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SUR LE NOMBRE DE POINTS A COORDONNÉES

ENTIÈRES D'UNE RÉGION CONVEXE PLANE
OU SPATIALE

par E. Ehrhart

(Reçu le 15 février 1963)

A l'intersection de la géométrie des corps convexes et de

l'arithmétique des réseaux entiers se place la recherche, aussi
intéressante que difficile, du nombre de points entiers des

domaines convexes. On connaît, par exemple, les beaux travaux
d'Euler sur les points entiers d'un simplexe I n,
Xi ^ 0, de Gauss sur le nombre Cr des points entiers situés dans

ou sur une circonférence de rayon r et de centre entier, de

Landau, Hardy, Littlewood et Sierpinski sur la valeur asympto-
tique de Cr.

Un résultat très général dans ce domaine a été obtenu il y a

une quinzaine d'années par M. Nosarzewska (Colloquium
Mathematicum, Wroclaw, I, 1948, p. 305-311): le nombre i de

points entiers intérieurs à une région plane convexe d'aire S

et de périmètre l vérifie la double inégalité

1

S — — < i < S — +1.
2 2

La démonstration repose sur un lemme délicat de H. Steinhaus
et distingue neuf sortes d'intersections de la région avec les

carrés du quadrillage. Remarquons que la borne inférieure peut
être illusoire parce que négative. Mentionnons que dans le même

volume (p. 1-5), H. Steinhaus démontre l'inégalité de Jarnik
\S — z | < 7, relative à une courbe de Jordan fermée rectifiable
quelconque.

Nous allons montrer de manière très élémentaire, que la
borne supérieure trouvée par M. Nosarzewska convient même

pour les points entiers intérieurs à la région plane convexe ou
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située sur son bord et nous en déduirons des bornes strictes

analogues pour une région convexe de l'espace.
On s'appuiera sur le théorème fondamental de Brunn: La

variation de l'aire ou du périmètre des sections planes parallèles

d'un corps convexe ne présente qu'un seul maximum (Über
Ovale und Eiflächen. Inaug. Diss. Munich, 1887).

On suppose connue une propriété simple des courbes
convexes: Une courbe fermée convexe est plus courte que toute
courbe fermée qui l'entoure. Elle résulte comme cas limite d'un
théorème élémentaire « Un polygone convexe est plus petit qu'un
polygone qui l'enveloppe », que l'on déduit facilement de

l'inégalité triangulaire (voir, par exemple, A. Grevy, Géométrie
plane pour la classe de seconde, 1920, p. 34; chez Vuibert).

Les axes sont orthonormés. Un point est dit entier si ses

coordonnées le sont; un polygone ou un polyèdre sont dits
entiers si leurs sommets le sont. Le polygone est supposé non
croisé et tel que son extérieur soit d'un seul tenant. Les régions
planes des deux premiers théorèmes sont rapportées à des axes
de leur plan.

Théorème 1. — Le nombre p des points entiers périphériques
d'un polygone entier plan et le nombre j de ses points entiers
intérieurs ou périphériques sont liés à son aire S par

S=j~(1)
On sait que l'aire d'un triangle qui n'a d'autres points entiers

intérieurs ou périphériques que juste ses trois sommets est
Décomposons le polygone en de tels triangles. Les nombres
/, s, cdes faces, des sommets et des côtés de cette décomposition
vérifient la relation d'Euler s — c+f =1. Or / /' et

3/ 2 c-pdonne c\ (3f+p) 3 S+ ~ Donc s-c+f

j-S-l= 1.1
2

O Nous en avons donné une autre démonstration dans les C.R. de l'Acad. des Sc.,r 1 1955, p. 686-687.
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Théorème 2. — Le périmètre l d'une région plane convexe, son
aire S et le nombre j des points entiers situés à l'intérieur ou

l
sur le bord vérifient (1) j ^ S + — +1

L'égalité n'est atteinte que pour les rectangles entiers dont les
côtés sont parallèles aux axes de coordonnées.

Si / < 2 ou si les / points entiers sont alignés, l'inégalité est

triviale; écartons ces cas. Le cadre convexe 0' des / points entiers
est intérieur ou identique à la région convexe.

Soit Sf l'aire de 0' (S' ^ S), V son périmètre, p' le nombre des

points entiers de son bord et /' le nombre de ses points entiers
intérieurs augmenté de p' (/' /). Or p' ^ Z (courbes
convexes dont l'une est intérieure à l'autre) car sur un côté c du
polygone 0' deux points entiers consécutifs ont une distance
égale ou supérieure à 1. En remplaçant /', p', S' respectivement

P'
par /, l, S dans /' S' + — + 1 (th. 1), on trouve l'inégalité

annoncée.

P'
Remarque. — On peut calculer j exactement par j & Sr^ — +1.

Appelons hauteur d'une région plane convexe dans la direction
OX la distance des droites d'appui perpendiculaires à cet axe.

Théorème 3. — Soient S l'aire d'une région plane convexe, h sa
hauteur dans la direction OX et c sa plus grande corde perpendiculaire

à cet axe. Le nombre j des points entiers situés dans la
région ou sur son bord vérifie

j ^S + h+c + l .2) (2)

2) En considérant les trapèzes qui ont pour bases deux a consécutifs (notations
de la démonstration du th. 3), on voit que 2 ci < S + Ct + Cyç ce qui donne la formule

i^s+h+ + 1,

plus avantageuse que (2), puisque — —c peut être nul. Pour un cercle dont les tan-

gentes parallèles à OY ont des abscisses entières, cette relation fournit j < rcr2 + 2 r+1.
On voit même aisément que j < nr2-h2r. Cette inégalité est triviale pour 2r 1

ou 2, et pour 2r < 3 on montre que S dépasse l'aire des trapèzes de plus 1. Plus
généralement pour une région plane convexe j < S + h+1, si les droites d'appui parallèles
à O Y ont des abscisses entières et que chacune ne touche le bord qu'en un point (car

Ci + Cn
alors —«— - - 0).
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L'égalité n'est atteinte que pour les parallélogrammes qui ont
un côté perpendiculaire à OX et dont toutes les cordes d'abscisses

entières, parallèles à ce côté, sont entières.

Considérons les cordes d'abscisses entières, plus éventuellement

les arcs rectihgnes d'abscisses entières du contour, soit

cl7 c2 cn. D'après le théorème de Brunn leur variation en
fonction de l'abscisse ne présente qu'un seul maximum.
Supposons alors, pour fixer les idées, que c{ croît pour X 1, 2, ,f m
et décroît pour X m+1, m-f 2, n. Sur les cordes cu
c2, • • • cm construisons les rectangles de hauteur 1 dans le sens
de l'axe OX et sur les cordes cm + 1, cm + 2, cn les rectangles de

hauteur 1 en sens contraire. Supprimons le plus grand des deux
rectangles cmr cm + 1 (ou l'un d'eux s'ils sont égaux), soit cm pour
fixer les idées. La somme des aires des rectangles restants
lci—cm < S. D'où 1 ct < S+c. Or le nombre jt de points
entiers situés sur la corde fermée ct vérifie jt Donc

| I ji < S+c+n, ou / < S+c+A+1, car n ^ A+l.
En examinant de même les quatre autres cas de variation de ct

que permet le théorème de Brunn

on voit facilement que l'égalité n'est atteinte que dans le cas
signalé par l'énoncé.

Remarques. — 1) Pour une région donnée en position, on
obtient par ce théorème deux bornes supérieures différentes de

/, selon qu'on privilège l'un ou l'autre des axes de coordonnées.
2) La formule (2) peut être plus avantageuse que (1) ou non,
suivant le cas. Elle introduit trois paramètres S, c, A, au lieu
de S, l mais c, A sont souvent plus faciles à déterminer que /.
La borne (1) est indépendante des déplacements de la région
convexe, (2) ne l'est que des translations et des symétries d'axes
parallèles à OX ou à OY.

Pour le cercle de rayon r (i) et (2) donnent respectivement

j < Ter2 +7ir + 1 j < Tir2 +4r + l
et pour un parallélogramme de côtés a, 6, dont a est parallèle à
0 7, et de hauteur A relative à a

j ah a b \ 7 j ^ ah -b a -b h -h \
L'Enseignement mathém., t. X, fasc. 1-2. 10
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Pour une ellipse (Taxes 2a, 2b parallèles aux axes de coordonnées,
(2) donne

j < nab + 2 (a + b) +1

Considérons maintenant une région convexe à trois dimensions.

Sa hauteur dans la direction OX est la distance des deux
plans d'appui perpendiculaires à cet axe.

Théorème 4. — Soient V le volume d'un corps convexe, h sa
hauteur dans la direction OX, s l'aire maximum des sections

planes perpendiculaires à cet axe et l le périmètre maximum
de ces sections. Le nombre j des points entiers situés dans le

corps ou sur son bord vérifie

j^V+s+(h+l)Q+l)" O)

L'égalité n'est atteinte que pour les parallélépipèdes entiers
dont une face est un rectangle de côtés parallèles à OY et à OZ
et dont toutes les sections parallèles à cette face et d'abscisse
entière sont entières.

Les sections perpendiculaires à OX d'abscisses entières, y
compris s'il y a lieu les faces ou les points de contact situés dans
les plans d'appui qui leur sont parallèles, vérifient, avec des

notations évidentes

Ji si + - + 1 (th. 2) ; (4)

l'égalité n'est atteinte que si la section correspondante est un
rectangle entier dont les côtés sont parallèles à OF et à OZ.

D'après le théorème de Brunn la variation de st avec X ne
présente qu'un seul maximum. Supposons alors, pour fixer les idées,

que Si croît pour X 1, 2, m et décroît pour X m+1,
m-f-2, n. Sur les sections X 1, 2, m construisons
des cylindres de hauteur 1 dans la direction et le sens de OX,
sur les sections X — m, m-f-1, n les cylindres de hauteur 1

de même direction mais de sens opposé. Supprimons le plus
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grand des deux cylindres cm, cm + 1 (ou Tun d'eux s'ils sont égaux),

soit cm pour fixer les idées. La somme des volumes des cylindres
restants est L st — sm < V; d'où I st < V-\-s. D'autre part
1 lt < ni, n ^ h+l et Ijt — f. En sommant les inégalités. (4),

on obtient

_ IfJ < Zsi+ y +n '

qui devient (3) (avec le signe < quand on remplace les termes
à droite par leurs majorants.

En examinant de même les quatre autres cas de variations
de st que permet le théorème de Brunn, on voit facilement que
l'égalité n'est atteinte que dans le cas signalé dans l'énoncé.

Applications. — Le théorème précédent donne pour la
sphère de rayon r

471

j<¥ r3 + 3nr2 + (n + 2) r 4-1 ,3)

et pour h ellipsoïde de révolution autour d'une parallèle à ÖX, de

rayon principal a et de hauteur h

Au
j < — a2h + ua2 + (h + 1) (ua + 1)

Théorème 5. — Soient V le volume d'un corps convexe, S l'aire
de sa surface diminuée des faces perpendiculaires à OX s'il y en

a, h sa hauteur dans la direction OX, s l'aire maximum des

sections planes perpendiculaires à cet axe et l le périmètre
maximum de ces sections. Le nombre j des points entiers
situés dans le corps ou sur son bord vérifie

S l
j S v + - +s+ - +h + 1 (5)

3) Pour une sphère S si < V + S]
car le volume du segment sphérique de

bases si, si+i est supérieur à la moyenne arithmétique des volumes des cylindres de

bases si et sï-fi qui ont même hauteur. On peut alors remplacer dans (3) s par Sl^"s~
En particulier pour une sphère dont les plans tangents perpendiculaires à OX ont des
abscisses entières.

Si -f- Sn 4-n:r3-i~- 0 et, j < -f- +27ir2 + (7T + 2)r+l.
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Uégalité n'est atteinte que pour les parallélépipèdes
entiers dont une face est un rectangle de côtés parallèles à OY
et à OZ et dont toutes les sections parallèles à cette face et

d'abscisses entières sont entières.

Par analogie avec la démonstration précédente, on montre
que la somme des aires latérales des cylindres ch diminuée de

celle du cylindre qui correspond au plus grand lt est lli — lm

^S. On peut donc majorer par S+l, au lieu de le faire

par ni.

Remarques. — 1) Suivant le cas la formule (5) peut être plus
avantageuse que (3) ou non. Elle a l'inconvénient de renfermer
un paramètre de plus, S. Pour la sphère les deux formules
donnent la même borne. Pour un cône de révolution autour d'une
parallèle à OX de rayon de base r, de hauteur h et de génératrice
g, (3) et (5) donnent respectivement

nr2h nr2h
0 fa \j < — hnr +7t(h + l)r + h + l,j < -y- +nr + 71

^ + I)r+/i4-l

La seconde borne de / est donc inférieure à la première si

9 h
* •

— < h ou — > i, c'est-à-dire si l'ouverture du cône est inférieure
2 g

2n

aT"

2) La méthode d'intégration numérique que nous avons
employée pour démontrer les trois derniers théorèmes peut s'étendre
de proche en proche aux corps convexes de plus de trois dimensions.

La convenxité n'intervient dans les démonstrations que

par deux théorèmes fondamentaux:

— la section d'un corps convexe par une variété linéaire est

convexe;
— la variation de la mesure de la section d'un corps convexe

ft-dimensionnel par un hyperplan à n-i dimensions de direction

fixe et celle de la mesure de son bord ne présentent qu'un
seul maximum.
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3) Les formules 2, 2, 3, 5 s7appliquent aussi à certains corps
non convexes, pourvu que Jes sections parallèles considérées

soient convexes et que la variation de leurs mesures et de celles

de leur bord ne présente qu'un seul maximum. On peut penser,

par exemple, à un tube sinusoïdal.
Plus généralement pour un corps convexe de révolution

autour d'un axe parallèle à OX, qui a deux plans tangents
perpendiculaires à cet axe d'abscisses entières,

S

j < V + -- +nr + h + 1

où r est le rayon du cercle principal et h la hauteur du corps
dans la direction OX.

Terminons par une proposition hautement probable, quoique
incomplètement démontrée:

Conjecture. — Soient a, b, c les hauteurs dans les directions
des axes OX, 0 7, OZ d'un corps convexe de volume V et

d'aire S. Le nombre j de points entiers situés dans ou sur ce

corps vérifie l'inégalité
S

j <V + - + a + b + c + t. (6)

L'égalité n'est atteinte que pour les parallélépipèdes rectangles
entiers, dont les arêtes sont, parallèles aux axes.

Remarques. — 1) L'égalité est bien atteinte par les parallélépipèdes

de l'énoncé. Ici a, &, c sont les longueurs des arêtes. Donc

j (a + 1) (b + 1) (c + 1) abc + ab + bc + ca+a+b+c + l
S

V+- + a+ b+ c + 1.
2

2) Il suffit que (6) s'applique aux polyèdres convexes entiers,
pour qu'il s'applique à tout corps convexe. L'enveloppe convexe
des points entiers situés dans ou sur le corps convexe (C) est
un polyèdre entier (C'). Or leurs caractéristiques sont liées par

jf j > y < V, S' < 5, a' + b' + < a + b + c
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(Nous avons d'ailleurs démontré que (6) est vrai pour une
famille de polyèdres entiers, qui comprend en particulier les

prismes de bases parallèles à un plan de coordonnées.)

3) L'aire réticulaire S' d'un polyèdre entier s'obtient par
définition en prenant comme unité d'aire dans chaque face la
maille du réseau plan de ses points entiers (S' < S). Montrons
que si un polyèdre entier convexe P vérifie

cette inégalité est également vérifiée par tout polyèdre Pn qui s'en

déduit par une homothétie (0, n) de centre et de rapports entiers.

On sait que

j ^ V + ~ + a + b+ c + \, (7)

i

Donc l'inégalité à démontrer

S'
jn ^ Vn3 + —n2 + (a +b +c)n + 1

qui est équivalente à (7).

E. Ehrhart
11, rue de Bruges
Strasbourg.

i) E. Ehrhart, Comptes rendus de VAcad. des Sc., 1959, T. 248, p. 1097.
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