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EUCLIDEAN ALGORITHMS AND MUSICAL THEORY1)

by Viggo Brun

Aristotle has an interesting remark in his Topica. He says

that the ratio between the areas A and B is the same as between

a and b.

B

A

b

a

A:B =a:b

He also says that it is not easy to prove this without having a

definition of equality between two ratios (they could be

irrational). And he gives the definition: they are equal because

they have the same Antanairesis. The meaning of this word is
" to take away in turn Van der Waerden contends that
Theaitetos has given this definition of the equality of two ratios
and that Euclid has replaced it by the famous definition of
Eudoxos (later used by Dedekind). It is remarkable that Omar
Khayyam, thé Persian poet and mathematician, uses the same
definition as Aristotle.

However, Euclid also treats the method of " taking away in
turn " which has later been called the Euclidean Algorithm.
Today this algorithm is usually given as an algorithm of
divisions (alternatively represented by a continued fraction). But

i) Ten minutes lecture given at the International Congress of Mathematicians in
Stockholm 1962.
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Euclid himself treated his algorithm as an algorithm of
subtraction — that is, as an Antanairesis. He nevertheless did not
introduce this word in his elements. I shall give this algorithm
of Euclid, u the taking away in turn ", applied to two given real
positive numbers a and b (where a > b) the following form:

a 1 0

b 0 1

a — b 1 0

b 1+0 0+1

ar X, y.
K xr yr

ar — br xr yr
K xr-\-xr yr-\-yr

On the left-hand side we have taken the difference between the
greatest and the smallest number and we have repeated the
smallest one. Of the two new numbers a — b and 6, one must be

greater than (or equal to) the other one and the process therefore
can continue. On the right hand side we have repeated the
first line and we have added the numbers in the first and in the
second line to get the numbers in the new second line.

yrOn the right hand side we get fractions — to approximating
xr

a
--, as is well known from the theory of continued fractions.

In 1919 I generalized this algorithm for two numbers to an
algorithm for three numbers a, b and c (where a > b > c).

This algorithm has the following form:
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a 1 0 0

b 0 1 0

c 0 0 l

a-b 1 0 0

b 1+0 0+1 0+0
c 0 0 l

ar xr Vr

br xr y'r z'r

cr x"r y"r Zr

ar — br xr yr
/

zr

K xr-\-xr Vr+ y'r Zr+z

Cr x"r y'r Zr

On the left-hand side we have taken the difference between the
greatest and the next-greatest number and we have repeated
the next-greatest and the smallest numbers. On the right-
hand side we have repeated the first and the third line and we
have replaced the second line by the sum of the numbers in the
first two lines.

My algorithm makes it possible to treat the following
problem : Three real, positive numbers a, b and c are given. Find
three integers xr, yr and which satisfy the approximative
relations abc

xr
~

yr
~

zr

I have proved various theorems concerning this algorithm, for
instance that the procedure is convergent:

y r b zr c

xr a xr a
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My algorithm seems to be able to give a certain contribution
to musical theory.

From ancient times it has been a problem to construct a

stringed instrument where the last string had the double length
of the first one, and with the property that the ratio between
one string and the preceding one was to be constant.

It was also desired that one string should be nearly f times
and one nearly f times as long as the first string. We then
have to find three integers x, y and 2 such that

or
log 2 log f log f

•

x y z

The fact that the first four integers 1, 2, 3 and 4 were
sufficient to write the four fractions

14 3 2

Î ' 3 ' 2 ' I '

was symbolized by the ancient Greeks by the diagram " te-

traktys " :



— 129 —

This diagram was only a symbol for the four numbers 1, 2, 3

and 4,—but to the Greeks it was a sacred symbol. It gives us
a good idea how to systematize our research. First we will
study the logarithms of all fractions > 1 and rg 2) with
numerators and denominators among the numbers 1, 2, and 3,
then among 1, 2, 3 and 4, and so on. In each case I add a

generalized tetraktys to remind of the Greek influence on the
treatment of our problem.

Problem 1. Find integers x and y such that

log 2
^ log f

^

x y

This problem has been treated by L. Euler who used continued
fractions to solve it. He found for instance

x 12, y — 1 and x 17 y 10

Problem 2: Find three integers such that

* ' log 2
^ log f _

log f
x y z

Here it is natural to use my algorithm, but as

3 4
log 2 - log - log -

the algorithm at once reduces to the algorithm employed under
problem 1. The solutions for x and y will be the same, and we
get for instance

x 12, y 7, z 5,
and

x 53, y 31, z — 22
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Problem 3: To find integers x, z, v such that

log 2 log 4 log | log f log

and

x y z

As, however

4 3
log 2 - log - log -

5 5 4
log - - log - log -

my algorithm for five numbers will soon reduce to an algorithm
for three numbers. I mention two of the solutions:

x 31 y 23 z 18 u 13 v 10 ;

x 53 y 39 z 31 u 22 v — 17

Problem 4: To find integers x, y, z, u1 v, w such that

log 2 log 4 l°g log f log 4 log f
w

As, however

5 6
log 2 - log -- log -

the algorithm will after a while reduce to the former one, and
will give the same solutions.

Problem 5 : To find integers x, y, z, k, e, w, p, q, r such that

log 2
^ log \ ^ log I ^ log f _

log j _
x y z u v

• • •

• • • • log f log 4 log 4 log 4

w

My algorithm for these nine numbers will
for example give the solutions
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x 12, x 31, x 12, x 87, x 91, x 99, x - 171,

all of which give different possibilities for partitioning the octave.

My algorithm for these nine numbers will after a while
reduce to an algorithm for four numbers. The reason is, that
we have four primes (2, 3, 5, 7) not surpassing the number 7.

Historically it is of interest to remark that the division of the
octave into 31 parts has been proposed by Vincentino, Mersenne,
Huygens and presently by Fokker. The number 53 is said to
have been known by Philolaos, a pupil of Pythagoras, and later
on to have been used in China. Mercator has especially suggested
the number 53. The number 72 is not mentioned in Barbour's
excellent book " Tuning and Temperament, A Historical Survey

". But the number 74 suggested by Drobisch is mentioned.
The number 72 is nevertheless much better than 74. I have
read in a journal that a Russian scientist, J. Mursin, for many
years has done experiments with a musical instrument where
the octave is divided into 72 parts.

Additional remarks

As I hope that the reader has to his disposal more than the
ten minutes that I had for my lecture in Stockholm, it will
perhaps be appropriate to give some additional remarks.

1. In " Science Awakening ", van der Waerden has
discussed the remark on Antanairesis of Aristotle in his Topica.

2. Omar Khayyam (Alhajjâmî), 1044-1123. His treatment

of proportions can be found in D. S. Kasir : The Algebra
of Omar Khayyam (New York, 1931) and in A. P. Juschkewitsch
und B. A. Rosenfeld: Die Mathematik der Länder des Ostens in
Mittelalter (p. 134), Veb., Berlin.

3. If it is desired to give the Euclidean subtraction
algorithm—the Antanairesis— the form of a continued fraction, it
can be done as in the following example:

10 1 1

— 1 + 1 +
7 1 1

2 + — 1 +1 +
3 1+1+1
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If we here break off the fractions before a plus sign, we get in
both cases good approximation to
In the first case we get

1 3 10

i' 2' t '

In the second case we get

1 2 3 4 7 10

1'1'2'3'5'T'
We can express it in this manner: In the first case many good
approximations are u jumped over

4. My first works on the generalization of continued
fractions were based on a geometrical interpretation. My algorithm
is different from that of Poincaré, who also used geometrical
considerations. In my generalization I have used only
subtractions, and not divisions as did Jacobi.

5. My algorithm and analogous ones have afterwards been
treated by Nils Pipping, Marcel David and Ernst Selmer.

Pipping has studied the ramified algorithm

a
b

c

a—b a—c
b b

c c

and Selmer has studied the algorithm

a
b

c

a—c
b

c

(for c > 0).
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6. I have also studied the analogous algorithm for four

numbers, which has many—hut not all—of the properties of the

algorithm for three numbers. The analogous algorithm for five

or more numbers has not been appropiately studied at all.

Here it seems to be much to do for younger mathematicians.

7. J. M. Barbour was the first one to give a systematic
solution of the problem to find integers x, y, z such that

log 2
^ log J _ logf

x y z

He used the method of Jacobi, but had to make two modifications.

8. The most primitive method to solve the problem

log 2
^ log f

v y

in integers x and y would be to choose successively x 1,

x 2, x 3 etc. and afterwards choose y as the nearest
integer to

log f
y x

log 2

The theory of continued fractions can here shorten the process
considerabiy. This theory could also—if desired— be modified
in such a way that only the numbers x had to be calculated
directly by the mentioned algorithm, and afterwards the numbers

y choosen as the nearest integers to y'. The degree of

accuracy will then be seen directly. We obtain for example

log 2
_

log f
~1L2~ " 7,02 '

and

log 2 log f
~53~ ~

31,003
'

We then have to choose y — 1 and y 31.
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9. This method can be used also for my generalized
algorithms. As an example I mention problem 2, to find three
integers x, y, z such that

log 2
^ log j ^ log f

^

x y z

My algorithm for these three numbers can be given in the following

form, when in the first place we only want to find the numbers

x (and afterwards determine y and z) :

X

log 2 0,301 1

log f 0,176 0

log f 0,125 0

0,125 1 0,176 1

0,176 1 0,125 1

0,125 0 0,125 0

0,051 1

0,125 2

0,125

0,125
0,125
0,051

0,000 2 0,125 2

0,125 2 0,051 1

0,051 1 0,000 2

0,074 2

0,051 3

0,023 2 0,051 5

0,051 5 0,023 2

0,028 5

0,023 7

0,005 5

0,023 12

The continuation of the calculation will give

x 17 x 29 x 41 x 53 etc.,
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and we obtain for example

log 2 log f log f
~ïî ~

7,02.
~

4,98 '

and

log 2 log f log f
~53~ ~

31,003
~

21,997.

We can therefore choose for instance

x 12 y 1, z 5

or

x — 53 j 31 z 22

10. As my algorithm is very little studied for more than
four numbers, the alternative method consisting of first
determining only x by the algorithm, and afterwards y,z will
be preferable in these cases. For problem 5 we find for example
72 as a value for x, and we. then get

log 2 log Jlog J log f log f-

~~7258,13 ~
53,06.

~~

42,12
~~

34,95
~

log f log f- log I log I
29,88

~
23,18 18,94. 16,01

It may be of interest to compare this result with the corresponding

result for the number x 74 which Drobisch proposed for
dividing the octave :

log 2
__

log | _
log I _

log I _
log y

74
~

59,75
~

54,54
~

43,29
~

35,92
~

log f log I log I log I
30,71

~
23,82

~
19,46

~
16,46

From this it is seen that the number 72 is much better than 74
for dividing the octave.
From the relation
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log 2 log j log 4 log f log j
~99~ ~

79,93
~

72,96
~

57,91
~

48,06
~

log t log { log "f" logj;
41,09..

~
31,87..

~
26,04.. 22,02..

it will be seen that a division of the octave into 99 parts is also
of great advantage. Barbour has not mentioned this possibility
but he has mentioned 98, which however gives less satisfactory
results.

11. At the congress in Stockholm, A.A. Granadoss gave a

lecture, " Fechner quantum and equal temperament,", where
he maintained that, considering the limited sensitivity of the

ear, it will generally be unnecessary to divide the octave into
more than 120 equal parts.

12. After my lecture in Stockholm, van der Waerden
expressed his great scepsis concerning the assertion that Philolaos
should have known the division of the octave into 53 parts.
My source was Barbour, " Tuning and Temperament ", p. 123:
" The most important system after the 31—is the 53 division.
In theory it is also the most ancient. According to Boethius

Pythagoras' disciple Philolaos held that the tone is

divisible into four diaschismata plus a comma. If, however, the
diaschisma is taken as two commas exactly, the tone is divided
into nine commas ". In a letter to me (Sept. 12, 1962) van der
Waerden writes: " I have checked the Philolaos quotation and
found that it does not say that a diaschisma is two commas.
Indeed the statement diaschisma 2 commas would be

contradictory to Pythagorean musical theory. So we cannot attribute

it to Philolaos."
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