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Appendice

BREF RAPPEL DES DEFINITIONS DES NOTIONS UTILISEES

Les notices qui suivent ont pour but de rappeler quelques faits
mathématiques utilisés plus haut. Certains d’entre eux pourraient
étre énoncés sous ane forme beaucoup plus générale. Les hypo-
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théses restrictives ou nous nous placons et qui sont satisfaites
dans le texte précédent permettent d’éviter des développements
qui n’auraient pas leur place ici. Pour des exposés plus circons-
tanciés, on peut se reporter, par exemple, a [19], puis au traité
de N. Bourbaki. N

1) Groupe

Un groupe G est un ensemble non vide dans lequel il existe
une loi de composition interne faisant correspondre a tout
couple ordonné (a, b) d’éléments de G un élément de G appelé
produit de a et b, noté ab, moyennant les conditions suivantes:

a) Cette loi de composition est associative:
a(bc) = (ab)c, Va,b,ceG,

b) Il existe dans G un élément neutre bilateére e relativement
a la loi de composition considérée:

ea = ae = a, VaeG,

¢) Tout élément a de G possede un ineerse bilatére dans G

pour la loi de composition considérée, élément noté a™*:

VaeG, da 'eG:aa ! =ala =e.

On montre facilement que, dans le groupe G, il n’existe qu’un
seul élément neutre et que tout élément n’y possede qu'un seul
inverse. Cela implique que, quels que soient a et b dans G, les
équations ax = b et xa = b possedent chacune une solution bien
déterminée en z dans G. |

Soit A et B deux parties non vides d’un groupe G; on note
AB T'ensemble des éléments de G de la forme ab, ou acA et beB.
Lorsque ceG, on convient de mettre cA et Ac pour {c}A et A{c},
respectivement. On écrit A au lieu de AA et plus généralement

A" au lieu de AA"™', n étant un entier naturel plus grand que 1.

On note A™! Pensemble des inverses des éléments de A.

Une partie g d’un groupe G est un sous-groupe de G lorsqu’elle
est un groupe vis-&-vis de larestriction a g de laloi de composition
interne existant dans G. La condition nécessaire et suffisante

L’Enseignement mathém., t. X, fasc. 1. &
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- pour que la partie non vide g de G soit un sous-groupe de G est,
donnée par gg~! = g.

Un groupe composé d’un nombre fini n d’éléments est dit
d’ordre fint n; un groupe est dit d’ordre infint lorsqu’il comporte
une infinité d’éléments. Prenons un élément a dans un groupe G
d’élément neutre e; ensemble des puissances de a, ¢’est-a-dire
a®=e,a*,a” = (a" ¥, ouk=1,2,3,..., constitue un sous-groupe
g, de G. Par définition, 'ordre de a est 'ordre du groupe g,. En
particulier, a est dit involutif quand il est d’ordre 2.

A titre d’exemple, appelons permutation d’un ensemble non
vide E toute application biunivoque de £ sur lui-méme; le pro-
duit ab de deux permutations a et b de £ est la permutation de
E obtenue en composant b et a, dans lordre. L’ensemble des
permutations de £ constitue un groupe pour la loi de composition
indiquée. Lorsque £ est un ensemble fini de n éléments, le
groupe des permutations de E est le groupe symétrique de degré n;
il est d’ordre I'(n+1) = 1.2.3 ... ... n.

Une application f d’'un groupe G dans (sur) un groupe G’ est
un homomorphisme de G dans (sur) G’ lorsque f(ab) = f(a)f(b),
quels que soient a et b dans G. Le noyau de ’homomorphisme f
est 'ensemble [7!(e’) des éléments de G envoyés sur 1’élément
neutre ¢’ de G'. I’image f(G) est un sous-groupe de G'. Lorsque
le noyau de f se réduit a I’élément neutre de G et que f(G) = G,
f est un isomorphisme de G sur G'. Un homomorphisme de G dans
lui-méme est un endomorphisme de G. Un isomorphisme de G sur
lui-méme est un automorphisme de G. Si f et g sont deux auto-
morphismes de G, fg est aussi un automorphisme de G. Muni
de cette loi de composition, I’ensemble des automorphismes de &
constitue un groupe dont I'élément neutre est I'automorphisme
identique — ou banal — de G.

Soit ¢ un élément du groupe G. L’application:
w: x—>a ‘xa, VxeG, (1)

est un automorphisme de G appelé automorphisme intérieur de G
associé & a. Une partie P de G commaute avec a lorsque a(P) = P.
En particulier, un élément b de G commute avec a lorsque ab =
ba. Le normalisateur de a dans G est le sous-groupe formé des
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éléments de G commutant avec a. Une partie de G est distinguée
quand elle commute avec chaque élément de G. Deux parties
de G sont dites conjuguées lorsqu’il existe un automorphisme
intérieur de G envoyant I'une sur 'autre. L’application qui, &
tout élément ¢ de G associe 'automorphisme intérieur de G
défini par (1) est un homomorphisme ¢ de G dans le groupe
des automorphismes de G. Le noyau de ¢ est le centre de G.
Lorsque le centre de G est confondu avee G, G est dit commutatif
ou abélien. D’une facon générale, on peut affirmer que le noyau
d’un homomorphisme de G dans un groupe quelconque est un
sous-groupe distingué de G.

Soit H un sous-groupe d’un groupe G. Deux éléments a et b
de G sont dits congrus (a gauche) relativement a H lorsque aH =
bH, et 'on note alors ¢ = b (mod H). On détermine ainsi dans G
une relation d’équivalence compatible avec la multiplication a
gauche dans G; autrement dit, ¢ = b (mod ) implique ca = cb
(mod H), VceG. Les classes d’équivalence introduites par cette
relation dans G sont les classes (a gauche) de G relativement a H.
Elles constituent un ensemble noté G/H et appelé espace homo-
géne (a gauche) attaché au sous-groupe H de G. Lorsque G/H
est un ensemble fini, le nombre de ses éléments est I'indice de H
dans G; on dit que H est d’indice infini dans G quand G/H
comporte une infinité d’éléments. L’application canonique de G
sur G/H est celle qui, a tout élément a de G, associe la classe
(2 gauche) de G relativement & H contenant a, que I’on peut noter
al.

A tout élément s de G on peut attacher une permutation s,
de G/H en posant:

s;: xH —»>sxH, VxeG.

L’application s — s; est un homomorphisme y de G dans le
groupe des permutations de G/H. L’image y(G) est un groupe
transitif de permutations de G/H; autrement dit, pour tout
couple d’éléments de G/H, on peut trouver dans y(G) une permu-
tation envoyant le premier sur le deuxiéme. On traduit cela en
disant que G agit transitivement dans G/H. Les groupes G et
(G) sont isomorphes lorsque 'intersection dés conjugués de H
dans G se réduit & I’élément neutre de G ou, ce qui revient au
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méme, quand H ne contient aucun sous-groupe distingué de G
autre que celul qui se réduit & I’élément neutre. On dit alors
que G agit effectivement dans G/H.

Les définitions précédentes, qui conduisent alanotion d’espace
homogéne & gauche, peuvent étre reprises « a droite »: H étant
un sous-groupe de G, il suffit de considérer comme équivalents
deux éléments a et b de G tels que Ha = Hb. Toutefois lorsque
H est un sous-groupe distingué de G les équivalences a gauche
et & droite relativement a H coincident dans G. On peut alors,
d’une maniere unique, introduire dans G/H une loi de composi-
tion telle que l'application canonique de G sur G/H soit un
homomorphisme. Muni de cette loi, G/H est alors un groupe, le
groupe quotient de G par le sous-groupe distingué f1.

Par exemple, I'ensemble Z des nombres entiers rationnels
muni de 'addition ordinaire est un groupe abélien; n étant un
nombre entier rationnel positif ou nul, I’ensemble des multiples
entiers de n constitue un sous-groupe Z, de Z, évidemment
distingué; le groupe quotient Z/Z, est isomorphe a Z quand n
est nul et il est d’ordre fini n quand n est positif.

Considérons n ensembles non vides G,, G,, ..., G,; leur
produit est, par définition, ’ensemble des systémes (ay, @,, ...,
a,) oua;eG;1=1,2,...,n Lorsque les &; sont des groupes,
on peut munir ce produit de la loi de composition suivante:

(al,az,...,an)(bl,bz,...,bn) = (al bl ,azbz,...,anbn)
avec a;,b;eG;, i =1,2,...,n.

On obtient ainsi un groupe appelé produit direct de Gy, G,, ...,
G, et noté Gy X G, X ... XG,. Pour tout indice 7, désignons par
e; élément neutre de G;; &k étant un indice fixé, ’ensemble des
éléments (a,, a@,, ..., a,) de Gy XG,X ... xG, pour lesquels
a; = e; quel que soit i # k est un sous-groupe distingué de
G, XG,X ... xG,, isomorphe & G,. On assimile souvent ce sous-
groupe a G;. Alors le groupe quotient de Gy X G, X ... X G, parG,
est isomorphe au produit direct des groupes G; pour lesquels ¢ # .

2) Anneau. Corps

Un anneau A est un ensemble satisfaisant les conditions
suipantes:
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a) Il est muni d’une premiére Joi de composition interne pour
laquelle il constitue un groupe abélien. On convient
généralement de noter cette loi additivement:

(a,b) »>a+b, a,b,a+beA,

et d’en désigner I’élément neutre par o.

b) I est muni d’une deuxiéme loi de composition interne
associative, commutative ou non. Cette loi est générale-
ment notée multiplicativement: (a, b) — ab, a, b, ab € A.

¢) La multiplication est distributive & gauche et & droite par
rapport & I'addition:

a(b+c) = ab+ac

(b+c)a = ba+ca Va,b,ced.

Cela implique, en particulier, que ao = oa = o0, Va € A. L’anneau
A est dit commutatif lorsque la multiplication y est commuta-
tive: ab = ba, ¥V a, b € A. A est un anneau d’intégrité lorsqu’il est
un anneau commutatif et que les conditions a # o, b # o,
a, b e A impliquent ab # o. Dans un anneau A, un élément
différent de o est appelé élément unité lorsqu’il est neutre &
gauche et & droite vis-a-vis de la multiplication dans A. Lorsqu’un
tel élément existe dans A4, il est unique et on le désigne par 1.

Un corps K est un anneau tel que I'ensemble K* des éléments
de K différents de o constitue un groupe vis-a-vis de la multi-
plication existant dans K. Un corps non commutatif est dit
gauche. Dans le groupe abélien additif sous-jacent au corps K,
Iélément 1 engendre un groupe isorrorphe & un groupe Z/Z,.
L’entier rationnel positif ou nul n est la caractéristique du corps
K. Ainsi un corps est de caractéristique nulle quand ’élément
unité y est d’ordre infini relativement & ’addition. Lorsque la
caractéristique est finie, elle est un nombre premier. A titre
d’exemples, I’ensemble des nombres rationnels constitue un corps
Q, celul des nombres réels constitue un corps R, relativement &
Vaddition et la multiplication ordinaires. Ces deux corps sont
commutatifs et de caractéristique nulle.

Deux corps K et K’ sont dits tsomorphes lorsqu’il existe une
application f de K sur K’ telle que f(a+b) = f(a)-+/(b) et
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f(ab) = f(a)f(D), Va, b € K; I'application f, qui est bijective, est
un Lsomorphzsme de K sur K'.

Un sous-corps L d’un corps K est une partie de K constituant
un corps vis-a-vis de 'addition et de la multiplication existant
dans K; on dit encore que K est une extension de L. 1’intersec-
tion de tous les sous-corps de K est un corps appelé corps pre-
mier de K. Le corps premier d’un corps de caractéristique nulle
est isomorphe au corps Q des nombres rationnels.

Soit L un sous-corps d’un corps K et soit £ une partie de K.
L’intersection des sous-corps de K contenant L et £ est un sous-
corps de K désigné par L(FE): ¢’est 'extension de L obtenue en
adjoignant E & L. Une extension de L est de type fini lorsqu’il est
possible de I'obtenir en adjoignant & L un ensemble fini. Elle
est de fype infint dans le cas contraire.

Une valuation (réelle) d’un corps K est une application
T~ |x) de K dans ’ensemble des nombres réels positifs ou nuls
satisfaisant les conditions suivantes:

a) |x| =0eR<ex =0ek,
b) Ixyl =1Ix]lyl, Vx,yeKk,
¢ Ix+yl=max (x|, [y]D, Vx,yekK.

On voit immédiatement que 11] = 1. La valuvation considérée

est dite banale lorsque 'xl =1 pour tout élément x de K
différent de o.

3) Espace vectoriel

Un espace vectortel V sur un corps commutatif K est un en-
semble satisfaisant les conditions suivantes:

a) V est muni d’une loi de composition interne pour laquelle
il constitue un groupe abélien; nous le noterons additive-
ment et nous désignerons son élément neatre par O.

b) Il existe une application du produit de K et V dans V:
(a, X) = aX, telle que:
1° a(X+Y) = aX +a¥,
2° (a+b)X = aX+DbX,
3% a(bX) = (ab) X . ‘
4% 1X =X, Va,beK,¥VX,YeV.

PrRrey AR W s
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Les éléments de V sont appelés vecteurs; ceux de K sont les
scalaires. On voit immédiatement que 0X = a0 =0, ¥ X eV,
¥ a € K; réciproquement, e X = 0, acK, XeV impliquent a = o,
ou X = 0. g

Deux espaces vectoriels V et V' considérés respectivement
sur deux corps commutatifs K et K’ sont isomorphes s’1l existe
un isomorphisme f du groupe additif sous-jacent a V sur celui
de V’ et un isomorphisme g du corps K sur K’ tels que:

faX) = g(a)f(X), VaeK, FXeV.

Lorsque K et K’ coincident, on peut prendre pour g 'automor-
phisme identique de K. Un isomorphisme de V sur lui-méme est
un automorphisme: 1.’ ensemble des automorphismes de V consti-
tue un sous-groupe du groupe des permutations de ’ensemble V.
En particulier, & tout élément a différent de o dans K on peut
associer un automorphisme de V appelé homothétie de rapport a
et défini par X — aX.

r vecteurs X, X,, ..., X, de V sont dits linéairement indé-
pendants lorsque toute relation a, X 4a,X,+ ... +a, X, = O,

avec a;€¢ K, 1 =1, 2,..., r, implique ¢; = a, = ... = a, = o.
S’1l existe un entier naturel n tel que 'on puisse trouver n
vecteurs linéairement indépendants F,, E,, ..., E, dans V,

mais que l’on ne puisse pas y trouver (n+1) vecteurs linéaire-
ment indépendants, V est dit de dimension finie n sur K. Tout
élément de V peut alors s’exprimer d’une maniere unique sous
forme d’une combinaison linéaire des vecteurs E,, E,, ..., K, &
coefficients dans K. Les n vecteurs E, constituent une base de V.

A titre d’exemple, considérons un corps commutatif K; ’en-
semble K" obtenu en faisant le produit de n exemplaires de 1’en-
semble K peut étre muni naturellement d’une structure d’espace

vectoriel sur K; il suffit de poser:

(a1 ,az,...,an) +(b1,b2,...,bn) - (al +b1,(12'+b2, ...,a,1+b’1),
clag,a5,...,a,) = (ca, ,ca,,...,ca,);
a;,b;,,ceK;i=1,2,...,n.

(Pest un espace vectoriel de dimension n sur K que 'on désigne
encore par K" On peut en former une base en prenant, par
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exemple, les n vecteurs £, = (8,4, 054 ..., 6,3, 0 =1, 2, ..., n,
ou 6, est le symbole de Kronecker, désignant 1 quand r = s et
o quand r # s. Tout espace vectoriel de dimension n sur K est
isomorphe a K".

Soit L un sous-corps d’un corps commutatif K. On peut
considérer K comme un espace vectoriel sur L. Lorsque K est,
en tant qu’espace vectoriel, de dimension finie sur L, on dit que
K est une extension finie de L. On dit que K est une extension
algébrigue de L si, quel que soit teK, le corps L(f) obtenu en
adjoignant ¢ a L est une extension finie de L. Une extension non
algébrique est dite transcendante. Par exemple, le corps C des
nombres complexes est une extension finie du corps R des
nombres réels. Le corps des nombres algébriques est une exten-
sion algébrique de type infini du corps Q des nombres rationnels.
Le corps R est une extension transcendante de type infini du
corps Q. Enfin le corps R(z) des fractions rationnelles & une
variable x et & coefficients réels est une extension transcendante
de R de type fini.

Soit ¥V un espace vectoriel de dimension finie n sur un corps
commutatif K de caractéristique différente de 2. Une forme
bilinéaire B sur V est une application du produit de V par lui-
méme dans K: (X, Y) » B(X, Y), X, YeV, B(X, Y)eK, telle
que:

B(aX,+bX,,Y) = aB(X,,Y) + bB(X,,Y),
B(X,CYl +dY2) == CB(X, Yl) + dB(X, Yz),
Va,b,c,deK; VX ,X,,X,,Y, Y, Y,eV.

B est dite symétrique si B(X, Y) = B(Y, X), VX, YeV. De plus,
elle est dite réguliére si, Y étant fixé dans V, la condition
B(X, Y) = o0, ¥V XeV implique Y = O.

Une forme quadratiqgue @ sur V est une application de V dans
K telle que:

@ (aX) = a* d(X), VaeK, FXeV.
et que

CX,Y) =3[®(X+Y)—@(X) - d(V)], X,YeV,
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soit une forme bilinéaire symétrique sur V. La forme quadratique
® est dite réguliére lorsque C est réguliére. L’ensemble des auto-
morphismes s de V qui laissent @ invariante, c¢’est-a-dire tels
que:

&(s(X),s(Y)) = d(X,Y), VX,YeK,

constitue un sous-groupe du groupe des automorphismes de V:
le groupe orthogonal attaché a la forme ¢ sur le corps K, que I'on
note O(K, ®). Dans le cas particulier ott K est un sous-corps du
corps des nombres complexes, ou l'on identifie V' avec K", et
ou la forme quadratique @ est donnée par:

o (X) = fo, X =(xy,%,...,%,), X €K,
i=1

on convient souvent de remplacer la notation O(K, @) par
O(n, K).

4) Quelques notions topologiques

On dit d’un ensemble E qu’il est muni d’une topologie ou
encore qu’il est un espace topologique lorsqu’on y a déterminé
une famille ./ de parties dites ouvertes telle que:

a) La réunion d’une famille quelconque de parties ouvertes
de E est un élément de /.

b) L’intersection d’une famille finie de parties ouvertes de
E est un élément de /.

Conformément a 'usage, nous admettrons que la réunion d’un
ensemble vide de parties de £ est la partie vide @ de E; par
suite, I'intersection d’un ensemble vide (considéré comme fini)
de parties de £ est £ lui-méme. Ainsi,  contient & et £. Deux
topologies J et 7 'relatives & un méme ensemble E sont identiques
lorsque les familles .# et .4’ des parties ouvertes auxquelles
elles sont attachées coincident.

Considérons un ensemble £ et une famille quelconque % de
parties de E. Désignons par . la famille des parties de E qui
peuvent étre obtenues par réunion d’intersections finies d’élé-
ments de Z. Si 'on qualifie d’ouverte toute partie de E appar-
tenant & .4, on voit que les conditions a) et b) sont satisfaites.
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La topologie ainsi déterminée est dite engendrée par 4. 11 résulte
de ces considérations que tout ensemble comportant plus d’un
élément peut étre muni de plusieurs topologies non identiques.
On appelle base d’une topologie  sur un ensemble F toute famille
# de parties de E telle que la topologie engendrée par # soit
identique a 7.

Un espace métrique E est un ensemble dans lequel il existe
une distance, ¢’est-a-dire une application d du produit de £ par
lui-méme dans I’ensemble des nombres réels positifs ou nuls,
telle que:

1° d(x,y) =o<ex =y, x,yeE,
2° d(x,y) =dy,x), Vx,yek,
3° d(x,y)=d(x,z) +d(z,y) Vx,y,zeE.

Soit @ un élément de £ et r un nombre réel positif; la boule
ouverte de centre a et de rayon r est 'ensemble des éléments x de
E tels que d(a, ) < r. La topologie de £ admettant pour base
I’ensemble des boules ouvertes est la topologie associée d la
distance d.

Un espace topologique muni d’une topologie J est dit métri-
sable lorsqu’il est possible d’y introduire une distance d telle que
la topologie associée & d soit identique a 7.

Soit £ un espace métrique muni d’une distance d. Une suite
d’éléments de E: xq, 25, ..., Z,, ... converge vers un élément y
de E si, & tout nombre réel ¢ > o0, on peut associer un nombre
naturel N(e) tel que n > N(e) implique d(z,, y) < ¢; une telle
suite est dite convergente dans E. Une suite z,, x,, ..., 2, ... est
dite sutte de Cauchy si, a tout ¢ > o, on peut associer un nombre
naturel M(e) tel que n > M(e) et p > M(e) impliquent
d(z,, z,) < e&. On voit facilement que, dans I'espace métrique
E, toute suite convergente est une suite de Cauchy. La réciproque
peut n’étre pas vraie. L’espace métrique £ est dit complet
lorsque toute suite de Cauchy y est convergente.

Soit G un groupe abélien noté additivement. Une distance d
existant dans G est dite imvariante lorsque, quels que soient
x, y et z dans G, d(z-+z, y+2z) = d(z, y). Un groupe abélien méiri-
sable G est un ensemble muni d’une part d’une structure de
groupe abélien, et d’autre part d’une structure topologique
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susceptible d’étre définie par une distance invariante relative-
ment a la structure de groupe abélien existant dans G.

A titre d’exemple, considérons le groupe additif R* des
nombres réels; fx! désignant la valeur absolue ordinaire- dans
R*, on introduit une distance invariante dans R™ en posant:
d(z, y) = lxyl Cette distance fait de ’ensemble R des nombres
réels un espace métrique complet. Relativement a 'addition
et & la structure topologique considérée, R™ est un groupe abélien
métrisable complet. Si 'on substituait & R™ le sous-groupe Q7
des nombres rationnels muni de la méme distance d, on obtien-
drait un groupe abélien métrisable non complet.
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