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VERALLGEMEINERUNGEN
EINIGER FUNKTIONALGLEICHUNGEN

von Octavian Em. GHEORGHIU

(Regu le 10 novembre 1962)

1. In der 1959 erschienenen Arbeit der Herrn St. GorAs
und A. ScuiNzieL [1] wird die allgemeine stetige Losung unter-
sucht u. es werden die messbaren und unmessbaren Losungen
fir die Funktionalgleichung

FIx+3f@] = £ £, (1)
augefiihrt.

Eine Verallgemeinerung dieses Funktionalgleichung wére
folgende

fIx+yg ()] = h(x)-k(y) 2

wobei z, y, z€ Rund f, g, h, k: R—>R
(d.h., dass die Argumente und die Funktionswerte reel sind und
die Losung im Bereiche der reelen eineindeutigen Funktionen
gegeben wird.)

Um die Funktionalgleichung (2) in eine Funktionalgleichung
von einer einzigen iiberzufiithren, geht man wie folgt vor:

Man nimmt in (2) y = 0 und fir £(0) = 4 # 0, aus dem
die Gleichung :

f(x) = Ah(x), (3)
hervorgeht.
Man setzt (3) in (2) u. erhilt
Ah[x+yg (x)] = h(x)- k(y) . (4)

Nimmt man in (4) =0 uw. fir A(0) = a« # 0, g(0) =a # 0
aus dem die Gleichung

Ah(ay) = ak(y), (5)
hervorgeht. |
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Setzt man (5) in (4) erhdlt man die Gleichung

oh[x+yg (x)] = h(x)-h(ay). (6)
 Man nimmt die Funktionen
h(x) = oH(x), ¢g(x) =aG(x), (7)

u. fithrt durch z =ay eine neue Verédnderliche ein. Die Gleichung
(6) wird dadurch zu

H[x+zG(x)] = H(x) - H(z). (8)

Da die Funktion h (z) im Bereiche R eineindeutig ist, folgt aus (7),
dass auch die Funktion H (z) eineindeutig ist, und aus (8) folgt
nach der symetrischen Form der linken Seite

H[x+zG(x)] = H[z+xG(2)],
mithin folgt
Xx+zG(x) = z+xG(2). (9)

Fir die Funktion G (x) erhélt man den allgemeinen Ausdruck
G(x) = 1+4Ax, (10)

wobei A eine beliebige reelle Konstante ist.

Zieht man (10) in (8) in Betracht, so erhalt man die von
H. R. TuieLmann (Siehe J. Aczir [2], S. 75) gefundene Funk-
tionalgleichung

H(x+z+Axz) = H(x) - H(2), (11)

deren allgemeine Lésung nach Herrn J. AcziL

H(x) = (1+ix)", - (12)
1st.
Die Funktionalgleichung (2) hat zur allgemeinen Lésung
die Funktionen

[ f(x) = Ao (14 ix)™
g(x) = a(l+Aix)
h(x) = a(14+Ax)"

L k(x) = A1 +aix)™.

wobel a, «, A, m und A beliebige reelle Konstanten sind.

(13)

"
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Es gibt noch folgende weitere Losungen:

f(x) = 0, g (x) = beliebig, & () = beliebig, k(z) = 0
f(x) = 0, g () = beliebig A (z) = 0, k () = beliebig -
f(x) = B-C, g (x) = beliebig, h(x) =B, k(x) =C
f (x) = beliebig, g (x) = 0, k (x) = beliebig, k (z) = C
f(x) = Aae™, g (x) = C, h(2) = ae™, k (x) = A"

die beliebige Konstanten und nebenbei auch beliebige Funk-
tionen enthalten.

9. In der Literatur sind viele Funktionalgleichungen welche
die Sinus-Funktion kennzeichnen, gegeben. In diesem Abschnitt

behandeln wir eine Verallgemeinerung der Funktionalgleichung
[2, S. 114]

fG+y)fx=p) =) =) (15)

Diese Gleichung wurde von D. CarmicHAEL (1909), von
H. WiLson (1919), von Herrn L. Vieroris (1960), von Herrn
J. AczgL (1961), [2], der eine reichhaltige Bibliographie angibt,
von Herrn S. Kurera (1960) untersucht und von Herrn E.
Vincze (1961) welcher sie im komplexen Bereicht untersucht
hat [3].

Die Funktionalgleichung kennzeichnet im reellen Bereich die
trigonometrische, hyperbolische u. die duale Sinusfunktion in
gleichem Mass und stellt folglich eine Synthese aller Funk-
tionalgleichungen dar, welche jede fiir sich die drei Sinusfunk-
tionen kennzeichnen.

Die Matrixen Funktionalgleichung

[A(xﬂf) B(x+y)]_[A(x—y) B (x—y)] _[A(X) BT
AB(x+y) Ax+y)| [MB(x—y) A(x—y)| |AB(x) A(x)

A(y) B(y)]Z, (16)
| AB(y) A(y)

gibt in einem fir 4 = —1; 0; 41 alle drei Typen wieder.
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Sie ist gleichwertig mit dem System

fA(x+)) A(x—y)+1B(x+y) B(x—y) = A*(x) +1B*(x) - A*(y) — AB*())

lAG+Y)Bx—)+B(x+y) A(x—y) = 24(x) B(x)—24 (y) B(y), (17

wobei A (x) und B (z) reelle messbare Funktionen von einer
Veranderlichen sind.

Die allgemeine Losung fir der Fall 4 = —1, erhdlt man,
in dem (17) durch Einfihrung der komplexen Funktion mit
einer reelen Verdnderlichen |

L(x) = A(x)+iB(x), 2= -1, (18)

aus eine einzige Gleichung reduziert wird.
Daraus folgt die Funktionalgleichung

Lix+y) "Lix—y) = L*()—L*(),  (19)

und die allgemeine Losung fir A () und B (z) ist
A(x) = ax (A(K) = a sin axchfx—b cos axshfx
B(x) = bx |B(x) = a cos axshfx+b sin axchfx

A(x) = ashax cos fx —bchax sin fx
B (x) = achax sin fpx +bshax cos fx,

(20)

wobei a, b, a, B beliebige reelle Konstante sind.
Die allgemeine Losung im Falle 4 = 0 wird durch Ein-
fiihrung der Dual-Funktion von einer Verédnderlichen

M (x) = A(x)+eB(x), e =0, (21)
aus gefunden.
Dann folgt fiir M (x) die Gleichung (15) und die allgemeine
messbare Losung fir 4 (z) u. B (z) ist

A(x) = ax A(x) = a sin ax
{B(x) = bx {B(x) = b sin ax+afx cos ax
A(x) = ashax
{B (x) = bshax +afxchax ,

»(22)

wobei a, b, o, f beliebige reelle Konstanten sind.
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Geht man dhnlich fiir den Fall 1 = -1 vor, so erhélt man die
allgemeine messbare Lisung

B(x) = bx [B(x) = a sin ax—b sin fx
A(x) = ashax + bshfx
B (x) = ashax —bshfx,

I

{A(x) = ax {A(x) = a sin ox+b sin fx

(23)

wobel a, b, o, f beliebige reelle Konstanten sind.
Die Matrixen-Gleichung (16) kann auch verallgemeinert
werden. Dies wird jedoch der Inhalt einer anderen Arbeit sein.
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