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Appendice

Bref rappel des définitions des notions utilisées

Les notices qui suivent ont pour but de rappeler quelques faits
mathématiques utilisés plus haut. Certains d'entre eux pourraient
être énoncés sous une forme beaucoup plus générale. Les hypo-
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thèses restrictives où nous nous plaçons et qui sont satisfaites

dans le texte précédent permettent d'éviter des développements

qui n'auraient pas leur place ici. Pour des exposés plus circonstanciés,

on peut se reporter, par exemple, à [19], puis au traité
de N. Bourbaki.

1) Groupe

Un groupe G est un ensemble non vide dans lequel il existe

une loi de composition interne faisant correspondre à tout
couple ordonné (a, b) d'éléments de G un élément de G appelé

produit de a et 6, noté ab, moyennant les conditions suivantes:

a) Cette loi de composition est associative:

a (bc) (ab) c Va b c e G

b) Il existe dans G un élément neutre bilatère e relativement
à la loi de composition considérée:

ea ae a Va e G

c) Tout élément a de G possède un inverse bilatère dans G

pour la loi de composition considérée, élément noté a-1 :

Va e G 3a'1 e G : aa~1 a~l a e

On montre facilement que, dans le groupe G, il n'existe qu'un
seul élément neutre et que tout élément n'y possède qu'un seul

inverse. Cela implique que, quels que soient a et b dans G, les

équations ax — b et xa b possèdent chacune une solution bien
déterminée en x dans G.

Soit A et B deux parties non vides d'un groupe G; on note
AB l'ensemble des éléments de G delà forme aô, où aeA et beB.

Lorsque ceG, on convient de mettre cA et Ac pour {c}A et A{c},
respectivement. On écrit A2 au lieu de A A et plus généralement
An au lieu de AAn~\ n étant un entier naturel plus grand que 1.

On note A"1 l'ensemble des inverses des éléments de A.
Une partie g d'un groupe G est un sous-groupe de G lorsqu'elle

est un groupe vis-à-vis de la restriction à g de la loi de composition
interne existant dans G. La condition nécessaire et suffisante

L'Enseignement mathém., t. X, fasc. 1. 8
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pour que la partie non vide g de G soit un sous-groupe de G est
donnée par gg~x g.

Un groupe composé d'un nombre fini n d'éléments est dit
d'ordre fini n\ un groupe est dit d'ordre infini lorsqu'il comporte
une infinité d'éléments. Prenons un élément a dans un groupe G

d'élément neutre e; l'ensemble des puissances de a, c'est-à-dire
a0 e, ak, a~~k (a-1)\ où k 1, 2, 3,..., constitue un sous-groupe
ga de G. Par définition, l'ordre de a est l'ordre du groupe ga. En
particulier, a est dit involutif quand il est d'ordre 2.

A titre d'exemple, appelons permutation d'un ensemble non
vide E toute application biunivoque de E sur lui-même; le produit

ab de deux permutations a ei b de E est la permutation de

E obtenue en composant b et a, dans l'ordre. L'ensemble des

permutations de E constitue un groupe pour la loi de composition
indiquée. Lorsque E est un ensemble fini de n éléments, le

groupe des permutations de E est le groupe symétrique de degré n;
il est d'ordre r(n+ 1) 1.2.3 n.

Une application / d'un groupe G dans (sur) un groupe G' est

un homomorphisme de G dans (sur) G' lorsque f(ab) /(a)/(à),
quels que soient a et b dans G. Le noyau de l'homomorphisme /
est l'ensemble f~1{e/) des éléments de G envoyés sur l'élément
neutre e' de G'. L'image f(G) est un sous-groupe de G'. Lorsque
le noyau de / se réduit à l'élément neutre de G et que f(G) G',

f est un isomorphisme de G sur G'. Un homomorphisme de G dans

lui-même est un endomorphisme de G. Un isomorphisme de G sur
lui-même est un automorphisme de G. Si / et g sont deux auto-
morphismes de G, fg est aussi un automorphisme de G. Muni
de cette loi de composition, l'ensemble des automorphismes de G

constitue un groupe dont l'élément neutre est l'automorphisme
identique — ou banal — de G.

Soit a un élément du groupe G. L'application:

a: x->a~1xa, VxeG, (1)

est un automorphisme de G appelé automorphisme intérieur de G

associé à a. Une partie P de G commute avec a lorsque a(P) P.
En particulier, un élément à de G commute avec a lorsque ab

ba. Le normalisateur de a dans G est le sous-groupe formé des
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éléments de G commutant avec a. Une partie de G est distinguée

quand elle commute avec chaque élément de G. Deux parties
de G sont dites conjuguées lorsqu'il existe un automorphisme
intérieur de G envoyant l'une sur l'autre. L'application qui, à

tout élément a de G associe l'automorphisme intérieur de G

défini par (1) est un homomorphisme (p de G dans le groupe
des automorphismes de G. Le noyau de (p est le centre de G.

Lorsque le centre de G est confondu avec G, G est dit commutatif
ou abélien. D'une façon générale, on peut affirmer que le noyau
d'un homomorphisme de G dans un groupe quelconque est un

sous-groupe distingué de G.

Soit H un sous-groupe d'un groupe G. Deux éléments a et b

de G sont dits congrus (à gauche) relativement à H lorsque aH —

bH, et l'on note alors a b (mod H). On détermine ainsi dans G

une relation d'équivalence compatible avec la multiplication à

gauche dans G; autrement dit, a b (mod H) implique ca cb

(mod H), VceG. Les classes d'équivalence introduites par cette
relation dans G sont les classes (à gauche) de G relativement à H.
Elles constituent un ensemble noté GjH et appelé espace homogène

(à gauche) attaché au sous-groupe H de G. Lorsque GjH
est un ensemble fini, le nombre de ses éléments est Y indice de H
dans G; on dit que H est d'indice infini dans G quand GjH
comporte une infinité d'éléments. Uapplication canonique de G

sur GjH est celle qui, à tout élément a de G, associe la classe

(à gauche) de G relativement à H contenant a, que l'on peut noter
aH.

A tout élément 5 de G on peut attacher une permutation sl
de G/H en posant:

% : xH -> sxH Vx e G

L'application s s± est un homomorphisme y de G dans le

groupe des permutations de GjH. L'image y (G) est un groupe
transitif de permutations de GjH\ autrement dit, pour tout
couple d'éléments de GjH, on peut trouver dans y (G) une permutation

envoyant le premier sur le deuxième. On traduit cela en
disant que G agit transitivement dans GjH. Les groupes G et
y(G) sont isomorphes lorsque l'intersection dés conjugués de H
dans G se réduit à l'élément neutre de G ou, ce qui revient au
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même, quand H ne contient aucun sous-groupe distingué de G

autre que celui qui se réduit à l'élément neutre. On dit alors

que G agit effectivement dans G/H.
Les définitions précédentes, qui conduisent à la notion d'espace

homogène à gauche, peuvent être reprises « à droite »: H étant
un sous-groupe de G, il suffit de considérer comme équivalents
deux éléments a et b de G tels que Ha Hb. Toutefois lorsque
H est un sous-groupe distingué de G les équivalences à gauche
et à droite relativement à H coïncident dans G. On peut alors,
d'une manière unique, introduire dans GfH une loi de composition

telle que l'application canonique de G sur GfH soit un
homomorphisme. Muni de cette loi, GfH est alors un groupe, le

groupe quotient de G par le sous-groupe distingué H.
Par exemple, l'ensemble Z des nombres entiers rationnels

muni de l'addition ordinaire est un groupe abélien; n étant un
nombre entier rationnel positif ou nul, l'ensemble des multiples
entiers de n constitue un sous-groupe Zn de Z, évidemment
distingué; le groupe quotient Z\Zn est isomorphe à Z quand n
est nul et il est d'ordre fini n quand n est positif.

Considérons n ensembles non vides Gu G2, Gn; leur
produit est, par définition, l'ensemble des systèmes {au a2l
an) où at e Gu i — 1, 2, n. Lorsque les Gf sont des groupes,
on peut munir ce produit de la loi de composition suivante:

(al9a2 ,an)(b1 9b2 ,bn) (ai bt ,a2b2, ,anbn)

avec at, bt e Gt, i 1,2,...,«.
On obtient ainsi un groupe appelé produit direct de Gu G2l
Gn et noté G1xG2x xGn. Pour tout indice i, désignons par
et l'élément neutre de Gt; k étant un indice fixé, l'ensemble des

éléments (au a2j an) de G1xG2X xGn pour lesquels

at e-t quel que soit i ^ k est un sous-groupe distingué de

G1xG2X xGn, isomorphe à Gk. On assimile souvent ce sous-

groupe à Gk. Alors le groupe quotient de G1xG2x XGn parGk
est isomorphe au produit direct des groupes G t pour lesquels i # k.

2) Anneau. Corps

Un anneau A est un ensemble satisfaisant les conditions
suivantes:
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a) Il est muni d'une première loi de composition interne pour
laquelle il constitue un groupe abélien. On convient

généralement de noter cette loi additivement :

(a 9b) -> a Ab a ,b a Ab e A

et d'en désigner l'élément neutre par o.

b) Il est muni d'une deuxième loi de composition interne

associative, commutative ou non. Cette loi est généralement

notée multiplicativement : (a, b) ab, a, b, ab e A.

c) La multiplication est distributive à gauche et à droite par
rapport à l'addition:

a(b Ac) — ab Aac „ 7

/TV r
Va ,b ,ceA.

(b Ac) a baAca

Cela implique, en particulier, que ao oa o, Va e A. L'anneau
A est dit commutatif lorsque la multiplication y est commutative:

ab — ba, V a, b e A. A est un anneau d; intégrité lorsqu'il est

un anneau commutatif et que les conditions a ^ o, b ^ o1

a, b e A impliquent ab ^ o. Dans un anneau A, un élément
différent de o est appelé élément unité lorsqu'il est neutre à

gauche et à droite vis-à-vis de la multiplication dans A. Lorsqu'un
tel élément existe dans A, il est unique et on le désigne par 1.

Un corps K est un anneau tel que l'ensemble K* des éléments
de K différents de o constitue un groupe vis-à-vis de la
multiplication existant dans K. Un corps non commutatif est dit
gauche. Dans le groupe abélien additif sous-jacent au corps K,
l'élément 1 engendre un groupe isomorphe à un groupe ZjZn.
L'entier rationnel positif ou nul n est la caractéristique du corps
K. Ainsi un corps est de caractéristique nulle quand l'élément
unité y est d'ordre infini relativement à l'addition. Lorsque la
caractéristique est finie, elle est un nombre premier. A titre
d'exemples, l'ensemble des nombres rationnels constitue un corps
Ç, celui des nombres réels constitue un corps i?, relativement à

l'addition et la multiplication ordinaires. Ces deux corps sont
commutatifs et de caractéristique nulle.

Deux corps K et K' sont dits isomorphes lorsqu'il existe une
application / de K sur K' telle que f(a+b) f{a)+f{b) et
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f(ab) f(a)f(b), Fa, b e K; l'application /, qui est bijective, est

un isomorphisme de K sur Kr.
Un sous-corps L d'un corps K est une partie de K constituant

un corps vis-à-vis de l'addition et de la multiplication existant
dans K\ on dit encore que K est une extension de L. L'intersection

de tous les sous-corps de K est un corps appelé corps
premier de K. Le corps premier d'un corps de caractéristique nulle
est isomorphe au corps Q des nombres rationnels.

Soit L un sous-corps d'un corps K et soit E une partie de K.
L'intersection des sous-corps de K contenant L et E est un sous-

corps de K désigné par L(E): c'est l'extension de L obtenue en

adjoignant E k L. Une extension de L est de type fini lorsqu'il est

possible de l'obtenir en adjoignant à L un ensemble fini. Elle
est de type infini dans le cas contraire.

Une valuation (réelle) d'un corps K est une application
x -» \x\ de K dans l'ensemble des nombres réels positifs ou nuls
satisfaisant les conditions suivantes:

a) \x\=oeRox=oeK,
b) \xy | \x j | y | Vx ,yeK
c) | x + y | ^max (| x | | y |), Vx,yeK.

On voit immédiatement que |l| 1. La valuation considérée
est dite banale lorsque \x\ 1 pour tout élément x de K
différent de o.

3) Espace vectoriel

Un espace vectoriel V sur un corps commutatif K est un
ensemble satisfaisant les conditions suivantes:

a) V est muni d'une loi de composition interne pour laquelle
il constitue un groupe abélien; nous le noterons additive-
ment et nous désignerons son élément neutre par O.

b) Il existe une application du produit de K et V dans V:
(a, X) aX, telle que:

1° a(X + Y) aX + aY,
2° (a+b)X =aX + bX,
3° a(bX) (ab) X
4° IX X, Va b e K VX } Y eV,
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Les éléments de F sont appelés vecteurs; ceux de K sont les

scalaires. On voit immédiatement que oX aO O, VX e V,

V a e K; réciproquement, aX 0, aeK, XeVimpliquent a o,

ou X 0.
Deux espaces vectoriels V et V considérés respectivement

sur deux corps commutatifs K et K' sont isomorphes s'il existe

un isomorphisms / du groupe additif sous-jacent à V sur celui
de V' et un isomorphisme g du corps .K sur K' tels que:

f(aX) g (a)f(X), Va e K VX e V.

Lorsque K et K' coïncident, on peut prendre pour g l'automor-
phisme identique de K. Un isomorphisme de V sur lui-même est

un automorphisme; L'ensemble des automorphismes de V constitue

un sous-groupe du groupe des permutations de l'ensemble V.

En particulier, à tout élément a différent de o dans K on peut
associer un automorphisme de V appelé homothétie de rapport a

et défini par X -> aX.
r vecteurs Xu X2, Xn de V sont dits linéairement

indépendants lorsque toute relation a1Xx-\ra2X2-\- ••• XarXr O,

avec atE K, i 1, 2, r, implique a 1 az ar o.

S'il existe un entier naturel n tel que l'on puisse trouver n
vecteurs linéairement indépendants Et, E2, En dans F,
mais que l'on ne puisse pas y trouver (n-\-1) vecteurs linéairement

indépendants, V est dit de dimension finie n sur K. Tout
élément de V peut alors s'exprimer d'une manière unique sous
forme d'une combinaison linéaire des vecteurs Eu E2, En à

coefficients dans K. Les n vecteurs E t constituent une base de F.
A titre d'exemple, considérons un corps commutatif A;

l'ensemble Kn obtenu en faisant le produit de n exemplaires de
l'ensemble K peut être muni naturellement d'une structure d'espace
vectoriel sur A; il suffit de poser:

(a1 a2 an) + (b1 b2 bn) (ax -h bx a2 + b2 p an + bn),

c(a1 ,a2 ,an) (ca1 ,ca2 can) ; ;

a%, bi9 c e K ; i 1 2 n j

C'est un espace vectoriel de dimension n sur K que l'on désigne S

encore par Kn. On peut en former une base en prenant, par j

I

1
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exemple, les n vecteurs Et (<5lf, S2i, ôHi), £ 1,2,...,^,
où ôrs est le symbole de Kronecker, désignant 1 quand r — «9 et
o quand r ^ s. Tout espace vectoriel de dimension n sur K est

isomorphe à Kn.

Soit L un sous-corps d'un corps commutatif K. On peut
considérer K comme un espace vectoriel sur L. Lorsque K est,
en tant qu'espace vectoriel, de dimension finie sur L, on dit que
K est une extension finie de L. On dit que K est une extension

algébrique de L si, quel que soit teK, le corps L(t) obtenu en

adjoignant t à L est une extension finie de L. Une extension non
algébrique est dite transcendante. Par exemple, le corps C des

nombres complexes est une extension finie du corps R des

nombres réels. Le corps des nombres algébriques est une extension

algébrique de type infini du corps Q des nombres rationnels.
Le corps R est une extension transcendante de type infini du

corps Q. Enfin le corps R(x) des fractions rationnelles à une
variable x et à coefficients réels est une extension transcendante
de R de type fini.

Soit F un espace vectoriel de dimension finie n sur un corps
commutatif K de caractéristique différente de 2. Une forme
bilinéaire B sur F est une application du produit de F par lui-
même dans K: (X, Y) B(X, T), X, 7eF, 5(X, Y)eK, telle

que:

B (aX1 + bX2 Y) aB(X1 Y) + bB(X2 Y),
B{X >cY1 +dY2) cB{X Yx) + dB(X Y2),

Va ,b ,c ,de K; VX X1 X2 Y, Y± Y2 e V.

B est dite symétrique si B(X, Y) B(Y, X), FX, YeV. De plus,
elle est dite régulière si, Y étant fixé dans F, la condition
j5(X, 7) — o, VXeV implique Y 0.

Une forme quadratique $ sur F est une application de F dans

K telle que:

<2> (aX) a2 $ (X), VaeK FX e F.

et que

C(X, 7) i|~jP(X + Y) - <P(X) - <P(7)], X, 7e F,
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soit une forme bilinéaire symétrique sur V. La forme quadratique
$ est dite régulière lorsque C est régulière. L'ensemble des auto-

morphismes s de V qui laissent $ invariante, c'est-à-dire tels

que :

4>(s(X),s(Y)) <P(X,Y), VX,YeK,

constitue un sous-groupe du groupe des automorphismes de V:
le groupe orthogonal attaché à Ja forme $ sur le corps K, que l'on
note 0(K, #). Dans le cas particulier où K est un sous-corps du

corps des nombres complexes, où l'on identifie V avec Kn, et

où la forme quadratique <£> est donnée par:

n

#(X) £x,2, X (x1 ,x2,xe K
1=1

on convient souvent de remplacer la notation 0(K, <P) par
0(n, K).

4) Quelques notions topologiques

On dit d'un ensemble E qu'il est muni d'une topologie ou

encore qu'il est un espace topologique lorsqu'on y a déterminé
une famille Ji de parties dites ouvertes telle que:

a) La réunion d'une famille quelconque de parties ouvertes
de E est un élément de Ji.

b) L'intersection d'une famille finie de parties ouvertes de

E est un élément de Ji.

Conformément à l'usage, nous admettrons que la réunion d'un
ensemble vide de parties de E est la partie vide 0 de E\ par
suite, l'intersection d'un ensemble vide (considéré comme fini)
de parties de E est E lui-même. Ainsi, Ji contient 0 et E. Deux
topologies ^et 3T' relatives à un même ensemble E sont identiques
lorsque les familles Ji et Jir des parties ouvertes auxquelles
elles sont attachées coïncident.

Considérons un ensemble E et une famille quelconque de

parties de E. Désignons par Ji la famille des parties de E qui
peuvent être obtenues par réunion d'intersections finies
d'éléments de Jt Si l'on qualifie d'ouverte toute partie de E appartenant

à Ji, on voit que les conditions a) et b) sont satisfaites.
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La topologie ainsi déterminée est dite engendrée par Il résulte
de ces considérations que tout ensemble comportant plus d'un
élément peut être muni de plusieurs topologies non identiques.
On appelle base d'une topologie ZT sur un ensemble E toute famille

de parties de E telle que la topologie engendrée par soit
identique à ZT.

Un espace métrique E est un ensemble dans lequel il existe
une distance, c'est-à-dire une application d du produit de E par
lui-même dans l'ensemble des nombres réels positifs ou nuls,
telle que:

1° d(x y) o o x y, x y eE,
2° d(x 9y) d(y 9x), Vx,yeE,
3° d(x y) d{x z) + d(z y) Vx,y,zeE.

Soit a un élément de E et r un nombre réel positif; la boule

ouverte de centre a et de rayon r est l'ensemble des éléments x de

E tels que d(a, x) < r. La topologie de E admettant pour base

l'ensemble des boules ouvertes est la topologie associée à la
distance d.

Un espace topologique muni d'une topologie 2T est dit métri-
sable lorsqu'il est possible d'y introduire une distance d telle que
la topologie associée à d soit identique à ZT.

Soit E un espace métrique muni d'une distance d. Une suite
d'éléments de E: xl7 x2l xn, converge vers un élément y
de E si, à tout nombre réel e > o, on peut associer un nombre
naturel N{s) tel que n > N{s) implique d(xn, y) < s; une telle
suite est dite convergente dans E. Une suite x1, %,..., xn est

dite suite de Cauchy si, à tout e > o, on peut associer un nombre
naturel M(s) tel que n > M{&) et p > M (s) impliquent
d(xm xp) < e. On voit facilement que, dans l'espace métrique
E, toute suite convergente est une suite de Cauchy. La réciproque
peut n'être pas vraie. L'espace métrique E est dit complet

lorsque toute suite de Cauchy y est convergente.
Soit G un groupe abélien noté additivement. Une distance d

existant dans G est dite invariante lorsque, quels que soient

x,y et z dans U, d{x-\-zr> y-\-z) d(x, y). Un groupe abélien métri-
sable G est un ensemble muni d'une part d'une structure de

groupe abélien, et d'autre part d'une structure topologique
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susceptible d;être définie par une distance invariante relativement

à la structure de groupe abélien existant dans G.

A titre d'exemple, considérons le groupe additif R+ des

nombres réels; \x\ désignant la valeur absolue ordinaire- dans
/? + on introduit une distance invariante dans R+ en posant:
d(x, y) \x-y|. Cette distance fait de l'ensemble R des nombres
réels un espace métrique complet. Relativement à l'addition
et à la structure topologique considérée, R+ est un groupe abélien
métrisable complet. Si l'on substituait à R+ le sous-groupe Q +

des nombres rationnels muni de la même distance d, on obtiendrait

un groupe abélien métrisable non complet.
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