffit pas que la formule (16) ait un sens —
c'est-à-dire que x (t) et y (t) étant dérivables et égaux respectivement

à a, à pour la valeur de t considérée, la fonction f (x, y) ait
ses deux dérivées partielles pour x a, y — b. Par exemple

prenons x(t) y (t) — t, a b x(o) .y (o) 0 et, comme
à la page 190,

f(x y)
Xy

pour x2 + y2 ^ 0 et /(0,0) 0

V*2 + F2

On voit comme plus haut que fa(0, O) fh(0, O) — O. On

devrait donc avoir

M"
/2'fit, t)

donc fit, t) n'est même pas dérivable pour t 0, contrairement
à (17). Ainsi pour conserver (16), il ne suffit pas que cette formule
ait un sens et il n'est pas nécessaire non plus que les hypothèses
restrictives, faites plus haut, sur / au voisinage de (a, b) soient
vérifiées. Il en est de même pour la formule (17).

Pour être sûr que cette dernière formule soit valable,
Hadamard — admettant la définition usuel]e de la différentielle
d'une fonction d'une variable — dit, tout simplement que la
fonction / (x, y) est différentiable au point (a, b) si la formule (16)
est axacte. C'est à dire:

1°) Si / (x, y) admet ses deux dérivées partielles au point (a, b) ;

2°) Si, quelles que soient les fonctions x (t), y (t) dérivables et
respectivement égales à a et à pour la valeur de t considérée, la
fonction / (x (t), y (t) est dérivable pour cette même valeur de
t et si la dérivée est égale au second membre de (16) pour la
valeur de t considérée.

S'il en est ainsi, la différentielle de f sera donnée par définition,

par la formule :

df (x y) fadx +fbdy (19)

pour la valeur de t considérée.
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Remarque: Comme Stolz l'avait fait, (voir p. 186), on pourrait se

dispenser d'introduire dans la définition précédente, l'hypothèse
de l'existence des dérivées partielles de f (x, y) au point (a, b).

On supprimerait 1° et 2°, on dirait que pour la valeur de t
considérée, la dérivée de / (x (t), y (t) est de la forme:

Axt + Byt

En effet, en appliquant cette définition au cas où

x (t) t et y (t) — 6, on devrait avoir Df (£, b) A ;

c'est dire que / (x, y) a une dérivée partielle en x au point (a, b)

et que celle-ci est égale à A. On verrait de même que B — f'y (a, b)

et l'on verrait ainsi que la seconde forme de la définition de Hada-
mard est équivalente à la première.

Définition analogique par Severi

Severi [12] a réussi à donner la définition moderne de la
difîérentiabilité la plus analogue à la définition antérieure. Au
lieu de supposer seulement l'existence de dérivées partielles au

point considéré, il exige l'existence en ce point de dérivées
partielles restreintes (plus tard, Ostrowski a été conduit à la même
définition à une nuance près dans la définition équivalente, des

dérivées partielles restreintes).
Nous dirons, avec Severi, que f (x, y) a au point (a, 6), une

dérivée partielle restreinte par rapport à x si le rapport:

/(*, y) "fia > y)

tend vers une limite finie et déterminée A, quand (x — a)2 + (y — b)2

y-btend vers zéro de façon que reste bornée x). S'il en est
x — a

ainsi, cela aura lieu, en particulier, quand y 6, c'est-à-dire que

En réalité, Severi suppose que ce rapport a une limite, mais qu'il reste borné
suffit.
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/(* > fr) - /( > q„,„d

Autrement dit, quand / (x, y) a au point (a, b) une dérivée

partielle restreinte, par rapport à a, elle a aussi une dérivée
partielle au sens ordinaire par rapport k a et la première est égale
à la seconde fa.

On dira de même que / (x, y) a au point (a, b) une dérivée

partielle restreinte par rapport à ?/, si le rapport

/(», y)
(20)

y - b

x —a

y-b
reste bornée. Et alors f (x, y) a une dérivée partielle fb au sens

ordinaire au point (a, b) et le rapport (20) tend vers fb.

Ceci étant, nous dirons que / (x, y) est différentiable au point
(a, b) au sens de Severi, si en ce point, / (x, y) a ses deux dérivées

partielles restreintes par rapport k x et y. Et alors la différentielle
de / (x, y) au point (a, b) au sens de Severi sera encore

une limite quand (x — a)2 + (y — b) 2-> 0 de sorte que

df =faAx +fbAy (19)

Troisième Section

Equivalence des quatre définitions de la différentielle

Les quatre définitions précédentes de la différentielle d'une
fonction / (#, y) en un point (a, b) quoique différentes dans la
forme présentent, cependant dans cette même forme deux traits
communs.

D'une part, ou bien elles présupposent l'existence des
dérivées partielles de / (x, y) au point (a, 6), ou bien cette
existence résulte-t-elle directement de la définition.
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D'autre part, toutes ces définitions conduisent à la même
expression de la différentielle:

4f(x, y) faAx + fbAy

Les différences entre les quatre définitions de la différentielle se

réduisent donc aux différences entre les définitions de la diffé-
rentiabilité. C'est donc celles-ci qu'il nous suffira de comparer
pour conclure qu'elles sont équivalentes.

Equivalence des quatre définitions
de la différentiabilité

I — Comparons, par exemple, la définition de Stolz, à celle
de Hadamard. Si, au point (a, 6), / (#, y) est différentiable au
sens de Stolz, on aura:

4f (fa + s)Ax + (fb + s') Ay

avec lim \ V 0
A x2 + Ay2-^-0

Donc si x (i9, y (t) sont des fonctions de t dérivables et
respectivement égales à a et b pour t a, on aura

f(x(t),y(tj) -f(ab) Ay
j-=(/«+£)—+(/&+£)—•At At At

Ax Ay
Quand At^> 0, — et — tendent vers x' (a), y'(a), donc Ax et Ay

At A t
tendent vers zéro et par suite aussi s et &'. Dès lors, le second
membre tend vers

faX't+fby'tl(21)

donc aussi le premier.
Par suite, / (x (£), y (t) est dérivable pour t — a et sa dérivée

est égale à (21). C'est à dire que toute fonction différentiable au
sens de Stolz l'est aussi au sens d'Hadamard.
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La démonstration de la réciproque est moins simple. Nous

considérons une fonction f (x, y) difîérentiable au sens d'Hada-
mard au point (a, b). C'est-à-dire qu'on peut écrire:

df(x(t), y (0) - Ax't +Byt (22)

pour la valeur de t considérée, soit t oc. Il suffit de montrer
qu'on a

R f(x y) -f{a b) - AAx - BAy
lim - a lim a 0 (22bis)
r->0 r r-*0 r

en posant :

r — «JAx2 + Ay2

A cet effet, nous allons montrer qu'on arrive à une contradic-

tion si l'on suppose que - ne tend pas vers zéro et que par con-
r

séquent, il existe une suite de points (xm yn) correspondant

aux valeurs Anx, Any, Rn de Ax, Ay, r, R telles que
Rn
— reste supérieur à un nombre positif fixe k, quand rn-> 0.
^n

Pour cela, admettons pour commencer qu'on puisse définir
deux fonctions x (t), y (t) dérivables pour t oc et prenant les
valeurs respectives a, b, xn, yn, pour t a et tn rn-fa. On aura

K y(tn))— f(x(a),y(a)) - AAnx - BAny

Rn R
— est donc la valeur pour t tn de — dans (22bis) quand on
rn r

y remplace t par tn. Et l'on a (23). Or, on a

(22) qui peut s'écrire dans le cas actuel:

> k et la relation

f(x (0 y (0) -f(x (a), y (a)) Ax (t) Ay (t)
—- -v lim A 1- B

t — a, At At
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ou

R
lim — 0

r
d'où en particulier

Klim — =0 avec
rn -> 0 Li

>/c>0. (24)

Les deux relations (24) fournissent la contradiction
annoncée. Reste à démontrer l'existence des fonctions x (£),

y (t) décrites plus haut. On a fixé d'avance les valeurs de x (t),

y (t) pour les valeurs t tn r„+a. Mais pour que les tn soient
distincts, on pourra ne retenir de la suite des rn( ^0) qui tendent
vers zéro qu'une suite de valeurs distinctes et même décroissantes.

On a évidemment:

x (t„) - x (a)
< 1

y (0 - y (a)
< 1

ce qui peut s'écrire

x (tn) - x (a)

tn - oc

< 1
y (tn) - y (a)

tn ~ oc

< 1 (25)

On peut donc extraire de la nouvelle suite des tn une suite
telle que les deux premiers membres de (25) tendent vers deux
limites finies respectives, X et y.

A cette troisième suite de valeurs de tn correspondra une suite
de points y{tn)) avec tn—tn+1> 0. Pour définir
complètement x(t)1 y (t), nous les prendrons fonctions linéaires de

£, de tn à tn + 1 égales respectivement à x (tn), y (tn) et à x (L + i)?

y (tn+1) pour t — tn et tn+ v La courbe lieu du point x (£), y (t) sera

une ligne polygonale tendant vers le point (a, b). Alors

x(t) — x(a)

sera une fonction homographique de t de tn à tn +1 dont les valeurs
resteront comprises entre ses valeurs pour t tn et t tn + 1. Or
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celles-ci tendent vers X quand tn-+ a. Il en résulte que x (t) est

bien dérivable pour t a; et de même pour y (t).
Ainsi toute fonction f (x, y) difïérentiable au point (a, b) au

sens d'Hadamard est aussi difïérentiable en ce point au sens de

Stolz et au mien.
En résumé, les définitions de la difïérentiabilité au sens de

Stolz et au sens dpHadamard sont équivalentes.

II—Comparons notre définition géométrique (page 191) de la
difïérentiabilité avec notre première définition.

1°) Supposons d'abord que / (x, y) soit difïérentiable au
point (a, b) au sens de notre première définition. Alors on aura
une relation dé la forme :

Af AAx + BAy + er (26)

avec r Ax2 + Ay2 et lim s 0
r -> o

Condition U—LSi r est une courbe, lieu des points x(t), y (t),
2 (t), qui pour t a, passe par le point (a, £, c / (a, b)) de la
surface S : z / {x, y) et qui a une tangente en ce point, on aura,
d'après (26)

Az — AAx — BAy r

Quand At-+ 0, le premier membre tend vers

Z« - Ax'a - By'a • (28)

Dans le second: —
+ Ay

^ + / t2 + ,2
At At ~ V y

Donc le second membre de (27) tend vers zéro avec At et par
suite

za Axa + By'a

Donc la tangente en Q à r appartient au plan P:

Z - c A(X — a) + B(Y-b)
fixe et non parallèle à Oz.
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Condition V : Inversement considérons une droite T passant par
Q et contenue dans le plan P. Soient Z, m, n ses coefficients
directeurs. On aura (26) Al-\-Bm — n avec Z2+^2^0. Il existe dans
le plan xoy une infinité de courbes passant par le point (a, b) et

tangentes à la projection Tr de T sur xoy. Choisissons-en une,
soit C. Il y aura donc, pour cette courbe, une représentation
paramétrique où ses coordonnées £ (t), rj (t) sont égales à a et b

pour t ß et sont dérivables pour t ß avec + rj'ß =4 0 et

h=11(29)
l m

Soit maintenant la courbe r de la surface S qui se projette
suivant la courbe C sur x Oy. Sa cote correspondant à t, sera

S(t) /(£ (t),

et en vertu de (24), on aura

AS(t) AAÇ(t) + BArj (t) P
f- 0) — (30)

At At At

p I(aç(0V | (An(t)\2 rou —=+„/( —:— I + I —:— I et lim co 0

Quand At -» 0

jt^ ± + '

P
Finalement co > 0. Donc d'après (30), S (t) est dérivable pourAt
t ß et sa dérivée est

S'P=AÇ'P-Vßn'ß (31)

et puisque «J + v[p ^ 0, les trois dérivées %p r\ß S'ß ne

sont pas toutes nulles et la courbe r a bien une tangente au
d? Y)

point t ß. Puisque — — on aura d'après (29) et (30)
l m
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£' ri S'Il JUL ='JL : il y a bien une courbe sur S passant par Q
1 m n

et tangente en Q à la droite T donnée située dans P. Dès lors les

conditions U et V étant remplies par P, S a bien au point Çvun
plan tangent: le plan P, non parallèle à Oz: la fonction f (x, y)

est bien difïérentiable au sens de notre définition géométrique.

2°) Inversement, supposons que / (#, y) soit difïérentiable au

point (a, b) k notre sens géométrique. C'est-à-dire que la surface S

ait au point un plan tangent non parallèle à Oz, soit le plan P:

Z - c A(X-a) + B(Y-b)

Nous voulons démontrer que / (x, y) est au point Q difïérentiable

à notre premier sens, et même, plus précisément que

Mm „ „

avec r y/Ax2 + Ay2

En effet, dans le cas contraire, il existerait une borne k> 0

et une suite de valeurs hm kn de Ax et Ay telle que en posant
Rn AJ - Ahn - Bkn / 2 ,2 Rn

où rn y/h2n + k2 reste > k > 0
r y' n ' n

quand rn - 0.

Soient yn, vn les cosinus directeurs de la droite Q Qn,

(Qn ayant pour coordonnées b + kn, c+h f (aJrhnl b-\-'kn).
On pourra toujours extraire de la suite g des points de

coordonnées Xni yni vn (qui restent sur une sphère de rayon 1) une
suite g' qui converge vers un point de coordonnées 1, v,
(avec À2jry2jrv2 1). Remplaçons la suite des Qn par la suite
correspondant à g'. Ceci étant, considérons une courbe C
du plan de xy passant par les projections des points Çl5 Q2,
Qn Q. Sur x oy, ce sera par exemple la ligne polygonale dont
les sommets sont ces projections. Ce sera la projection, C, d'une
courbe r de la surface S. Pour celle-ci /i„, tendant vers
X, y, v, la droite Q Qn tend vers la droite ô passant par Q et de
cosinus directeur X, y, v. Si nous supposons, en outre (condition
T), que / (x, y) est continu au point Q, on voit que le point Qn
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tend vers Q et que la corde Q Qn de F a une limite ô. Dès lors la
courbe r a une tangente au point Q et par hypothèse cette
tangente est dans le plan P. On a donc

v AX + By (32)

iv/r • K K ln
Mais — — — Cn

^n ftn

avec Cn — ^Jh2 + k2 + (Anf)2

D'où
Rn Cn Cn

— (yn-AXH-Bpù
Y Y Y' n ' n ' n

où d'après (32), yn 0 Or

Cn Xn + fin + VB

x2 + y2 -Jx2 + r

qu on a supposé que

Si 22+jU2 était nul, on aurait d'après (32) v — 0 alors que
C JR

22+/x2+v2 1. Donc — a une limite finie et—- -> o, alors
rn rn

Rn
— > k > 0. Il y a bien contradiction.
rn

De 1°, p. 201 et 2°, p. 203, il résulte que notre définition
géométrique de la difïérentiabilité est équivalente à notre première
définition, comme à celle de Stolz.

III— Comparons enfin la définition de Severi à celle de Stolz.

1°) Si / (x, y) est difïérentiable au point (a, b) au sens de

Stolz, on a

/O, y) b) (x-a)f'a +(y~b)fb + s(x-a) + s1(y-b)

avec lim | | 0 quand (x — a)2 + (y — b)2 0 Alors

/(* y) -f{a y) [f(x y) -f(a b)~] - [f(a y)-f(a b)~]

(x-a) (f'a + s) + (sl - s2) (y - b)

où e, e1 et s2 -> 0 avec (x — a)2 + (y — b)2
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Dono

f(x y) - fia y)
~fa

Quand (x — a) 2+(y — b) 2-> 0 de sorte que

< y-b
8 +

x—a

y -b\
X — a\

reste borné, le

second membre tend vers zéro, donc aussi le premier. Par suite

/ (x, y) a, au point (a, b) une dérivée partielle au sens de Severi,

par rapport à x. On verrait qu'il en est de même par rapport à y.
Ainsi / (x, y) est différentiable au point (a, b) au sens de Severi.
Les différentielles de / (x, y) au point (a, b) sont évidemment les

mêmes aux deux sens.

2°) Si / (x, y) est différentiable au point (a, b) au sens de

Severi, écrivons

~/0, y) -/O > y)~

+

/(*> y) -f(a, b)

70, y) -/O, b)

(x — a)

y-b (y-b) [Q + œ] (x-a)+ [/b' + m'] (y-b)

y-b
x — a

reste < 1,Alors, quand (x — a)2 + (y-b)2-+ 0 de sorte que

on voit que co et co' tendront vers zéro. De même on peut écrire

/(*> y) -f(a, b) (f*+0)(x-a) + (fb + 0') (y - b)

0
avec lim<j^/j> — 0 quand (x — a)2 -f- (y — b)2 -> 0 de sorte que

x —a
< 1.

y-b
Dès lors on pourra écrire

/(*> ^ -/(«. b) (/a +£)(x—a) +(/fc + fi')(y-6)

avec lim 0 quand (x - a)2 + (y -b)2 0, quelle que soit

la valeur du rapport entre x-a et y-b. Autrement dit / (x, y)
est aussi différentiable au sens de Stolz.
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Finalement, les différentiabilités aux sens de Stolz et de

Severi sont équivalentes. Et les différentielles correspondantes
sont égales.

Conclusion

Finalement, nous avons démontré que les définitions de la
différentielle aux quatre sens :

d'approximation de Stolz et Fréchet,
géométrique de Fréchet,
opérationnel d'Hadamard,
analogique de Severi,

quoique de formes absolument différentes, sont équivalentes.

Pour abréger, nous donnerons le nom générique de définition
de la différentielle au sens moderne à chacune des définitions
ci-dessus.

Quatrième Section

Parallélisme entre le cas d'une variable et celui de

plusieurs variables pour les propriétés de la différentielle
sous sa forme moderne.

Nous rappellerons d'abord les propriétés de la différentielle
dans les deux cas d'une ou de plusieurs variables en renvoyant le

lecteur pour les démonstrations aux traités récents qui utilisent
les définitions modernes (nous indiquerons, comme exemple, les

pages correspondantes de la troisième édition, 1914, du tome I du

cours d'Analyse Infinitésimale [13] de la Vallée-Poussin, et du
tome I, 1942 du cours d'analyse mathématique de Valiron [14].
Et nous montrerons par des exemples pour plusieurs de ces.

propriétés qu'elles disparaissent quand on emploie l'ancienne
définition de la différentielle d'une fonction de plusieurs variables,
c'est-à-dire quand on suppose seulement l'existence des dérivées

partielles au point considéré.
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Les traités d'analyse parus, avant—disons—1910, établissaient

le parallélisme des propriétés de la différentielle en un
point, du cas d'une variable au cas de plusieurs variables en

ajoutant à l'hypothèse de l'existence des dérivées partielles en
ce point, des hypothèses variées qui, toutes, comprenaient
l'hypothèse de l'existence d'au moins l'une des dérivées partielles
au voisinage du point considéré. Nous allons montrer que ces

démonstrations reposaient sur des hypothèses effectivement plus
strictes que l'existence d'une différentielle au sens moderne. Pour
cela il nous suffira de donner un exemple d'une fonction / (#, y)
qui, en un point déterminé, est différentiable au sens moderne
sans avoir ses deux dérivées partielles au voisinage de ce point.
Exemple: On doit à Weierstrass le premier exemple d'une fonction

cp (x) qui est partout continue et qui n'est nulle part déri-
vable. Depuis lors, on en a cité d'autres exemples. Soit 9 (x) l'une
d'elles. Puisque 9 (x) est continue partout, elle est bornée au
voisinage de x 0.

Ceci étant, considérons la fonction

f(x, y) p29(p) avec p Qx2 + y2

On a

f(x, o) -f(o, o) x26 | x |

7— x0(\x\) •

Quand x-+ 0 0 \ x\) reste borné, donc x 6 | x \ )-> 0. Par suite,
/ (x, y) possède une dérivée partielle par rapport à x, (qui est
nulle) à l'origine, de même par rapport à y On a donc:

f(Ax, Ay) - f(o o) - f'x(o o)Ax - f'y(o 0) Ay

yjAx2 + Ay2

^jAx2 + Ay2 9 {sJAx2 + Ay2)

Ce rapport tend donc vers zéro quand Ax2+Ay2-> 0: / (x, y)
est différentiable au sens de Stolz à l'origine.

Mais en aucun autre point (a, b) voisin de l'origine, / (x, y)
n'a ses deux dérivées partielles. Car si a2+b2 / 0, on a par
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exemple, a#0. Alors:

f(ab)

1

[(a+h)2+b2]

[(a + h)2+ b2]6 (p + Ap)-(a2 + b2) (p)j (33)

0(p +Ap)- 0(p)l f[(a + h.)2 — (a2 + b)H H
0(9) '

h

Quand o le dernier terme tend vers 2a 9(p), avec

p2 a2+

L'avant-dernier terme est égal à

(7 7 \2 ,7,2-,
2fl + h "I HP + Ap) - 9(p)

[(« + /,) +6] -w-p + ^-r-pJ _
l'accolade tend vers a ^Ja2-\-b2 ^ 0 quand h 0. Dans le second

rapport

Ap (n + h)2 4- b2 — à2 + b2

tend vers zéro quand 0. Et par suite ce second rapport n'a
pas une limite finie et déterminée quand A-* 0. Il en est donc de

f (a+h, b)-f (a, b)
meme de - c est-a-dire que pour a # 0, / (£, ?/)

n'a pas de dérivée partielle en De même pour b # 0, / (#, y)
n'a pas de dérivées partielles en y au point (a, 6).

Ainsi / (#, j/) est difïérentiable au sens de Stolz à l'origine,
mais n'a, en aucun autre point voisin, deux dérivées partielles.

Après cet exemple, nous montrerons que les principales
propriétés de la différentielle subsistent quand on passe du cas
d'une variable au cas de plusieurs variables, lorsqu'il s'agit de

la différentielle au sens moderne. Puis nous montrerons, par des

exemples, qu'il n'en était pas de même si la différentiabilité en

un point signifiait seulement l'existence en ce point des deux
dérivées partielles.
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Quelques propriétés des fonctions différentiables

I — Différentielle au sens moderne en un point

Fonctions d'une seule
variable Fonctions de plusieurs variables

Une fonction / (x) est
continue en tout point où elle
est difïérentiable

Si / (x) est difïérentiable
pour x a et si cp (t) est
difïérentiable pour t — a,
avec cp (a) a, alors F (t)

/ (9 W) es^ difïérentiable

pour t a et dF (t)
— fa d<P M Pour * a.

En tout point où une fonction est
difïérentiable elle est continue. C'est
une conséquence immédiate de la
formule de Stolz (8).

B

Si f (x, y) est difïérentiable au point
(a, b) et si (p (t, u1 v), Y (t, w, v) sont
différentiables au point (a, ß, y) avec

(a? ß-, y) — a\ T (a, ß, y) 6, alors
F (u, v, w)/ (<p (11, p, «>), T (11, p, «<))

est difïérentiable au point (a, ß, y) et
dF (w, ç, w) fxdx + fydy.
C'est ce qu'exprime la définition
d'Hadamard.

Soit une fonction F (x, 2/, 2) qui au
point (a, b, c) soit nulle et difïérentiable
avec F'c (a, b, c) ^ 0 et qui soit continue
au voisinage de ce point. Alors il
existe au moins une fonction cp (x, 2/)

difïérentiable au point (a, &) égale en ce
point à c et qui vérifie l'équation

F (U V, z) 0

au voisinage du point (a, &) pour 2

2/)- Quand F'z existe et est ^ 0 au
voisinage du point (a, b, c) la fonction
cp (x, y) est la seule qui vérifie les mêmes
conditions.
Si de plus F est difïérentiable au
voisinage de (a, b, c), la solution cp (a?, 2/)

L'Enseignement mathém., t. X, fasc. 3-4. 14
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Fonctions d'une seule
variable Fonctions de plusieurs variables

sera aussi difïérentiable au voisinage de
(a,b, c).

Voir, pour les démonstrations, de la
Vallée-Poussin [13, page 168].

C' (généralisation de G)

Soient n fonctions Fl9 Fn des n
variables Z1? ln et de m autres
variables x, y,
Supposons qu'au point {C1 Cn, oc,

ß les fonctions F soient nulles, dif-
férentiables et que le déterminant

Alors il existe au moins un système de
fonctions L-l (x, y (x, y se
réduisant à 11... ln pour x a, y =* ß,...
et tel que

Fj (L1... Ln, x,y0 pour
j1, n.

Tout système tel que L1 Ln est
difïérentiable au point (a, /?, Enfin

si les dérivées partielles qui figurent
dans le déterminant J sont continues
au point (C1 Cn, oc, ß, J ne
s'annule pas au voisinage de ce point
et le système des solutions L1 Ln est
unique.
Pour la démonstration, voir de la
Vallée-Poussin (I, page 169).
Le théorème précédent subsiste si l'on
remplace deux fois le mot difïérentiable

par continue et si l'on suppose
que les dérivées partielles de Fj par
rapport aux k existent non seulement
au point (C1 a, mais en son
voisinage et sont continues en ce point.
Pour la démonstration, voir Valiron [14,
page 246]
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Fonctions d'une seule
variable

Fonctions de plusieurs variables

D

Si / (x) est difïérentiable au

point a, la courbe y
une tangente, non parallèle
à Oy, au point {a,b f (a)).

Si / (x, y) est difïérentiable au point
(a, b)y la surface z f {x, y) a un plan
tangent non parallèle à 02, au point
(a, 6, c / (a, ô)).
(Gela résulte de l'équivalence démontrée

plus haut de notre définition
géométrique avec la définition de Stolz).

Différentielle au sens moderne au voisinage d'un point.

Fonctions d'une seule
variable

Fonctions de plusieurs variables

Si / (x) est continue sur le

segment a ^ x ^ b et si elle

est difïérentiable à l'intérieur

de ce segment, on peut
écrire f (b)—/ (a) (b—a)

/' (a-\-Qh) avec 0 < 0 < 1,
h b— a.

Soit f(x, a) une fonction in-
tégrable en x dans l'intervalle

a ^ x ^ b pour a! ^
a ^ a", qui est difïérentiable

en a pour ce même

Si / (x, y) est continue sur le rectangle

R :a^x^a'] b ^y ^b'
et si elle est difïérentiable à l'intérieur
de i?, on peut écrire:

/(a+ft, ß+k)-f(oc, j8)~
Ä/a(a+ 0/i, /? + 0/c) +

kfß (oc —i— 0 h, ß -}- 0/c)

avec 0 < 0 < 1, quand les deux points
(a, ß), (a+ /z, jß+/c) sont intérieurs à i?.
Pour le démontrer il suffit d'appliquer
la formule (p (1) — (p (o) cpr (0), o < 0

<1 à la fonction (p (t) f ht,
ß+/tf) et à calculer cp'(t) au moyen du
théorème B ci-dessus.

Soit / (x, a, ß) une fonction intégrable
en x dans l'intervalle I : a^x^b quand
le point (a, ß) est sur le rectangle R :

a' ^ a ^ a", ß ß". Si / (#, a, /?)

est difïérentiable en a, ß dans R pour



Fonctions d'une seule
variable Fonctions de plusieurs variables

ensemble de valeurs de x et
de a.
Alors si f'a (x, a) est continue

sur l'ensemble F, l'intégrale
b

F (a) J / (#, a) dx est
a

difîérentiable pour
a'< a <a" et on a

b

F* 1 /« (z> «) •

£ dans / et si sa différentielle est
continue pour £ dans / et (a, /?) dans

b

alors F (a, ß) — \ f a, ß) dx est
a

difîérentiable dans jR et sa différentielle

est
b

dF (a, ß) J df dx
a

b

J [/« (z, a, ß) Aa + /j a, ß) Aß] dx.
a

En effet
b

AF J[/ (#, a-Ma, ß+Aß)—f (x, a,/?)]ch
a

J [Ja/â (x, a + 0/loc, ß + 0J0) +
/Iß/^ x,a + 0,da, ß + 0/lß)] <£r.

D'où
b

AF— J dfdx
£1

b

J Aa[f'a (x, a -j- QAoc, ß + 0zl/?) —
a

b

f'x(x,a,ß)]dx+ J a+ QAa,ß +
a

b

QAß) — f'ß (x, a, ß)] dx Ja J Acte +
a

b

Aß\Bdx.
a

Et comme on a supposé df continu,
A et B sont deux fonctions de x qui
convergent uniformément vers zéro
quand zla, Aß tendent vers zéro. Il en
est donc de même de

b b

e J Adx, 7) j Bdx.



Fonctions d'une seule
variable

Fonctions de plusieurs variables

On aura donc

b

AF J dfdx -f- zAoc -f- ß
a

où s, 7} tendent vers zéro avec \Acc\ +
|A/?|. C'est-à-dire que F (a, ß) est dif-
férentiable (pour (a, ß) sur R) et qu'on
a

b b

dF (a, ß) J dfdx J [Accf'a {x, oc, ß) +
a a

Aßfß (a?, a, ß)] dx.

Remarque: On peut démontrer directement, très facilement, les

égalités suivantes qui nous seront utiles par la suite, ou les déduire du
théorème ci-dessus sur les fonctions composées.

Si y et z sont difïérentiables :

d(y-\-z) dy-\-dz\ d(zy) zdy-^-ydz.

Critiques de Vancienne définition de la différentielle

Nous allons montrer que le parallélisme qui vient d'être
illustré par les théorèmes A, B, F, n'existe plus quand on
définit, comme autrefois, la difîérentiabilité de f (#, y) au point
(a, b) seulement par l'existence des dérivées partielles /ra, fb.
Nous en avons déjà cité un exemple page 190.

Rappelons que si f (x) a une différentielle pour ^ a, la
courbe y / (x) a au point où x a une tangente non parallèle
à oy. Or, à la même page, nous avons montré qu'une fonction
/ (x, y) peut être continue partout et avoir en un point Q deux
dérivées partielles sans avoir un plan tangent en ce point.
Donnons d'autres exemples.

A. Si / (x) a une différentielle pour x — a, elle est continue
xxi

pour x a. Mais considérons la fonction / (x, y) — pourx2+y2
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x2-\-y2 7^ o et / (o, o) 0. Elle a ses deux dérivées partielles
pour x — 0, y 0. Pourtant elle n'est pas continue en ce point,
puisque / (x, x) \ pour x # o et / (o, o) 0.

B. Si / (#) a une différentielle pour x — o et si £ <p (£) est égal
à a pour t a et est différentiable pour î a, alors / (a (t) est

différentiable pour t — a. Mais posons / (#, y) — xy | log
(#2+2/2) pour ^2+2/2 # o et / (o, ö) 0. Cette fonction est
continue et a deux dérivées partielles, d'ailleurs nulles, pour x y
— 0. Pourtant si Ton prend x t, y t, F (t) f (1f, £) |£| log2£2

pour t ^ 0, F (0) 0 et F (t) n'est pas différentiable pour £ — 0.

C. Considérons la fonction F (x, y, z). Supposons que l'équation
F (x, y, z) 0 ait une solution z cp (x, y) continue au point
(a, 6). Supposons en outre que F (x, y, 2) ait ses trois dérivées

partielles au point (a, b, c (p (a, 6)) et que (a, &, c) soit ^ 0.

Il s'agit de montrer que le théorème C cesse d'être valable si la
définition de la différentiabilité d'une fonction en un certain
point consiste seulement en la condition que la fonction ait des

dérivées partielles en ce point. Nous allons donc montrer qu'il
existe au moins une fonction F (x, y, z) satisfaisant aux conditions

ci-dessus et pour laquelle aucune solution cp (x, y) ne possède
ses dérivées partielles au point (a, b) ou bien est telle que, si elle

possède en ce point deux dérivées partielles, celles-ci ne vérifient
pas les relations:

F'a + F'Ccp'a 0 F\ +F'cq>'b 0.

A cet effet, appelons cp (x) une fonction nulle, continue,
mais non dérivable pour x 0, non nulle pour x ^ 0 et telle

x
soit bornée pour | x | borné. Par exemple, on peutque

cp (x)

prendre cp (x) y/1 x |.
Introduisons maintenant une fonction a (x, y) bornée au

voisinage de (0, 0), différente de zéro à l'origine: a (o, 0) k > 0

1*1
et telle que oc(x 0) — —— pour x ^ 0. Par exemple,

(p(x)

«(*, y) VM + Iy I (34)

pour I x I + I y I # 0 et oc (0 0) k.
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Enfin, prenons pour F (x,y,z)la fonction:

F(x, y, z) <x(x, y)[z-(p(x)].

La fonction a (x, y) est bornée au voisinage de F origine, ou. aura
donc F(x, y, (p(x)) 0 et en particulier F (0 o o) o

Cette fonction i*7 (#, y, z) est difïérentiable à l'ancien sens théorique

à l'origine. C'est-à-dire que ses trois dérivées partielles
existent à l'origine. En effet:

F (x o 0) — F (o o o) a (x, 0) [0 — (x)] _
X I x I

Donc F'x(o, 0, 0) existe et est égal à — 1

F 0, y 0) - F (0 0 0) a(0 y) [0-0]
F F

Donc F'y (0, 0, 0) existe et est nul.
Enfin

F (0 0 z) - F (0 0 0) a (0 0) (z - 0)
k.

z z

Donc F'z(o, 0, 0) existe et est égal à /c ^ 0. Toutes les conditions
du théorème C sont vérifiées au sens ancien de la différentiabilité.
A ce même sens, puisque la solution q> (x) n'est pas dérivable, la
conclusion du théorème (que cp (x) est difïérentiable à l'origine)
n'est pas exacte.

Cinquième Section

Une application à la définition des fonctions monogènes

On dit avec Emile Borel qu'une fonction complexe / (z) de la
variable complexe z x.+ iy est monogène au point c a+ib,
si cette fonction est dérivable en ce point. C'est-à-dire que

—- f'c + e avec lim s 0.
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En posant /(z) P(x y) + iQ(x, y), cherchons à quelles
conditions doivent satisfaire P et Q pour que / (z) soit monogène

pour z — c. Conformément à l'usage en vigueur à son époque,
Goursat [1] résoud le problème aux pages 6 à 9 de l'édition de

1905 du tome II de son cours d'analyse, en prouvant d'abord

que les fonctions P (x, y), Q (x, y) doivent avoir des dérivées
partielles au point considéré et alors en supposant (hypothèses H)

1°) qu'elles en ont encore au voisinage de ce point,
2°) que ces dérivées partielles sont continues au point

considéré.

Nous allons voir que la définition moderne de la différentielle
permet de réduire considérablement cette hypothèse H et même
d'obtenir une condition nécessaire et suffisante.

En effet, si / (z) est monogène au point c, on peut écrire

Af (f'c + e)Az ou AP + iAQ (A + iB + e' +is")(Ax +iAy)

d'où
AP — (A + s')Ax — (.B + s")Ay

et

AQ (B + e")Ax +(A + e')Ay

avec lim \ t =0.
I« J

D'après la définition donnée plus haut, page 185, il en résulte

que P et Q sont différentiables au sens moderne au point (a,b)
et que leurs différentielles

dP P'adx + P'bdy

dQ Q'adx + Q'bdy

sont telles que P'a A, P'b — B, Q'a - B, Q'b A.

Ceci exige que l'on ait :

P'a ÔV, P\ Q'a- (35)

Réciproquement si 1°) P et Q sont différentiables au point (a, 6),

ce qui implique qu'elles ont chacune leurs deux dérivées partielles
au point (a, b), 2°) ces dérivées partielles vérifient les condi-
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tions (35) dites de Cauchy-Riemann, alors la fonction / (z) sera

monogène pour z — 0, car on aura:

Af AP + IAQ (A + &')Ax - (.B + e")Ay + i[(B + e±)Ax

+ (A £2) ^y~\ d* (*>' 4~ isi) Ax 4- — s" + is2 Ay

Af
— — A + iB + rj
Jz

avec

_ +(-*+",)^i s le.,+|B1|+,e.|+l62l
\Az\

et par suite, lim rj0, c'est-à-dire que / )est dérivable pour
Àz -> 0

Z — C •

En résumé : Pour que la fonction / (z) P (x, y) + iQ (x, y)
soit monogène pour z — c a ib, il faut et il suffit:

1°) que P et Q soient difïérentiables au sens moderne au

point (a, b),

2°) que, ces fonctions ayant alors nécessairement des dérivées

partielles au point (a, ô), celles-ci vérifient les conditions
de Cauchy-Riemann

P'a Q\> n - -c..
Remarque : Nous avons établi ce théorème en 1919 [17]. Quelques
années plus tard, Mrs. Chisholm Young Ta indépendamment
redécouvert et Ta appelé « Théorème fondamental de la théorie
des fonctions complexes ».

Sixième Section

Différentielles successives.

Dérivées partielles du second ordre.

Avant de nous occuper des différentielles, disons quelques
mots des dérivées partielles. On a longtemps admis implicitement

que si fxy et f'yx existent, elles sont égales. Pourtant leurs
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conditions d'existence sont différentes. Pour que fxy existe au

point (a, b), il faut, et il suffit que f'x (x1 y) existe pour y voisiu
de b et ait une dérivée en y pour y — 6, Pour que f'yx existe an
point (a, b), les conditions s'obtiennent en permutant x avec yf
a avec à, dans les conditions précédentes.

C'est ce qui a permis à H. A. Schwarz de donner l'exemple
de la fonction:

y x
f (x, y) x2 arctg —y2 arctg -, quand x2 + y2 ± 0, et f(o o) 0

s y

pour laquelle

fxy (o, o) 1 et f"yx (o o) - 1

Plus tard, Peano a donné, en 1884, l'exemple suivant:

x2 - y2
/(x y) xy — r pour x2 + y2 i- 0 f(o o) =0

x2 + y2

pour lequel on a encore:

fxy (o o) 1 fyX (o o) - 1

Mais le même H. A. Schwarz a donné ensuite des conditions très
générales sous lesquelles /a"& /ba. Sous une forme simple, on
peut dire: il suffit que f'xy et fyx existent au voisinage du point
(a, b) et soient continues en ce point.

Thomae et Peano prouvent ensuite des conditions suffisantes
très analogues, mais un peu plus générales : si fxy existe au
voisinage de (a, b) et est continu en ce point, alors, fba existe
et est égal à f"ah.

Enfin, en 1877, Dini obtient une condition encore très générale,

mais un peu différente: pour que f"ah fba, il suffît que

1°) fxy existe au voisinage de (a, b) et ait une limite quand
le point (x, y) tend vers le point (a, b) et alors il montre que
f'ab existe nécessairement et est égal à cette limite, c'est-à-dire

que f 'xy est continu au point a, à;

2°) f'y (x, b) a une dérivée en x pour x a.

Nous renverrons pour les démonstrations de ces différentes

propositions, aux pages 147-5 de l'ouvrage de Stolz [7].
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Nous voyons que ces théorèmes ne supposent pas l'existence
de f"a2, ni de

Nous allons voir que W. H. Young a pu établir la même

égalité dans un cas différent en utilisant la notion de différentielle.

Différentielle seconde : Par définition, une fonction / (^, y)
admet une différentielle seconde au point (a, b) si

1°) / (£, y) admet une différentielle du premier ordre df au

voisinage du point (a, b) ;

2°) si pour Ax, Ay, constants, cette différentielle f'x Ax +
f'y Ay admet elle-même une différentielle (correspondant à des

accroissements Äx, A'y, en général, nouveaux).

Et alors cette dernière différentielle, nécessairement de la
forme

d'df (d'f'x)Ax +(d'fy) Ay

{fl2A'x+fabA,y)Ax + (fbaAfx+f'b2Afy) Ay

sera appelée la différentielle seconde de f (x, y) au point (a, b).
Une simplification: on vient de voir qu'en supposant l'existence
des dérivées partielles du premier et du second ordre de / (x, y)
au voisinage du point (a, b) et la continuité en ce point de f"xy et
fyx, on démontrait autrefois (1) que f'âb — fba. W. H. Young [9]
a montré que cette égalité subsiste quand on suppose seulement
que / (x, y) est différentiable au second ordre au point (a, b). Soit

ô f (a +h ,b+h) —f(a+h,b) —f(a,b+h) + f(a b).

Posons :

<5(0. =f(a+h b+ht) —f(a+h b) -f(a b+ht) + f(a b).

On a ô (o) 0, ô (1) ô. Or, d'après le théorème sur les fonctions

composées ô (t) est dérivable et

<5'(0 h[ffy(a+hw b+ht) b+ht)]
En appliquant le théorème de Rolle,

ô S (1) — ô (o) ô' (0) avec 0 < 9 < 1

Donc 8 h[fy(a+h b+h0)-fy(a b+h6)]
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Et puisque fy (x, y) est difïérentiable au point (a, è),

^ (fL + s) + 6(f;2+e') - 0(f»+e")

ou

S

~ fba + CD (36)

avec

\œ \ =\s + e(s'-s") \ ^ \e \ + \8'\+ |a"|

où e, e', g" tendent vers zéro avec h et où, par suite, il en est de
même de co.

Or, on obtiendrait de façon analogue

S

T2 fab + u>' où lim cd' 0 (37)
" /! -» o

Dès lors en retranchant (36) de (37),

O =fba fab + OO-Cö'

et quand h -» 0

fia fab- (38)

Remarque: L'égalité (38) est prouvée par H. A. Schwarz en

supposant que fxy et fyx existent au voisinage de (a, b) et sont
continues en ce point et par W. H. Young, en supposant que
/ a une différentielle seconde au point (a, b).

Ces deux conditions coïncident quand elles sont vérifiées à

la fois, mais Schwarz ne suppose pas l'existence de f "a2 et de

/j2, même au point (a, b) et W. H. Young ne suppose pas que
fxy fyx existent près de (a, b) et y sont continues.

Suivant les cas, on pourra utiliser l'une ou l'autre des
conditions de ces deux auteurs.

De l'égalité (38), on tire

d'df AxA'xfa2 + (AxA'y+Ax'Ay)f"ab + AyA'yf"^
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et en particulier

d2f Ax2f'a, + 2AxAyfttb +

Grâce à cette simplification (38), on peut, connaissant seulement
d2f, reformer d'df ; tandis que sans la relation (38), on ne pourrait
déduire de d2f une expression unique de d'df.

Différence seconde : Nous avons pu obtenir en 1912 [10, page
439] une formule qui montre qu'on pourrait calculer directement
d'df sans connaître df. Nous allons en rappeler ici la démonstration

avec une petite variante.
La différence première de / étant de la forme:

Af \j/(x, y) f(x+h ,y+k) -f(x y),

la différence seconde de / sera de la forme

A'Af ij/(a+h', b+k') - b)

ou

A'Af [f(a + h+h', b+k + k')-f(a+h< 9 b+k')] -
[f(a+h9 b+k) —f(a b)]

En posant:

£(0 + ù +/cf + /c')—/(ù+ù*, fe+feO] —

Lf(a+h', b+k')-f (a, b)],
on a

5(o) o, 5(l)=J'J/
d'où

d'd/ 5(1)-5(o)
et puisque / (x, y) est difîérentiable près de (a, 6), alors si h et A

sont assez petits, en vertu du théorème des fonctions composées,
5 (*) sera dérivable, et l'on aura d'après le théorème de Rolle

A'Af=Ç'(0) avec O<0<1,
d'où

A'Af [ hf'x(a+hO+h',b+kö+ k') + b+kQ + k')] -
[hf'x(a+hO, )]
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Et si f'x,j'ysont difïérentiables pour

fx(a +Ax b+Ay) - f'Ja b) Ax [/^ + e] + Ay \_f"ab + e'~\

avec lim | ^ 0 quand | Ax|+ | |-* 0 et de même pour f'y.

D'où

A'Aj h {(h6 +h') (/a2 + s) + (kO + k') (fab + s') — h6 (/fl2 + £1) —

ke fab + s,)} + k {(hO + h') (fl + e2) + (fee + feO (fh2 + s'2) -
hO(fba + 83) - k0(f"b2 + e'3)} hh'f"a2 + hk'f"ab -f kh'fba + kk'f"h2 + r\

où e, a', sl, e'j 82 8r2, 83, e'3 tendent vers zéro avec | h | + | k |

+ | h' l + l k' I et où

I rj I < I h 11(hO + h')8+ (kO + k')e' — hOex — kOe\ | -f | k | | (hO + h')s2 +

(ke + k')s2 - he3 - kee \ <2(|fe| + |fc|)(|ft| + \h'\ + |fe| +
I k' I) 181 + I &' I + 1811 + I 8i I + 182 I + 182 I + 183 I + I e3 I) r (r -f r') X

où r — I h I + I k I r' | h' | + | k' | et où X -> 0 quand r + r' -> 0

On peut donc écrire

A'Af — d'df r} r(r + r') fi

où | /x | < A, donc /*-» 0 avec r+r'
Mais de même en permutant A, k avec h', kf on a

A'Af — d'df=r'{r + r')fi' où \i' 0 avec r + r'.

Or r (r + r') rr' ^1 + et r' (r + r') rr' ^1 + L'un des

r r
rapports — — est <1, on peut donc ecnre:

r' r

A'Af — d'df
rr

< 2(|p| + Ip'l) •

D'où finalement

A'Af d'df+ vr(39)
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où lim v 0 quand r + r' -» 0, et où y est une distance entre (a, b)
et (a+h, b+k), r' une distance entre (a, b) et (a+h/, b+k'). De

même qu'à la page 188, on peut prendre r — ^/ji^+k2 our max
| h | et | k | aussi bien que r | h | + | k |. Et de même pour

r' exprimé en fonction de h' et k!. On notera l'analogie de la
formule (39), avec la formule de Stolz pour le premier ordre:

Af — df ocr où lim a 0
r-> o

Si dans (39) on suppose h' h,k' + on aura

A2j — d2f pr2 avec lim p — 0 (40)
r o

En écrivant:
h — r cos (p k r sin ç

on aura:
A fcos2 (p fa2 + 2 sin (p cos cpfab -f sin2 (pf[2 lim (41)

ou

A2f f(a+2h, b+2k) - 2f(a+h, b+k) + f(a b)

et

r2 — h2 + k2

En particulier pour k 0, pour h 0 et pour k A, on obtient :

_c_,_f<.a + 2l,,b)-2f(a + h.b)+/(a.b) ^h o h

f v_f(a,b+2k)-2f{a,b+k)+f_A» iim 72 (43)
k —> o &

r" f(a+2h,b + 2h) — 2f(a + h b + h) + f(a b)
Jab — nm - — (44)

h -> o n

On a d'ailleurs obtenu plus haut, une autre expression

f"b lim^+^? ^+/i) —f(a, b+h) -/{a+h, b)+ f(a, b)

h -> o H2
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On voit ainsi qu'au moyen de la formule (39) ou des formules
(42), (43), (44), on peut calculer d2f sans connaître la différentielle
première df.
Unicité. 1°) Restant encore dans le cas où f(x7y) a une

différentielle seconde au point (a, 6), supposons qu'il existe trois
nombres fixes, L, M7 N7 tels que:

A2/ LAx2 + IMAxAy -f NAy2 + r2ß (45)

avec lim ß 0
r o

Alors en comparant avec (40), on a

(L -/J2) Ax2 +2(M-fé'b) AxAy+ (N Ay2 r2(ß-p)

On pourra encore poser

Ax r cos (pyA y r sin cp, d'où

(L -/o2>cos2 cp +2(M-£h) sin cpcos cp+ -f'hi) sin2 (p,=(ß-p).
Pour sin <p constamment nul, on voit qu'en faisant tendre r vers
zéro, on aura, puisque ß — p -» 0 avec r, L — /J2. De même pour
cos cp constamment nul, N /6'2.

En tenant compte de ces deux relations, il restera pour
sin2 cp 1, M -fâb ß -p,d'oùM fé'b.

Ainsi, sous la seule hypothèse que / a une différentielle
seconde au point (a, b), la formule (45) n'est valable que pour une
seule forme quadratique en Ax, Ay, soit LAx2 +•••?& savoir

d2f f'^Ax2 + 2 fä+ f'^Ay2

2°) On peut obtenir, moins simplement, il est vrai, un résultat
plus général en partant de la formule ci-dessous, mais en
supposant seulement que / a une différentielle première au voisinage
(a, b) sans supposer d'avance l'existence d'une différentielle
seconde au point (a, b). Ainsi on suppose que:

A'A f s
J(a+h+h\ b+k + k')—f(a+h, b+k)—f(a+h\ b+k')+f(a,b)

Lhh' + Mh'k + Mhk' +Nkk' + vrr', (46)

où v o avec r + r'.
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Ceci étant, on aura en prenant — dans (46),

[f(a+h+h' ,b+k)-f(a+h, b+k)]- [/(a +h' -/(a b)]

+ Mh'k + pr\h'\

où, pour tout e > 0, on peut prendre tel que | pour
\h\ + \h' \ + \k\ <n

t]
En particulier prenons \ h'\ < -, on aura

f(a+h + h',b+k)-f(a+h,b+k) /(a -/(a, fr)
_

h' h'

rj
où |y| < e, pour r \h\ + \k\ < -

Quand h! o, les deux premiers termes du premier membre ont
chacun une limite, (si r\ fixe est assez petit) et on a

f'x(a+h b+k) (a b) Lh + Mk + vr (47)

*7 • •

avec encore | v | < s pour r [ h | + | k | < - où rj a. été choisi

convenablement après que e a été choisi arbitrairement. C'est-

à-dire, lim v o et par suite: 1°) que j'x est difïérentiable au
r -> o

point (a, b) et: 2°) que L ja"2, M flb. De la même manière,
on trouverait que fy est difïérentiable au point (a, b) et que
M' — fba, N /ja. Donc / a une différentielle seconde au point
(a, b). Ainsi fäb et

Lhh' + M (hk' -f h'k) -f Nkk' /J2 + f'ah (hk' + h'k) -1- /&2 hk'.

Ainsi, quand on a la formule (46), il suffit de supposer que /
est difïérentiable voisinage du point (a, è) pour être assuré

1°) que f a une différentielle seconde au point (a, b),
2°) qu'il n'y a qu'une expression Lhh' vérifiant la formule

(46),

3°) que cette expression est identique à la différentielle seconde
de / au point (a, b).

L'Enseignement mathém.. t. X, fase. 3-4. 15
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On notera même qu'on n'a pas eu à se servir de la différentia-
bilité de /, mais seulement de l'existence au voisinage de (a, b)
des deux dérivées partielles fx(x1 y), fy (x, y) de /.

Formule de Taylor :

Supposons que / (x, y) ait une différentielle seconde au point
a, b. D'après la formule (39), on a en particulier, en y remplaçant
h

9 k h', k', par h 0 0 k

f(a+h9 b+k) -f(a+h, b) -/(a, fe+fc) +/(a ù) Afc(/a6+fi)
avec lim s 0.

1*1+1*1-0

Or on a les formules classiques de Taylor à une variable

h2
f(a+h9 b) f(a b) + hfa (a 9 b) + — ifa* (a 6) + 2si)

/c2

/(a b+k) f{a 9 b) + kfb{a 9 b) + — (/t"2(a b) + 2e2)

avec lim 8i 0, lim s2 0. De ces trois relations, on tire
h ->• o k -> o

f(a +h9 b +k) —fia, b) + hfa(a b) + kfb{a b) + i\h2f^(a,b) +

2hkffb(a b) + k2f^ia bfj + effi2 + ehk + s2k2 (48)

où le dernier membre peut se mettre sous la forme co (h2 + k2)
où cd —> o avec h2 -\- k2. (48) est la forme de Taylor limitée au
second ordre, pour deux variables.

Différentielle d'ordre quelconque

Nous dirons qu'une fonction / (x, y) est différentiable à l'ordre
n au point (arb) si:

1°) elle est différentiable au voisinage de ce point jusqu'à
l'ordre n — 1,

2°) si sa différentielle d'ordre n — 1 est différentiable au point
(a, b) pour toutes valeurs fixées des accroissements de x et y.
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Nous avons défini plus haut les différentielles du premier et du

second ordre. La définition précédente permet donc de définir
successivement de façon précise les différentielles d'ordre 3, 4

Ici encore, on retrouve les formes anciennes des différentielles
d'ordre n et en particulier la formule symbolique ancienne:

d d Y
dnf (x y) l — dx +— dyj f

où l'on doit remplacer les puissances de ô comme des indices de

dérivation.
Ce qui distinguera les définitions anciennes des définitions

modernes, ce sera encore, pour les différentielles d'ordre n comme

pour les différentielles premières, les conditions de différentia-
bilité et les propriétés des différentielles.

Pour ces dernières, nous renverrons encore aux cours d'analyse

les plus récents, [14, 15, 16], qui établissent bien le parallélisme

des propriétés des différentielles d'ordre supérieur entre
]e cas d'une et le cas de plusieurs variables. Il n'est pas utile de

citer des exemples où l'ancienne définition de la différentiabilité
d'ordre supérieur (réduite à l'hypothèse de l'existence des

dérivées partielles correspondantes) ne suffit pas à établir ce

parallélisme, puisque déjà ce résultat a été obtenu plus tôt pour
la différentielle première dont l'existence est nécessaire pour
celle des différentielles successives.
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