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SUR LE NOMBRE DE POINTS A COORDONNEES
ENTIERES D’UNE REGION CONVEXE PLANE
OU SPATIALE

par E. EBERHART

(Regu le 15 féorier 1963)

A Tintersection de la géométrie des corps convexes et de
Iarithmétique des réseaux entiers se place la recherche, aussi
intéressante que difficile, du nombre de points entiers des
domaines convexes. On connait, par exemple, les beaux travaux
d’Euler sur les points entiers d’un simplexe X a;X; = n,
X; = 0, de Gauss sur le nombre C, des points entiers situés dans
ou sur une circonférence de rayon r et de centre entier, de
Landau, Hardy, Littlewood et Sierpinski sur la valeur asympto-
tique de C,.

Un résultat tres général dans ce domaine a été obtenu 1l y a
une quinzaine d’années par M. Nosarzewska (Colloquium
Mathematicum, Wroclaw, I, 1948, p. 305-311): le nombre i de
points entiers intérieurs & une région plane convexe d’aire S
et de périmétre [ vérifie la double inégalité

I !
§——<j< 84+ -=+1.
7 =F 2

La démonstration repose sur un lemme délicat de H. Steinhaus
et distingue neuf sortes d’intersections de la région avec les
carrés du quadrillage. Remarquons que la borne inférieure peut
étre illusoire parce que négative. Mentionnons que dans le méme
volume (p. 1-5), H. Steinhaus démontre l'inégalité de Jarnik
| S—i]<l, relative & une courbe de Jordan fermée rectifiable
quelconque.

- Nous allons montrer de maniére trés élémentaire, que la
borne supérieure trouvée par M. Nosarzewska convient méme
pour les points entiers intérieurs & la région plane convexe ou
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située sur son bord et nous en déduirons des bornes strictes
analogues pour une région convexe de l’espace.

On s’appuiera sur le théoréme fondamental de Brunn: La
variation de 'aire ou du périmétre des sections planes paral-
leles d’un corps convexe ne présente qu’'un seul maximum (Uber
Ovale und Eiflichen. Inaug. Diss. Miinich, 1887).

On suppose connue une propriété simple des courbes con-
vexes: Une courbe fermée convexe est plus courte que toute
courbe fermée qui 'entoure. Elle résulte comme cas limite d’un
théoréme élémentaire « Un polygone convexe est plus petit qu'un
polygone qui ’enveloppe », que ’on déduit facilement de 1'iné-
galité triangulaire (voir, par exemple, A. Grevy, Géométrie
plane pour la classe de seconde, 1920, p. 34; chez Vuibert).

Les axes sont orthonormés. Un point est dit entier si ses
coordonnées le sont; un polygone ou un polyédre sont dits
entiers si leurs sommets le sont. Le polygone est supposé non
croisé et tel que son extérieur soit d’un seul tenant. Les régions
planes des deux premiers théorémes sont rapportées a des axes
de leur plan.

TueEorEME 1. — Le nombre p des points entiers périphériques
d’un polygone entier plan et le nombre | de ses points entiers
Lntérieurs ou périphériques sont liés a son aire S par

S=j-—% 1.

> (1

On sait que l'aire d’un triangle qui n’a d’autres points entiers
intérieurs ou périphériques que juste ses trois sommets est 1.
Décomposons le polygone en de tels triangles. Les nombres
f, s, ¢ des faces, des sommets et des cOtés de cette décomposition
vérifient la relation d’Euler s—c+f=1. Or f =25, s =7 et

3f = 2c—p donne ¢ =1 (3f+p) = 3S—l~—§. Donc s—cHf —

. p
S q—
] 5 1

1) Nous en avons donné une autre démonstration dans les C.R. de I’
T 241, 1955, p. 686-687. e I’Acad. des Sc.,
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THEOREME 2. — Le périmétre | d’une région plane convexe, son
atre S et le nombre j des points entiers situés d I'intérieur ou

[
sur le bord vérifient (1) j=S+ > +1.

L’égalité n’est atteinte que pour les rectangles entiers dont les
cotés sont paralléles aux axes de coordonnées.

S1j < 2 ou si les j points entiers sont alignés, I'inégalité est

triviale; écartons ces cas. Le cadre convexe O’ des j points entiers

est intérieur ou identique a la région convexe.

Soit 8" J'aire de O’ (8’ = §), I’ son périmeétre, p’ le nombre des
points entiers de son bord et j* le nombre de ses points entiers
intérieurs augmenté de p’ (j'=17). Or p’ =1 =1 (courbes
convexes dont I'une est intérieure a 'autre) car sur un c6té ¢ du
polygone O’ deux points entiers consécutifs ont une distance
égale ou supérieure & 1. En remplacant j’, p’, S’ respectivement

’

par j, I, § dans j = 8"+ —Z— + 1 (th. 1), on trouve l'inégalité

annonceée.

14

Remarque. — On peut calculer | exactement par j = §'+ % +1.

Appelons hauteur d’une région plane convexe dans la direction
OX la distance des droites d’appul perpendiculaires a cet axe.

THEOREME 3. — Sotent S U'aire d’une région plane convexe, h sa
hauteur dans la direction OX et ¢ sa plus grande corde perpendi-
culaire a cet axe. Le nombre j des points entiers situés dans la
région ou sur son bord vérifie

j=S+h+c+1.2 (2)

2) En considérant les trapézes qui ont pour bases deux c¢; consécutifs (notations

de la démonstration du th. 3), on voit que X ci < S + 95'2-—0", ce qui donne la formule
C
j = Stht DT 4y,

c1+¢Cn
2

gentes paralléles ¢ OY ont des abscisses entiéres, cette relation fournit j < nr24-2 r4-1.

On voit méme aisément que j < mr2-2r. Cette inégalité est triviale pour 2r =1

ou 2, et pour 2r < 3 on montre que S dépasse ’aire des trapézes de plus 1. Plus géné-

ralement pour une région plane convexe j < S-+h-1, si les droites d’appui paralléles

4 OY ont des abscisses entiéres et que chacune ne touche le bord qu’en un point (car
citen 0)
5 .

plus avantageuse que (2), puisque = ¢ peut étre nul. Pour un cercle dont les tan-

alors
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L’égalité n'est atteinte que pour les parallélogrammes qui ont
un coté perpendiculaire @ OX et dont toutes les cordes d’ abscisses
entiéres, paralléles a ce cdté, sont entiéres.

Considérons les cordes d’abscisses entiéres, plus éventuelle-
ment les arcs rectilignes d’abscisses entieres du contour, soit
Ciy C3 4. -.,Cy D’aprés le théoréme de Brunn leur variation en
fonction de l'abscisse ne présente qu'un seul maximum. Sup-
posons alors, pour fixer les idées, que ¢; croit pour X =1,2,...,m
et décroit pour X = m-+41, m+2,...,n Sur les cordes ¢y,
€y, - - -, Cp construisons les rectangles de hauteur 1 dans le sens
de 'axe OX et sur les cordes ¢,,4 1, Cms2, - - - 5 €, l€s Tectangles de
hauteur 1 en sens contraire. Supprimons le plus grand des deux
rectangles ¢, ¢, +¢ (ou 'un d’eux s’ils sont égaux), soit ¢,, pour
fixer les 1dées. La somme des aires des rectangles restants
Yei—c, <S8. Dou 2 ¢; < S4c. Or le nombre j, de points
entiers situés sur la corde fermée c; vérifie j; =c¢;+1. Donc
J=2]; < S4+ct+n,ouj < S+cet+ht+1, car n = h-t+1.

En examinant de méme les quatre autres cas de variation de ¢,
que permet le théoréme de Brunn (/"’\\’__”/” o \\>’

on voit facilement que I’égalité n’est atteinte que dans le cas
signalé par 1’énoncé.

Remarques. — 1) Pour une région donnée en position, on
obtient par ce théoréme deux bornes supérieures différentes de
J, selon qu’on privilege I'un ou autre des axes de coordonnées.
2) La formule (2) peut étre plus avantageuse que (1) ou non,
suivant le cas. Elle introduit trois paramétres S, ¢, &, au lieu
de 5, I mais ¢, & sont souvent plus faciles & déterminer que I
La borne (1) est indépendante des déplacements de la région
convexe, (2) ne Uest que des translations et des symétries d’axes
paralléles & OX ou &4 OY.

Pour le cercle de rayon r (1) et (2) donnent respectivement,

j<mrf4ar+l, j<ar’+4r+1.

et pour un parallélogramme de cotés a, b, dont a est paralléle a
0Y, et de hauteur & relative a a

j<ah+a+b+1, jJ<ah+a+h+1.

L’Enseignement mathém., t. X, fasc. 1-2. 10
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Pour une ellipse d’axes 2a, 2b paralléles aux axes de coordonnées,
(2) donne
j<mab+2(a+b) +1.

Considérons maintenant une région convexe & trois dimen-
sions. Sa hauteur dans la direction OX est la distance des deux
plans d’appui perpendiculaires a cet axe.

TutoritME 4. — Soient V le volume d’un corps convexe, h sa
hauteur dans la direction OX, s Iaire maximum des sections
planes perpendiculaires da cet axe et | le périmétre maximum
de ces sections. L.e nombre j des points entiers situés dans le
corps ou sur son bord vérifie

_i§V+s+(h+1)(—;—+1)- (3)

L’ égalité n’est atteinte que pour les parallélépipédes entiers
dont une face est un rectangle de cotés paralléles a OY et ¢ OZ
et dont toutes les sections paralléles a cette face et d’ abscisse
entiére sont entiéres.

Les sections perpendiculaires & OX d’abscisses entieres, y
compris s’1l y a lieu les faces ou les points de contact situés dans
les plans d’appui qui leur sont paralléles, vérifient, avec des
notations évidentes

]
jiSSi+§+1 (th. 2); (4)

Pégalité n’est atteinte que si la section correspondante est un
rectangle entier dont les cotés sont paralléles & OY et & OZ.
D’aprés le théoréme de Brunn la variation de s; avec X ne pré-
sente qu’'un seul maximum. Supposons alors, pour fixer les idées,
que s; croit pour X =1, 2,..., m et décroit pour X = m-+1,

m-+2, ..., n. Sur les sections X =1, 2,..., m construisons
des cylindres de hauteur 1 dans la direction et le sens de OX,
sur les sections X = m, m-+1, ..., nles ¢ylindres de hauteur 1

de méme direction mais de sens opposé. Supprimons le plus
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grand des deux cylindres ¢, ¢+ (ou'un d’eux §’ils sont égaux),
soit ¢,, pour fixer les idées. La somme des volumes des cylindres
restants est Xs,—s, < V; dou Xs; < V-+s. D’autre part
1, <nl, n=<h+1et Zj;, =j. En sommant les inégalités (4),
on obtient
] = Zsa'*‘ %ll +n,

qui devient (3) (avec le signe < ), quand on remplace les termes
a droite par leurs majorants.

En examinant de méme les quatre autres cas de variations
de s; que permet le théoréeme de Brunn, on voit facilement que
I'égalité n’est atteinte que dans le cas signalé dans I'énoncé.

Applications. — Le théoréme précédent donne pour la

sphere de rayon r

4n
j< ?7'3+37tr2+ (m+2)r+1,%

et pour Uellipsoide de révolution autour d’une paralléle & O X, de
rayon principal a et de hauteur £

. 4n 5
j <»3—a h+na*+ (h+1)(na+1).

TutorEME 5. — Soient V le volume d’un corps convexe, S I'aire
de sa surface diminuée des faces perpendiculaires ¢ OX s’ily en
a, h sa hauteur dans la direction OX, s [aire maximum des
sections planes perpendiculaires a cet axe et 1 le périméire
maximum de ces sections. Le nombre ] des points entiers
situés dans le corps ou sur son bord vérifie

S l
JEV+ S 45+ 5 +htl (5)

P

. - S1+s -
3) Pour une sphére X s; < V + ———z—n, car le volume du segment sphérique de

bases si, si+; est supérieur & la moyenne arithmétirue des volumes des cylindres de

bases si et si+; qui ont méme hauteur. On peut alors remplacer dans (3) s par Sl‘j{;s"

En particuli.ey pour une sphére dont les plans tangents perpendiculaires ¢ OX ont des
abscisses enticres,

s1+s . Lrtrd
12 T 0 et <nTr—i—2m*‘2+(7:+2)r+1.
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- L’égalité n'est atteinte que pour les parallélépipédes
entiers dont une face est un rectangle de cotés paralléles a OY
et a OZ et dont toutes les sections paralléles a cette face et
d’abscisses entieres sonl entiéres.

Par analogie avec la démonstration précédente, on montre
que la somme des aires latérales des cylindres ¢;, diminuée de
celle du cylindre qui correspond au plus grand [; est 2 [, —1,

= §. On peut donc majorer XI, par S+, au lieu de le faire
par nl.

Remarques. — 1) Suivant le cas la formule (6) peut étre plus
avantageuse que (3) ou non. Elle a 'inconvénient de renfermer
un parametre de plus, S. Pour la sphere les deux formules don-
nent la méme borne. Pour un cdéne de révolution autour d’une
paralléle & OX de rayon de base r, de hauteur £ et de génératrice
g, (3) et (5) donnent respectivement

nr*h nrh

j< +ar*+n(h+1)r+h+1,j < S +nr2+n<g—+1)r+h+l.

-~

La seconde borne de j est donc inférieure a la premiére si

B < h ou — > 1 c’est-a-diresilouverture du cone est inférieure
g

. 2m
A .
3

2) La méthode d’intégration numérique que nous avons em-
ployée pour démontrer les trois derniers théorémes peut s’étendre
de proche en proche aux corps convexes de plus de trois dimen-
sions. La convenxité n’intervient dans les démonstrations que
par deux théoréemes fondamentaux:

—- la section d’un corps convexe par une variété linéaire est
convexe; ‘ ,

— la variation de la mesure de la section d’un corps convexe
n-dimensionnel par un hyperplan & n-1 dimensions de direc-
tion fixe et celle de la mesure de son bord ne présentent qu'un
seul maximum.
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3) Les formules 1, 2, 3, 5 s’appliquent aussi d certains corps
non convexes, pourvu que Jes sections paralleles considérées
solent convexes et que la variation de leurs mesures et de celles
de leur bord ne présente qu’un seul maximum. On peut penser,
par exemple, & un tube sinusoidal.

Plus généralement pour un corps convexe de révolution
autour d’un axe paralléle & OX, qui a deux plans tangents per-
pendiculaires & cet axe d’abscisses entiéres,

S
j<V+ 3 +nr+h+1,

ou r est le rayon du cercle principal et A la hauteur du corps
dans la direction OX.

Terminons par une proposition hautement probable, quoique
incomplétement démontrée:

CoNJECTURE. — Soient a, b, ¢ les hauteurs dans les directions
des azxes OX, OY, OZ d'un corps convexe de volume V et
d’aire S. Le nombre j de points entiers situés dans ou sur ce
corps verifie I'inégalité

S
j<V+-2—+a+b+c+1. (6)

L égalité r’est atteinte que pour les parallélépipédes rectangles
entiers, dont les arétes sont paralléles auzx axes.

Remarques. — 1) L’égalité est bien atteinte par les parallélépi-
peédes de U'énoncé. lci a, b, ¢ sont les longueurs des arétes. Donc

J=(a+1)(b+1)(c+1) =abc +ab+bc+ca+a+b+c+1

S
=V+§+a+b+0+1.

2) Il suffit que (6) s’applique aux polyédres convexes entiers,
pour qu’il s’applique @ tout corps convexe. L’enveloppe convexe
des points entiers situés dans ou sur le corps convexe (C) est
un polyedre entier (C’). Or leurs caractéristiques sont lides par

=7V <V, 8 <S,a +b +c <a+b+ec.




— 146 —

(Nous avons d’ailleurs démontré que (6) est vrai pour une
famille de polyedres entiers, qui comprend en particulier les
prismes de bases paralléles & un plan de coordonnées.)

3) L’aire réticulaire S’ d’un polyédre entier s’obtient par
définition en prenant comme unité d’aire dans chaque face la
maille du réseau plan de ses points entiers (5’ < .S5). Montrons
que st un polyédre entier convexe P vérifie

’

j§V+§2~+a+b+c+1, 7

cette inégalité est également vérifiée par tout polyédre P, qui s’en
déduit par une homothétie (O, n) de centre et de rapports entiers.

On sait que

| -
Jy = Vn3+3n2+<j—-»§—V>n+1, S"=p-2. 1V

L

Donc I'inégalité a démontrer

i 3 S, 2
Jjn = Vn +—5n +(@+b+c)n + 1
revient a
ST+ 2
= ~VZa+b+e,

qui est équivalente a (7).

E. Ehrhart
11, rue de Bruges
Strasbourg.

1) E. EHERHART, Comples rendus de I’ Acad. des Sc., 1959, T. 248, p. 1097.
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