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Dans 1(2,. A), un faisceau de première classe est Pensemble

des réflexions de L2 suivant les droites de A2 contenant un
même point de A2. Il existe deux familles de faisceaux de

seconde classe: les systèmes polaires et les faisceaux singuliers;
un faisceau singulier est constitué par les réflexions de L"
suivant les droites de A2 passant par un même point de L2

n'appartenant pas à A2.

Tout élément de 1(2, A) appartient à un seul système polaire.
On peut en déduire que la proposition 13, qui ne s'appuie que
sur cette partie de F axiome d;Euclide, est encore vraie ici. Il en
est de même de son corollaire. Nous avons donc construit un
exemple de géométrie satisfaisant les quatre premiers axiomes
ainsi que le corollaire de la proposition 13, mais ne vérifiant pas
l'axiome d'Euclide. De plus, dans le groupe GE(2, A)} chaque
réflexion appartient à une infinité de faisceaux de seconde
classe, dont un seul système polaire. Cela montre que Fon m'épuise

pas toutes les possibilités en énonçant les hypothèses a), b) et c)

indiquées au n° 2.1.

5. Axiomes de la géométrie euclidienne
à plus de deux dimensions

q.1. Désignons par (Af) ieJ la famille des corps réels contenant
la racine carrée de chacun de leurs éléments positifs, J étant un
ensemble convenable d'indices. Pour chaque entier naturel n
GE(n, Kt) désigne le groupe des isométries de l'espace K\
muni de la métrique euclidienne ordinaire. C'est un ZCgroupe
engendré par l'ensemble I(n, Kt) des réflexions par rapport aux
hyperplans dans K". Les axiomes considérés jusqu'ici
concernent les groupes GE(2, Kt). Nous nous proposons de
formuler un système d'axiomes caractérisant les groupes
GE(n, Kt), ieJ et n > 2.. Toutefois, pour utiliser les résultats
obtenus pour n ~ 2 et pour éviter des répétitions, nous
procéderons par récurrence sur n.

Auparavant, précisons quelques points. Soit (G, I) et (G', If)
deux ZNgroupes G et Gf respectivement engendrés par des
parties distinguées I et Ils seront dits «isomorphes en tant



— 86 —

que Ä-groupes » lorsqu'il existe un isomorphisme du groupe G

sur le groupe G' qui applique S sur Z'. Dans un iî-groupe
(G, Z), nous désignerons comme d'habitude par II(s) le système
polaire de la réflexion sel, c'est-à-dire l'ensemble des éléments
de II perpendiculaires à s, soit encore l'ensemble des réflexions
distinctes de 5 qui commutent avec elle. L'ensemble II(s)
engendre un iî-groupe n(s) appelé groupe polaire de 5, dans lequel
n(s) est distingué. En tant que iî-groupe, n(s) est toujours
considéré comme étant engendré par II(s).

Posons maintenant nos axiomes. Désignons par (G2, Z2) 1111

iî-groupe satisfaisant les sept axiomes P I à P VII; n étant un
entier naturel susceptible de prendre toutes les valeurs
supérieures à 2, considérons la famille de /^-groupes (G„, Zn)
satisfaisant les axiomes suivants:

Axiome E„ I. (G„, In) est un RI-groupe.

Axiome Ew II. Dans Zn1 Vintersection de deux systèmes polaires
contient une réflexion s dont le groupe polaire est isomorphe,
en tant que R-groupe, à un groupe (Gn_ls

Pour l'instant, il faut considérer l'expression (Gn>, Zn.)

comme une désignation générique. Nous montrerons que, pour
chaque valeur de n', il y a identité de l'ensemble des iî-groupes
(G/, Zn') avec celui des iî-groupes GE(n', iQ, avec ieJ.

La récurrence portera sur n\ que nous appellerons Y échelon.

Notons à ce propos qu'elle se présentera sous deux formes: la
récurrence « locale » intervenant au cours d'une démonstration
isolée; la récurrence « globale » par laquelle on affirme la validité
d'une proposition aux échelons inférieurs à n, réservant à plus
tard le soin de démontrer qu'elle est aussi vraie à l'échelon n.
Une telle hypothèse générale de récurrence sera repérée par une
lettre majuscule. Ainsi, pour commencer, nous admettrons qu'à
tout échelon n' tel que 2 ^ n! ^ n-1 :

(A) Il existe deux espèces de faisceaux dans Zn>. A tout élément

a d'un faisceau de première espèce & correspond un élément
de & perpendiculaire à a, et un seul. De deux éléments
distincts de on dit qu'ils se coupent ou qu'ils sont sécants;
ils possèdent exactement deux éléments bissecteurs. Un
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faisceau de deuxième espèce <P" ne contient pas de paire
d'éléments perpendiculaires. Deux éléments de sont dits
parallèles; quand ils sont distincts, ils admettent un élément
bissecteur unique.

Tous ces faits sont vrais pour n! 2 ; dans ce cas, les faisceaux
de première (resp. deuxième) espèce coïncident avec ce que

| nous avons appelé les faisceaux de première (resp. deuxième)
classe. Cependant, pour n' > 2, il convient de changer de

terminologie; on peut montrer que, quel que soit le faisceau <P dans

!n*% on peut trouver un faisceau disjoint de $.
L'axiome En II affirme, entre autres choses, qu'il existe dans

In une réflexion s dont le groupe polaire n(s) est isomorphe, en
tant queiï-groupe, à un certain groupe (G„_ x, 2n_ 1). Il est facile de

voir qu'il en est de même pour tout autre élément t de 2n. En
effet, d'après l'axiome En //, il existe une réflexion ^perpendiculaire

à s et £, et dont le groupe polaire est isomorphe, en tant
que iî-groupe, à un certain groupe (Gn-U Z„-i) qui satisfait
l'axiome de bissection, en vertu de (A). Il existe donc dans In
un élément bissecteur m de s et t. L'application X -» mXm
détermine visiblement un isomorphisme de n(s) sur n(t), au sens
des ZLgroupes.

On déduit d'abord de là que dans (£„, 2n) l'axiome de bissection

est satisfait. De plus, quand la réflexion s parcourt EnJ le

groupe polaire n(s) reste constamment isomorphe, en tant que
iLgroupe, au même groupe (Gn-U En-i)- Il en résulte, en
particulier, que dès que l'on choisit un exemplaire bien déterminé
dans la famille des groupes (£rt, 27„), on fixe en même temps
toute une chaîne de groupes (Gn', ln'), où 2 ^ n' ^n-l. Nous
pouvons alors considérer que chacun des symboles (Gn\ £„'), où
2 ^ n' désigne désormais un R-groupe bien déterminé.
D'autre part, nous pouvons remplacer l'axiome En II par
les deux axiomes suivants:

Axiome En' II. Lorsque s parcourt Zn, le groupe polaire n(s)
reste constamment isomorphe, en tant que R -groupe, au groupe
(Gn-1> Zn- l)'

Axiome E/ III. Dans Zn, Vintersection de deux systèmes polaires
rtest pas vide.
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Par la suite, nous noterons Gn> à la place de (Gy, Zn>) lors-
qu'aucune confusion n'en résultera. La possibilité de répartir
les faisceaux de Zn en deux espèces comme on le fait aux échelons
inférieurs va résulter de la proposition suivante.

Proposition 28. Soit a et b deux réflexions distinctes perpen¬
diculaires à un même élément u de Zn. Toute réflexion incidente
avec a et b est aussi perpendiculaire à u.

Montrons d'abord que u n'appartient pas à #(a, b). Désignons

par $(a, 6; u) le faisceau déterminé par a et b dans le système
polaire II(u). C'est aussi l'intersection de #(a, b) et n(u). Si u

appartenait à #(a, 6), uab serait dans #(a, b; u); par suite, a et b

seraient perpendiculaires (lemme prop. 11); comme l'élément
uab commute avec a et 6, il devrait coïncider avec l'une de ces

deux réflexions, contrairement aux hypothèses.
Comme u n'appartient pas à $(a, b) et qu'il est perpendiculaire

à a et è, on peut affirmer que tout élément de #(a, b) est

perpendiculaire à u (lemme prop. 5). C.Q.F.D.

Corollaire. Tout faisceau de Zn coincide avec un faisceau pris
dans un certain système polaire.

Par suite, toutes les propriétés que nous avons énoncées au
sujet des faisceaux dans Zn>, où n' varie de 2 à n-1, sont vraies dans

Znr et nous pouvons faire usage des désignations qui les concernent.

Par ailleurs, l'espèce d'un faisceau est invariante vis-à-vis
des automorphismes intérieurs de Gn.

5.2. Nous qualifierons de close toute partie de l'ensemble Z

engendrant un Rl-groupe (G, Z) qui est fermée pour la relation
d'incidence. La partie vide de Z et les parties de Z réduites à un
seul élément sont considérées comme closes. Les parties closes

C de Z qui comportent plus d'un élément sont caractérisées par
le fait suivant : si a et b sont deux éléments distincts de C, alors

$(a, b) est contenu dans C. Ainsi Z est. close, par exemple.
L'intersection d'une famille de parties closes de Z est close. La
clôture C(F) d'une partie F de Z est l'intersection des parties
closes de Z qui contiennent F. En particulier, nous désignerons
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par C(au a2l ar) la cloture d'un ensemble fini d'éléments au
a2, ar de 1. La proposition 28 peut s'énoncer en disant que,
dans Z„, tout système polaire est clos.

Nous allons admettre le fait suivant

(B) Quel que soit 5 dans Zn>, la clôture de II(s) u {s} est confondue

avec Z„r, où 2> — n' — n-t.

Le fait est manifestement vrai pour n' ~ 2. Dans ce cas, en effet,

n(s) est un faisceau de deuxième classe. La clôture de Il(s)u{s}
contient évidemment tous les faisceaux de première classe

auxquels appartient s, et par suite tous les éléments de Z2 qui
coupent s. Comme tout élément de Z2 appartient à un faisceau

déterminé par deux éléments de Z2 coupant s, II(s)u{s} est

confondu avec Z2.

Proposition 29. U intersection des systèmes polaires 77(a) et

JI(b) de deux éléments sécants & et b de Zn est un système

polaire dans 77(a) et dans 77(b).

Comme a et b se coupent, il existe dans #(a, b) un élément c

perpendiculaire à a. En vertu de la proposition 28, tout élément
perpendiculaire à a et b l'est aussi à a et c, et réciproquement.
L'ensemble des éléments de Zn perpendiculaires à a et c est
manifestement un système polaire dans 77(a). Il en est évidemment de

même dans 77(6). C.Q.F.D.

Proposition 30. La condition nécessaire et suffisante pour que
deux éléments de Zn soient parallèles est que leurs systèmes
polaires coincident.

Procédons par récurrence. Admettons que la proposition est
vraie aux échelons inférieurs à n. Nous savons qu'elle l'est à

l'échelon 2.

Soit a et b deux éléments parallèles de Zn. Il existe une
réflexion s perpendiculaire à a et b. Dans 77Q), a et b sont parallèles,

et l'hypothèse de récurrence que nous venons d'énoncer
permet d'affirmer que tout élément de II(s) perpendiculaire à
a l'est aussi à b. Donc l'ensemble des réflexions perpendiculaires
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à a et b contient s ainsi que le système polaire de s dans 11(a). Or
il résulte de la proposition 28 que l'intersection des systèmes
polaires de a et b est close. On peut alors déduire de l'hypothèse
de récurrence (B) que cette intersection se confond avec 11(a).
Par raison de symétrie 11(a) et 77(6) coïncident.

Réciproquement, deux réflexions a et b dont les systèmes
polaires coïncident sont parallèles, en vertu de la proposition 29.

C.Q.F.D.

Proposition 31. Soit a^s deux réflexions non perpendiculaires
dans Zn. La clôture de II(s) u{a} est Zn

Montrons d'abord que la clôture de II(s)u{s} est Zn. Prenons
dans Zn un élément quelconque u, que l'on peut supposer distinct
de s, sans restriction. Il existe dans II(s) un élément v perpendiculaire

à u. Soit m un élément bissecteur de s et v; il appartient
à ]a clôture de II(s)u{s}. D'autre part, la réflexion mum est

distincte de m, car m, qui n'est pas perpendiculaire à v, est
distinct de u. De plus, mum est perpendiculaire à s — mom.
Comme u appartient au faisceau $>(m, mum), il est contenu dans
la clôture de II(s)u{s}.

Soit maintenant une réflexion a non perpendiculaire à «9.

Lorsque a est parallèle à 5, les systèmes polaires de a et s coïncident

et i] résulte de ce qui précède que la clôture de II(s) u {a}
est Zn. Lorsque a coupe 5, il existe dans <P(a, s) un élément b

perpendiculaire à s et distinct de a, par hypothèse. Le faisceau
<P(a, b), qui contient s, est lui-même contenu dans la clôture de

77(s)u{a}. Il en résulte immédiatement que la clôture de

n(s)Kj{a} contient celle de U(s)u{s} et que, par suite, elle se

confond avec. Zn. C.Q.F.D.
Avant de passer aux propositions suivantes, formulons une

remarque. Dans Z2l Ü existe des couples de réflexions perpendiculaires.

Admettons que l'on puisse trouver n-i réflexions deux
à deux perpendiculaires dans 27„_ Soit s un élément quelconque
de Zn. Il existe dans II(s) n-i réflexions perpendiculaires deux à

deux. Nous pouvons donc affirmer qu'il est possible de trouver n
réflexions deux à deux perpendiculaires dans Zn, l'une d'elles
étant d'ailleurs arbitrairement choisie. Nous pouvons compléter
ce résultat.
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Proposition 32. Dans Zn, Vintersection des systèmes polaires
de (n-1) réflexions perpendiculaires deux à deux est un faisceau

de deuxième espèce.

L'affirmation est banale à l'échelon 2. Elle est vraie à l'échelon

3, où elle découle de la proposition 29. Admettons donc qu'elle a

été démontrée à l'échelon n-1. Désignons par au a2, an-i n-i
éléments de ^perpendiculaires deux à deux. L'intersection Aj de

17(0,-) et n{an^±), où / 1, 2, n-2, est un système polaire
dans iI(on_ Q en vertu de la proposition 29. L'intersection des

systèmes polaires 7T(o1), où i — 1, 2, o-l, se confond avec

celle des ensembles Ap où / 1, 2, n-2. Or cette dernière est

un faisceau de deuxième espèce <P" dans 7T(on_ Q en vertu de

l'hypothèse de récurrence. La conclusion découle du fait que
est aussi un faisceau de deuxième espèce dans ln. C.Q.F.D.

Corollaire. La condition nécessaire et suffisante pour que deux

réflexions soient parallèles dans In est que leurs systèmes

polaires aient en commun n-1 éléments perpendiculaires deux

à deux.

Proposition 33. Dans ln, Vintersection d'un faisceau de pre¬
mière espèce et d'un système polaire n'est pas çide.

La proposition est vraie à l'échelon 2. Admettons qu'elle a

été démontrée à l'échelon n-i, où n > 2 comme jusqu'ici. Soit
un faisceau de première espèce et 5 un élément quelconque de

In. Nous voulons prouver que l'intersection de & et II (s) n'est

pas vide. Remarquons d'abord que l'ensemble des réflexions
perpendiculaires à chaque élément de <P' est l'intersection des

systèmes polaires de deux éléments distincts de <$'. Or cette
intersection n'est pas vide (prop. 29).

Lorsque est entièrement perpendiculaire à s, il n'y a rien
à démontrer. Dans le cas contraire, il existe une réflexion u

perpendiculaire à tous ies éléments de <P' et coupant s (prop.
30). L'intersection de Il(s) et II(u) est un système polaire dans

n(u). Comme & est contenu dans U{u), l'hypothèse de récurrence

permet d'affirmer que l'intersection de II(s) et II(u)
n'est pas vide, d'où la conclusion. C.Q.F.D.
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Corollaire. Lorsqu'un faisceau de première espèce n'est pas
entièrement perpendiculaire à une réflexion s, il contient un
élément perpendiculaire à s et un seul.

Proposition 34. Le normalisateur N(s) d'une réflexion s de En

dans G„ est le R-groupe engendré par s et le système polaire
i7(s).

L'ensemble des éléments de N(s) de dimension 0 dans Gn

est 17(s)u{s}. Prenons dans N(s) un élément ab de dimension 1

dans Gn1 avec a, beZn. Lorsque s appartient au faisceau $(a, è),

on peut écrire ab s.sab; comme ab commute avec s, la réflexion
sab est dans IJ(s). Considérons alors le cas où s n'appartient pas
à $(a, b). Comme ab commute avec la réflexion sas est dans
<P(a, &), car sas.ab sbs eZn; d'autre part, elle est incidente avec
a et s. Si sas était distinct de a, s serait dans $(a, b) contrairement

à l'hypothèse. Par suite, a est perpendiculaire à 5, et b

aussi.
Procédons par récurrence sur la dimension dans Gn des

éléments de iV(s). Soit X un élément de N(s) de dimension n'
supérieure à 1 dans Gn, et admettons que l'on a prouvé que tout
élément de iV(s) de dimension positive n" inférieure à n' dans Gn

peut être mis sous la forme d'un produit de n"-|-1 éléments de

n(s)u{s}. Ecrivons X sous la forme abcY, où a, è, c eZn et où Y
est un élément de dimension n'-3 dans Gn. Les réflexions a, b et
c ne sont pas parallèles dans leur ensemble. On peut même
admettre que a et b se coupent, car dans le cas contraire on
remplacerait abc par ac.cbc. Le faisceau de première espèce
3>(a, b) contient au moins un élément d perpendiculaire à «9

(prop. 33). On peut alors poser X d.dab.c.Y dZ, où Z est

un élément de N(s) de dimension n'A dans Gn. En vertu de

l'hypothèse de récurrence, Z peut être obtenu en formant le

produit de n' éléments de TI(s)\j{s}. Donc X peut être considéré

comme le produit de ra' + l éléments de U(s)u{s}. C.Q.D.F.

Corollaire 1. Tout élément de N(s) de dimension r dans G„

peut se mettre sous la forme d'un produit de r+ 1 éléments de

ms)u{s}.
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Cela revient à dire que la dimension d'un élément de N(s)
est la même dans le/Ggroupe Gn et dans le /Ggroupe N(s). A
priori, si (G, I) et (G', Z') sont deux /^-groupes tels que Zr soit
contenu dans T, la dimension d'un élément A de G' calculée
dans G peut être inférieure à sa dimension dans G'.

La réflexion 5 n'appartient pas au groupe polaire n(s), car les

éléments de 1i(s) commutent avec chaque réflexion parallèle
à s, ce qui n'est pas le cas de «9. Donc n(s) est un sous-groupe
d'indice 2 dans N(s).

Corollaire 2. Tout élément d'un groupe polaire 7i(s) a même

dimension dans 7i(s) et dans G„.

5.3. Dans Gn,, où 2 n' n, nous appellerons conversion tout
élément égal au produit de n' réflexions perpendiculaires deux
à deux. Un tel élément est évidemment involutif. A l'échelon 2,
les conversions se confondent avec les demi-tours. D'autre part,
nous appellerons translation le produit de deux éléments parallèles

de Zn>.

Nous admettrons que les faits suivants ont été établis pour
tous les échelons n' allant de 2 à n-1 :

(C) Gnr ne contient pas d'élément involutif de dimension n'.

(D) Dans Gv, l'ensemble des conversions se confond avec celui
des éléments involutifs de dimension n'A.

(E) L'ensemble des éléments de (Gn,, Zn>) qui transforment
chaque élément de Zn' en un élément parallèle est formé des

conversions et des translations de Gn>.

Tous ces faits ont été vérifiés dans G2. Il résulte immédiatement

de l'hypothèse (D), de la proposition 34 et de son corollaire
1 qu'à l'échelon n toute conversion est de dimension nA.

Proposition 35. Le R-groupe Gn est de dimension n.

Nous savons que G2 est de dimension 2. Admettons qu'il
est prouvé que Gn_1 est de dimension nA.

Prenons une réflexion 5 dans Zn. En vertu de l'hypothèse de
récurrence, il existe dans le groupe polaire %{s) un élément A de
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dimension n-1. L'élément sA. est manifestement de dimension n
dans le normalisateur N(s) de 5. Il résulte du corollaire 1 de la
proposition 34 que la dimension de sA est aussi n dans Gn. Par
suite, Gn est de dimension n au moins. D'autre part, nous
observons que tout élément de dimension n dans N(s) est contenu
dans la classe s.n(s).

Soit X un élément quelconque de Gn. Plaçons-nous dans le

cas où il existe une réflexion u telle que v X~1uX coupe u.

Désignons par m l'un des éléments bissecteurs de u et v, et par a

l'élément de v) perpendiculaire à v. On peut poser X mY,
où Y appartient au normalisateur N(v) de v. Si Y est de dimension

inférieure à n1 X est de dimension zz, au plus. Si Y est de

dimension zz, il peut se mettre sous la forme Y vaZ, où Z est
de dimension zz-2 dans n(v). Comme les réflexions m, v et a sont
incidentes, l'élément X mva. Z est de dimension zz-1.

Il reste à considérer le cas où la transformation de Gn associée

à X envoie toute réflexion sur une réflexion parallèle. Prenons

une réflexion c et soit d X~lcX. Lorsque c et d sont confondus,
X est dans le normalisateur de c et sa dimension n'excède pas n.

Lorsque c et d sont distincts, désignons par e leur élément
bissecteur et posons X eU, où U est dans le normalisateur de d.

Les systèmes polaires de c, d et e coïncident. Par suite, les

restrictions au système polaire 11(d) des automorphismes
intérieurs de Gn associés à I et à 17 sont identiques. Il résulte de

l'hypothèse générale de récurrence (E) que U est de l'une des

formes V ou dV, où V est une conversion ou une translation
dans 7z(d). A cause de l'hypothèse (D), la dimension de U ne

dépasse pas n-1, et celle de X ne dépasse pas n.
De tout cela il résulte que Gn est de dimension n. C.Q.F.D.

Pour tout échelon n' allant de 2 à z?, nous appellerons gerbe

associée à la conversion S et nous noterons F(S) l'ensemble des

éléments de Zn> qui commutent avec S. Un tel ensemble
contient plus d'un élément car si S a1a2 an., où les at sont des

réflexions perpendiculaires deux à deux, r(S) contient au
a2, an>. A l'échelon 2, la gerbe r(S) est le faisceau de

première classe autour duquel opère le demi-tour S (coroll. 2,

prop. 17).
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Proposition 36. Dans Zn, une gerbe ne contient pas d'éléments

parallèles distincts.

Soit r(S) la gerbe associée à une conversion S de Gn,.et soit

a un élément de T(S). S appartient au normalisateur de a.

Comme il n'existe pas d'élément involutif de dimension n-1 dans

le groupe polaire n(a) (hypothèse (C) S est de la forme S aS':

où S' est une conversion dans 71(a) (hypothèse (D)
Prenons une réflexion a' parallèle à a, mais distincte de a.

Comme S' commute avec a':

Sa'S aS'.a'.S'a aa'a ^ a'

Par suite, a' n'appartient pas à F(S). C.Q.F.D.

Corollaire. Toute conversion S de Gn peut se mettre sous la

forme S *= aS', où a est un élément arbitrairement choisi dans

la gerbe T(S), et où S' est une conversion dans 7r(a).

Proposition 37. Toute gerbe de In est close.

Prenons deux éléments distincts a et b dans la gerbe T(S)
associée à une conversion S. En vertu de la proposition 36, le

faisceau $(a, b) est de première espèce; il contient donc un
élément bien déterminé c perpendiculaire à a. Comme la
transformation par S conserve l'incidence et la perpendicularité dans

Zn7 et comme S commute avec a et 6, S commute aussi avec c.

Donc c est dans T(S). En vertu du corollaire de la proposition 36,
on pose S aS\ où S' est une conversion dans 71(a). S'
commute avec c et sa dimension dans Gn est n-2. On peut donc
mettre S' sous la forme S' cS", où S" est dans le groupe polaire
associé à c dans le système polaire 11(a). S" est un produit de
réflexions perpendiculaires à la fois à a et à c, et par suite
perpendiculaires à tous les éléments du faisceau <P(a, c). Ainsi S"
commute avec chaque élément de <P(a7 c). Il en est de même
d'ailleurs de ac, car a et c sont perpendiculaires. Il s'ensuit que
S acS" commute avec chaque élément du faisceau $(a, c). Donc
0(a7 è), qui est confondu avec #(a, c), est contenu dans T(S).

C.Q.F.D.
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Proposition 38. Quelles que soient la gerbe F et la réflexion a

dans In1 r contient un élément parallèle à a et un seul.

La proposition est vraie à l'échelon 2. Admettons qu'elle
a été établie à l'échelon n-1.

Prenons deux éléments distincts u et v dans la gerbe F. Le
faisceau de première classe <P(u, v) est contenu dans F et il
contient une réflexion s perpendiculaire à la réflexion donnée a.

Désignons par S la conversion à laquelle est attachée T. On

peut poser S sS', où Sf est une conversion dans le groupe polaire
n(s). L'intersection du système polaire II(s) et de la gerbe F est

l'ensemble des éléments de II(s) qui commutent avec Sf. C'est
donc une gerbe JHS dans II(s). En vertu de l'hypothèse de récurrence,

Fs contient un élément a' parallèle à a. Ce qui démontre
l'existence dans F d'une réflexion parallèle à a. L'unicité de cette
réflexion découle de la proposition 36. C.Q.F.D.

Corollaire 1. U intersection d'une gerbe et d'un système polaire
de In est une gerbe dans le système polaire.

En effet, comme on l'a vu en cours de démonstration,
l'intersection d'une gerbe F et du système polaire d'un élément s de r
est une gerbe dans TI(s). Or il résulte des propositions 30 et 38

que tout système polaire peut être déterminé par un élément
convenablement choisi dans T.

Corollaire 2. Une gerbe ne contient pas d'autre gerbe qu'elle-
même.

En effet, soit F1 et F2 deux gerbes telles que F2 CQ. S'il
existait dans rt un élément a non contenu dans P2, on pourrait
trouver dans F2 une réflexion a' parallèle à a et distincte de a,

ce qui contredirait la proposition 38.

Corollaire 3. L'application S T(S) définit une correspon¬
dance biunivoque entre l'ensemble des conversions et celui des

gerbes dans G„.

Il suffit de montrer que deux conversions S\ et S2 déterminant
la même gerbe F sont confondues. Le fait est vrai à l'échelon 2;
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admettons donc qu'il l'est aussi à l'échelon n-1. Prenons un
élément a dans T. On peut écrire S1 — aS1 et S2 aS2, où

S[ et S2 sont des conversions dans n(a). L'intersection de T
et du système polaire 11(a) est une gerbe associée à la fois à

S\ et à S'2 dans 11(a). En vertu de l'hypothèse de récurrence

Si S2 et, par suite, S1 S2.

Proposition 39. Soit ax, a2, a„ n réflexions perpendiculaires
deux à deux dans ln et soit S la conversion a^ a„. Tout
élément de la gerbe T(S) peut se mettre sous la forme d'un produit

d'éléments pris dans les faisceaux d?(ah a/+1), avec

i 1, 2, n-l.

La proposition est banale dans I2. Admettons qu'elle a été
démontrée pour toutes les dimensions inférieures à n. Prenons
dans T(S) un élément x que nous pouvons supposer différent de

au sans restriction. Soit b l'élément perpendiculaire à ax dans
le faisceau de première espèce i4>(a11 x); b appartient à la gerbe
T(S) n II(af) de II(a1). Si b est confondu avec a2, posons y t*? a2.
Sinon soit y l'un des éléments bissecteurs de b et a2. La réflexion
y appartient à T(S) n n(a1). En vertu de l'hypothèse de récurrence,

elle peut être mise sous la forme d'un produit d'éléments
pris dans les faisceaux <P(ah ai+1), où i 2, 3, n-1. Posons
alors: z yxy\ cet élément appartient au faisceau:

y<P (at ,x)y « y${al9b) y 0 (at a2).

La proposition résulte du fait que x yzy. C.Q.F.D.

5.4. Soit T(S) la gerbe associée à une conversion S de Gn et soit
a une réflexion quelconque. On voit facilement que aSa est une
conversion et que la gerbe qui lui est attachée n'est autre que
aT(S)a. Nous nous proposons d'examiner les transformations
ainsi définies dans l'ensemble des gerbes de ln. Mais auparavant
établissons quelques lemmes.

Lemme 1. Uintersection de deux gerbes n'est pas vide.

Il en est ainsi pour la dimension 2. Admettons que le fait
est prouvé pour la dimension n-1. Soit r et T' deux gerbes dans

L'Enseignement ma thém., t. X, fasc. 1. 7
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Zn. Prenons une réflexion 5. Les intersections respectives de

F et F' avec le système polaire 'II (s) sont des gerbes dans n(s).
Leur intersection n'est pas vide, par hypothèse. Il en est donc de

même de celle de F et F'. C.Q.F.D.

Lemme 2. Soit r et F' les gerbes attachées dans Zn à deux conver¬
sions distinctes S et S'. Dans Vintersection de r et F', il existe
n-1 réflexions perpendiculaires deux à deux: a 1} a2, &n-i>
De plus, on peut écrire:

S —: a1 a2 ••• ^n—1 • ^ S ~ a1 a2 an — i.b

où b et b' sont deux réflexions parallèles distinctes, perpendiculaires

à tous les at et situées dans F et F', respectivement.

Tout cela est banal dans le cas de la dimension 2, où il
convient toutefois de remarquer que la condition de perpendicu-
larité des af disparaît. Admettons que le lemme est établi pour
la dimension n-1. En vertu du lemme 1, prenons un élément ax

dans F n F'. On peut écrire S a1S1 et S' a1Sll où S1 et S[
sont deux conversions distinctes dans le groupe polaire nfaf).
Les ensembles F n FI{pf) et F' n FI{aQ sont les gerbes respectivement

associées à S± et S'i dans Fl(aQ. En vertu de l'hypothèse
de récurrence, on peut trouver dans F n F' n FI(a1) n-2 éléments

a2, a3, an-1 perpendiculaires deux à deux quand n > 3.

De plus, on peut écrire:

Si — CI2 a2 an-i.b j Si a2 a2 an^i.b

où b et b' sont deux réflexions parallèles distinctes, perpendiculaires

à tous les au i — 1, 2, 72-1, et situées dans F n F^âq)
et r' n Fl(af)1 respectivement. La conclusion en découle
immédiatement. C.Q.F.D.

Proposition 40. Soit T et T' deux gerbes distinctes dans Il
existe une réflexion u et une seule par laquelle F est

transformée en F'.

Désignons par S et S' les conversions auxquelles sont
attachées F et F', et reprenons les éléments figurant dans l'énoncé
du lemme 2. Il résulte en particulier de ce lemme que b et V ont
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un élément bissecteur unique u qui est parallèle à b et b' \ u est

donc perpendiculaire à chaque élément at. Par suite, S' uSu

et r uFu.
Etablissons l'unicité de l'élément considéré. Prenons un

élément a dans rnf'. Il est distinct de b qui n'est pas dans r'.
Comme a commute avec S et 6", il commute avec SS' bb'.

Si bab était différent de a, les réflexions b et bf seraient des

éléments bissecteurs distincts de a et bab: ce serait absurde car
b et br sont parallèles. Par suite, a est perpendiculaire à b. Il
commute donc avec a1a2 CLn-i- Réciproquement, toute réflexion
perpendiculaire à b qui commute avec a1a2 c/n_± appartient
à rnf. On peut donc affirmer que rnf est la gerbe déterminée
dans i7(&)parPni7(&),et aussi par r'nIJ(b).Cet ensemble contient
les éléments at. Il en résulte que toute réflexion perpendiculaire
à chacun des éléments de rnff est parallèle à b (coroll. prop. 32).
La gerbe r en contient une seule, qui est b\ r' en contient également

une seule, b'.

Soit v une réflexion par laquelle r est transformée en P'.
La transformation par v laisse rnP invariant dans son
ensemble. Elle envoie donc une réflexion perpendiculaire à tous
les éléments de PnP sur une réflexion ayant la même propriété.
Par conséquent, elle applique b sur b'. Il s'ensuit que v coïncide
avec l'élément bissecteur u de b et bf. C.Q.F.D.

Convenons d'appeler élément médiateur de deux gerbes
distinctes r et r' la réflexion u telle que r' uFu.

Corollaire 1. U intersection de deux gerbes distinctes F et T'
est une gerbe dans le système polaire attaché à Vélément médiateur

de T et Y'.

Corollaire 2. Le produit de deux conversions est une transla¬
tion. Réciproquement, toute translation peut être considérée
comme le produit de deux conversions dont l'une est choisie
librement.

Lorsque les conversions S et S' sont distinctes, nous avons
vu en démontrant la proposition précédente que SS' est une
translation. Lorsque S S', le produit SS' est la translation
banale I.
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Réciproquement, soit une translation T cc\ où c et c' sont
deux réflexions parallèles, et soit S une conversion arbitraire.
Prenons dans la gerbe F (S) l'élément b parallèle à c. On peut
alors écrire: S a1a2 nn_1.&, où les at sont n-1 éléments
perpendiculaires deux à deux dans r(S) n 11(b) (coroll. prop. 36).
Posons b' bcc' et b" cc'b\ les réflexions b'et b" sont parallèles
à b. Les éléments S' ala2 an^l.b' et S" axa2 an-vb"
sont manifestement des conversions. Et l'on peut écrire:

T ce' SS' S" S C.Q.F.D.

Proposition 41. La dimension d'un élément involutif X de Gn

n'excède pas n-1 ; cette valeur n'est atteinte que lorsque X est

une conversion.

Si X laisse invariantes toutes les gerbes de Zn, prenons deux
gerbes distinctes r1 et F2. Il résulte de la proposition 40 que
X commute avec l'élément médiateur de jT\ et F2. Si X transforme

une gerbe F en une autre gerbe T', il commute avec
l'élément médiateur de F et F'. Dans tous les cas, il existe dans

ln une réflexion a qui commute avec X. Quand X est dans le

groupe polaire n(a), sa dimension ne dépasse pas n-2 (hypothèse
de récurrence (C), n° 5.3). Quand X n'est pas dans n(a), il est
de la forme X aY1 où Y appartient à n(a). On peut affirmer

que Y est un élément involutif de 71(a) dont la dimension égale
n-2 au plus, cette valeur n'étant atteinte que lorsque Y est une
conversion dans 71(a) (hypothèse de récurrence (D) Par suite,
la dimension de X ne dépasse pas n-1 et n'atteint cette valeur

que lorsque X est une conversion dans Gn. C.Q.F.D.

Proposition 42. Soit r gerbes et n-r systèmes polaires dans En,

où 1 r n. L'intersection de ces n ensembles n'est pas vide.

La proposition est vraie, pour la dimension 2. Admettons
qu'elle est établie pour la dimension n-1. Dans 27„, soit Cu où

i 1, 2, a, les n ensembles considérés que l'on peut supposer
distincts, sans restriction; nous admettrons que C± est une
gerbe. Lorsque Cn est le système polaire II(s) d'une réflexion 5,

considérons les ensembles Ck CknCn, où k 1, 2, n — 1.



— 101 —

Chacun d'eux est une gerbe ou un système polaire dans II(s),

C\ étant d'ailleurs une gerbe. Il résulte de l'hypothèse de récurrence

que l'intersection des C'k n'est pas vide. Or cette
intersection coïncide avec celle des ensembles Ch i 1, 2, n.

Lorsque Cn est une gerbe, soit u l'élément médiateur de C1

et Cn. D'après le corollaire 1 de la proposition 40, C1 n II(u) et

Cn n n(u) sont confondus avec C1 n Cn, qui est une gerbe dans

n(u). Les ensembles Ck Ckn n(u), où k 1, 2, n — 1, sont
des gerbes et des systèmes polaires dans I7(&), le premier d'entre

eux étant une gerbe. En vertu de l'hypothèse de récurrence,
l'intersection de ces ensembles — qui coïncide avec celle des

ensembles Ch i 1, 2, n — n'est pas vide. C.Q.F.D.

Corollaire. Quand n 3, Vintersection de deux faisceaux d'une
même gerbe n'est pas vide.

En effet, soit 0 et <P' deux faisceaux contenus dans une même

gerbe f de 13. Comme 0 est de première espèce, il peut être
déterminé par deux éléments perpendiculaires de T. Il existe
dans 13 une réflexion s perpendiculaire à tous les éléments de

0 (prop. 32), et 0 est l'intersection de r et II(s). De même, il
existe une réflexion sf telle que 0' soit l'intersection de r et J7(s').
L'intersection de 0 et 0f se confond avec celle de r, H (s) et

i7(5/), qui n'est pas vide. C.Q.F.D.
D'après la proposition 42, l'intersection de n gerbes de I„

n'est pas vide. Il arrive que cette intersection se réduise à un
seul élément. Pour le voir, prenons n réflexions ah i 1, 2,
n — 1, w, perpendiculaires deux à deux, ainsi que n — 1 réflexions
a'j, / 1, 2, ft — 1T telles que pour toute valeur de l'indice /,
Uj et a'j soient parallèles et distinctes. Considérons la conversion
S aft a'2 a'n~1.an et soit r la gerbe associée à S.
Construisons les gerbes rs a5r a,., j 1, 2, n-i. L'ensemble

rnTj est confondu avec rnll(aj). Par suite, l'intersection des

gerbes r, iQ, r2, «. s se confond avec celle de r et des

systèmes polaires n(aj)J= 1,2, n-1. Il résulte des propositions

32 et 38 que cette dernière intersection se réduit à un
élément unique, qui n'est autre que an. Il découle de l'axiome de
bissection que tout élément s de ln peut être déterminé par
l'intersection de n gerbes bien choisies dans In. D'autre part, si
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Ton prend dans ln une réflexion an parallèle à an et distincte
d'elle, une gerbe rn contenant an ne contient pas an. Par
conséquent, il est possible de trouver dans ln s+1 gerbes disjointes
dans leur ensemble.

Proprosition 43. Le normalisateur N(S) Lune conversion S de

Gn est confondu avec le R-groupe engendré par la gerbe T(S) et

avec le groupe de stabilité de P(S). En tant que R-groupe
engendré par r(S), sa dimension égale n —1.

Désignons par g(S) le l?-groupe engendré par la gerbe r(S)
et par y(S) le groupe de stabilité de r(S) dans Gn. On voit
immédiatement que g(S) est contenu dans N(S), car il est engendré par
une partie de N(S), soit r(S). D'autre part, N(S) est contenu
dans y(S). Prenons en effet un élément X quelconque dans N(S)
et une réflexion a quelconque dans F{S). Comme F{S) est contenue

dans N(S), X~xaX est une réflexion commutant avec £, tout
comme XaX~x. Donc X~1 .r(S).X r(S) et X appartient à

y(S).
Montrons que y(S) est contenu dans g(S). Procédons par

récurrence. Le fait est vrai dans G2 (prop. 17); admettons qu'il
l'est pour la dimension n — 1. Prenons alors un élément Y dans

y(S) et une réflexion b dans la gerbe F(S). L'élément c Y~xbY
est dans r(S). Lorsque b et c sont confondus, Y laisse invariante
la gerbe r(S) n!7(c) dans 17(c). Des deux éléments Y et cP, l'un
appartient au groupe polaire n(c). Il résulte de l'hypothèse de

récurrence que cet élément est le produit d'un certain nombre
de réflexions prises dans r(S)nII(c). Par suite, Y est bien dans

g(S). Lorsque b et c sont distincts, prenons un élément bissecteur
u de b et c. Comme u est dans r(S), Z uY est dans y(S) et
il commute avec c. On montre comme précédemment que Z et,

par suite, Y uZ appartiennent à g(S).
Montrons maintenant que, comme J?-groupe engendré par

r(S), N{S) est de dimension n — 1. L'affirmation est vraie dans G2.

Admettons qu'on l'a prouvée pour la dimensions — 1. Le 7?-groupe

N(S) est au moins de dimension n — 1, car il contient la conversion
S qui est de dimension n — 1 dans Gn. Prenons alors dans N(S) un
élément A — a1a2 anan+u où les at sont dans r(S). Montrons
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que A peut se mettre sous forme d'un produit de moins de n-{-1

éléments pris dans r(S). C'est évidemment le cas lorsque a2 a3.

Sinon prenons un élément b2 perpendiculaire à a1 dans le faisceau
de première espèce #(a2, a3), et posons a3 b2a2a3. On a alors

A axb2a3aA anan±%. Admettons que l'on ait mis A sous

la forme:
A a1b2b3 bk^iakak+1 ...anan + 1,

où les bt (i 1, 2, k — 1) sont dans r(S)r\II(ax)J et akeT(S).

Lorsque ak %+i, la démonstration est achevée. Dans le cas

contraire, on prend un élément bk perpendiculaire à a1 dans le
faisceau de première espèce ${ak, ak + 1) ; on pose ak+l bkak ak+1.
Il résulte de là que l'on peut écrire:

A axb2b3...bne b2 b3 bn ax e

où les sont des éléments de r(S)n TI(al)1 et e est dans r(S).
Lorsque at e, la démonstration est achevée. Dans le cas

contraire, on prend l'élément dn perpendiculaire à al dans le
faisceau de première espèce #(ax, e). Dans TI{a1)1 la gerbe r(S)n II(a^
engendre un iî-groupe de dimension n — 2, en vertu de

l'hypothèse de récurrence. Comme les réflexions bt ainsi que dn

appartiennent à r(S)n n(al)1 on peut trouver n — 2 éléments d2,
d3l dn-1 dans ce même ensemble, tels que b2b3 bn

d2d3 dn-^dn. D'où:

A :==- d2 d 3 dn _ 1 dn ci i 6

Comme dna±e est dans r(S), A est de dimension n-2 au plus. 11 en
résulte que le i?-groupe N(S) engendré par r(S) ne contient pas
d'élément de dimension supérieure à n — 1. Par suite, il est de
dimension n — i. C.Q.F.D.

Corollaire. Quand n 3, le normalisateur d'une conversion
est un groupe de type elliptique plan.

Cela résulte de ce qui précède, du corollaire de la proposition
42 et de la définition donnée au n° 2.1.

Il est clair qu'à tout élément X de Gn on peut associer une
transformation de l'ensemble des gerbes définie parT X~1TX.
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Pour simplifier, nous dirons que X laisse fixe la gerbe f lorsque
X~1TX r. Montrons que le groupe des transformations ainsi
définies est isomorphe à Gn. Pour cela, nous établirons un fait un
peu plus précis.

Proposition 44. Le seul élément de Gn laissant fixes n+1
gerbes disjointes dans leur ensemble est Vélément neutre I.

Le fait est vrai dans G2 en vertu du corollaire 3 de la
proposition 17. Admettons qu'il est établi pour la dimension n — 1. Soit
Fu i 1,2,..., n1 w+1, n+1 gerbes de Ln disjointes dans leur
ensemble. Désignons par u l'élément médiateur de rn et Tn+1.
Posons r'| F£nI7( + i 1, 2, n-\-1. Il est clair que
r'n r'n+1 rnnTn+1. Par suite, l'intersection des gerbes

rh où i 1, 2, n, n+1, est confondue avec celle des gerbes

r'j où / 1, 2, n, dans II(u), qui est donc vide.
Soit A un élément de Gn laissant fixes les n-\-1 gerbes 7+

où i 1, 2, n-Pl. On voit que A commute avec la réflexion
u et qu'il laisse fixes les gerbes r}, où / 1, 2, n, dans TI(u).
Lorsque A est dans le groupe polaire n(u), il est confondu avec /,
en vertu de l'hypothèse de récurrence. Si A n'était pas dans

7i(u), l'élément uA y serait; or uA laisse fixes les gerbes PL,
dans n(u); par suite A serait confondu avec k, ce qui est exclu
car la transformation par u envoie rn sur rn+1. La seule possibilité

reste donc A — I. C.Q.F.D.

Corollaire. Soit n gerbes de ln dont Vintersection se réduit à

un seul élément a. Les seuls éléments de Gn laissant fixes ces n
gerbes sont I et a.

En effet, soit P£, où i 1, 2, n, les n gerbes considérées.

Tout élément de Gn laissant fixes ces n gerbes appartient au
normalisateur N(a) de a. Comme les ensembles P£ P£n 27(a)

sont n gerbes disjointes dans leur ensemble, dans 11(a), le seul

élément de n(a) laissant fixe chacune des P£ est I. Il en résulte

que les seuls éléments de Gn laissant fixes les gerbes ru où

i t, 2, n, sont / et a.

5.5. Nous allons parvenir à un théorème concernant la structure

du groupe Gn. Mais auparavant, nous allons considérer les
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translations de Gn. Lorsque T ba, où a et b sont deux réflexions

parallèles, nous convenons de dire que T est une translation
de front a. Les translations de front a constituent dans Gn un

sous-groupe abélien: ce sous-groupe coïncide avec celui des

éléments propres du iLgroupe engendré par le faisceau de deuxième

espèce contenant a. Lorsque a parcourt Zn, le groupe des
translations de front a parcourt une famille de sous-groupes conjugués
dans Gn, tous isomorphes à l'un d'entre eux que nous désignerons

par t. Il va de soi que deux translations de même front ou de

fronts perpendiculaires commutent.

Proposition 45. Uensemble 3Tn des translations de Gn constitue

un sous-groupe distingué, abélien, isomorphe à zn.

Bien que la démonstration de ces faits soit essentiellement
analogue à celle des propositions 14 et 15, nous la retraçons
brièvement ici. Soit T' et T" deux translations quelconques
prises dans Gn. Choisissons une conversion S; il existe deux
conversions bien déterminées S' et S" telles que Tr S'S et
T" S"S (coroll. 2, prop. 40). Par suite:

T' T"'1 m S' S"

qui est une translation. Donc l'ensemble 3T
n

des translations de
Gn est un sous-groupe de Gn. Comme les automorphismes
intérieurs de Gn induisent dans ln des transformations conservant le
parallélisme, ZTn est distingué dans Gn.

On peut trouver n réflexions au a2, f an perpendiculaires
deux à deux, telles que S a1a2 an. Dans la gerbe r(S')
attachée à la conversion S' considérée plus haut, il existe n
éléments bien déterminés bx, b2, respectivement parallèles

aux réflexions au a2, an, de sorte que S' b1b2 bn.
Si l'on pose Tt btah on voit que T' est le produit de n
translations univoquement déterminées T\ de front ah où i 1,
2, n. De même, la translation T" peut se mettre, d'une
manière et d'une seule, sous la forme T" T\T"2 T"n, où
Tt est une translation de front at. Quelles que soient les valeurs
de i et /, Tt et T] commutent; alors:

T'T» T\ T" 1 T'2 T"2 T'n T"n
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Par suite, X~
n est isomorphe au produit direct des n groupes de

translations de fronts au a2i an. Il est donc abélien et
isomorphe à t". C.Q.F.D.

Corollaire. Soit a1? a2, an n réflexions perpendiculaires
deux à deux. Toute translation de G„ peut être représentée par
un produit de réflexions parallèles à ax, a2, a„, respectivement.

Théorème 6. Le groupe Gn est le produit semi-direct du groupe
des translations 2Tn et du normalisateur dans Gn Lune conversion
arbitrairement choisie.

Prenons une conversion S dans Gn et soit a une réflexion
quelconque. Dans la gerbe T(S) associée à S, il existe un élément
a' parallèle à a, et un seul. Comme a aa'.a' a'.a'a, la réflexion
a peut se mettre sous la forme d'un produit d'une réflexion
bien déterminée a' prise dans T(S) et d'une translation T qui
dépend de l'ordre adopté pour les facteurs a' et T. Il découle de

cela et du fait que le groupe 2Tn est distingué dans Gn que tout
élément X de Gn peut se mettre sous les deux formes suivantes:

X Xf ^ T2 XL

où X' est dans le normalisateur N(S) de S et où T1 et T2 sont
des translations. Les éléments X\ Tt et T2 sont univoquement
déterminés par X, car N(S) ne contient aucune translation non
banale. En effet, si T est une translation de front b dans N(S),
il existe dans T(S) une réflexion c parallèle à b. La réflexion cT
est parallèle à b et elle commute avec S. Par suite T — /.

C.Q.F.D.

Proposition 46. Les seuls éléments de G„ qui transforment
chaque réflexion en une réflexion parallèle sont les conversions

et les translations.

Désignons par E l'ensemble des éléments de Gn possédant la

propriété indiquée; il constitue évidemment un sous-groupe de

Gn ne contenant aucune réflexion. Prenons une conversion bien
déterminée S. Elle commute avec chaque élément u de la gerbe
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r(S) attachée à S. Elle transforme toute réflexion u' parallèle
à lien une réflexion parallèle à a, donc à u'. Il résulte de la

proposition 38 que S appartient à E. Comme on peut en dire autant
de toute conversion de Gn, E contient toutes les conversions et
les translations de Gn (coroll. 2, prop. 40). En vertu du théorème
6, tout élément A de E est le produit d'un élément A ' de £ contenu
dans le normalisateur N(S) de S et d'une translation. Pour établir
la proposition, il suffit de montrer que A' ne peut être que / ou S.

Prenons un élément a dans T(S). A' appartient au normalisateur

de a dans Gn. Lorsque A' est dans le groupe polaire n(a),
il laisse fixe chaque élément de la gerbe P(S)n 11(a) dans 77(a).

Donc, dans 77(a), A' transforme toute réflexion en une réflexion
parallèle. Comme N(S) ne contient pas de translation non banale,
il résulte de l'hypothèse générale de récurrence (E) (voir n° 5.3)

que A' est soit /, soit la conversion S' aS dans n(a). Or A' ne
saurait être confondu avec S\ car S'S a n'est pas dans E.
Dans le cas présent, A' est donc l'élément 7. En revanche,
lorsque A' est dans a.71(a), aA' — S'. Par suite A' S. C.Q.F.D.

Avec cette proposition, nous avons achevé de prouver que
les faits énoncés dans les hypothèses générales de récurrence sont
également vrais pour la dimension n. Ces démonstrations font
l'objet du corollaire de la proposition 28 (hyp. (A) et des

propositions 31 (hyp. (B) 41 (hyp. (C) et (D) et 46 (hyp. (E)

5.6. Prenons dans In n réflexions ut perpendiculaires deux à

deux, î 1, 2, n. Pour tout indice i différent de 1, prenons
un élément bissecteur mu de u1 et ut. Comme ut coupe uk lorsque
i k # 1, mu coupe mlk (prop. 46). Soit mik l'élément
perpendiculaire à u± dans le faisceau $(rnUl mlk). Posons mik
m1imikm1k. On voit sans peine que mik est un élément bissecteur
de Uj et uk. Par la suite, nous pourrons admettre que ml7 et mjU
où i ^ jf, désignent le même élément. Prenons ensuite une
réflexion e1 parallèle à mais distincte d'elle. Posons ef

mueimu pour tout indice i différent de 1. On peut vérifier que
pour toute paire d'indices distincts (j, k) on a ek mjkejmjk.
L'ensemble des éléments uh mik, et constitue dans In un repère
orthonormal M. Nous admettrons qu'une définition analogue a
été faite à chacun des échelons inférieurs. On voit d'ailleurs que
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c'est bien ainsi que nous avons procédé à l'échelon 2. L'intersection

du repère orthonormal 3% considéré ci-dessus dans In
avec le système polaire II(ut) détermine dans celui-ci un repère
orthonormal 3k^ avec i 1, 2, n.

Nous savons qu'en fixant le groupe Gn nous déterminons une
chaîne de groupes Gn>, où n' 2, 3, n — 1, n, telle que pour
tout n' supérieur à 2, Gn. satisfait les axiomes En. I et En, II.
Le groupe G2 est isomorphe au groupe GE(2, if), où K est un
corps réel bien déterminé contenant la racine carrée de chacun
de ses éléments positifs. Nous appellerons K le corps de base, et
nous nous proposons de prouver que Gn est isomorphe à GE(n, K).
En vue de cette démonstration, nous allons admettre les
hypothèses de récurrence suivantes:

a) Dans Gn_u il existe une correspondance biunivoque entre
l'ensemble des gerbes de Zn-1 et Kn~1. Cette correspondance est
déterminée par le choix d'un repère orthonormal dans Zn-1.

b) Admettons qu'on s'est donné un repère (uh mik, et) dans

Zn_ j, avec i,k 1,2,..., n — l et i / k. Soit r et F' deux gerbes

quelconques dans Zn~F pour tout indice i, désignons respectivement

par et x' t les éléments de F et F' parallèles à u{. Soit
(£1, £2,••• Zn-i) et (£, Ç'2, ••• Cn-1 éléments de

associés à T et f relativement au repère considéré. Alors les

égalités xt x\ et ^ sont équivalentes.

c) La quantité:

4-1 (r,r) I (& - £i)2
i — 1

est invariante par rapport aux transformations induites par les

éléments de Gn^1 dans l'ensemble des gerbes de I„-i-
Ces faits sont vrais à l'échelon 2. Nous allons montrer qu'ils

le sont aussi à l'échelon n. Introduisons une fois pour toutes un
repère orthonormal M formé d'éléments uh mik et eu avec
i, k sss 1, 2, n et i ^ k, comme nous l'avons décrit plus haut.
L'intersection de 3k et II (ut) détermine dans II(ut) un
repère orthonormal 3k ^ pour tout indice i. Prenons une
gerbe quelconque r dans Zn. Dans II(uf), rc\FI(u^ est une
gerbe à laquelle on peut attacher un élément de Kn~1 bien
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déterminé relativement à avec 1 et

/ =4 i- Si l'on substitue à r une gerbe r' ayant avec F un élément

commun xk parallèle à uk, k ^ i, l'élément Ç...) de

Kn~1, avec 1 ^ ^ n et / ^ i, associé à r*r\F[(ui) relativement
à est tel que Çk — Ç'k. Si l'on applique ces considérations aux
gerbes f et f miVrmiVl où i' ^ i, on voit que l'élément

rjj, de Z"-1, avec 1 ^ ^ n et / # i', associé à rnll(u/)
relativement au repère 0t( est tel que rjj pour tout indice /
différent de i et de i'. On peut donc attacher à la gerbe F un
élément (£l7 £2, • •• £„) de Kn de manière que l'on obtienne
l'élément de iC1-1 associé à Fr^Il(u^ relativement aurepère en
biffant l'élément ï;u pour tout indice i. On détermine ainsi une
correspondance biunivoque entre l'ensemble des gerbes de ln
et Kn, correspondance déterminée par le choix du repère M.
Nous dirons que £ t est la i-ième coordonnée de F relativement à M.

Lorsqu'on transforme la gerbe F par une réflexion a prise
dans n(ut), on obtient une nouvelle gerbe dont la i-ième
coordonnée coïncide avec celle de T. Il résulte de l'hypothèse c) faite
plus haut que la transformation considérée laisse invariante la
quantité :

dn(r, n I Ci -
.1 1

où (£i, £2, ••• £«) et (Ç'u 2, £'„) sont les coordonnées de
deux gerbes quelconques r et L', relativement à M. Or il découle
de la proposition 39, du corollaire de la proposition 45 et du
théorème 6 que tout élément de Gn peut être considéré comme
un produit d'éléments pris dans les systèmes polaires 77(^9,
oùi= 1,2, tn. Donc dn est invariante par rapport aux
transformations induites dans l'ensemble des gerbes de In par Jes

éléments de Gn. Comme on le sait d'ailleurs, dn est une distance
dans Kn. D'autre part, il résulte de la proposition 44 que Gn agit
effectivement dans l'ensemble des gerbes de In. En faisant
usage de la correspondance biunivoque introduite précédemment
entre les gerbes de In et les éléments de Kn, on peut assimiler Gn
à un groupe d'isométries de Kn muni de la distance dn.

On a pu observer en passant que les hypothèses a), b) et c)
sont également satisfaites à l'échelon n.
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Théorème 7. Le groupe Grt est isomorphe à un groupe GE(n, K),
où K est un corps réel contenant la racine carrée de chacun de

ses éléments positifs.

Nous appellerons « points » les éléments de Kn. La famille de

A-groupes (GE(n', A), I{n\ K) satisfait les axiomes que nous
avons posés pour la famille de A-groupes (GQ, Tn>), où n' —
2, 3, n. 11 en résulte que toutes les propositions que nous
avons établies pour Gn conviennent à GE(n, K). Ainsi, à toute
gerbe E dans Z(n, K) correspond biunivoquement un point de

Kn qui n'est autre que le centre P de la conversion déterminant

r. Nous qualifierons E et P d'éléments homologues. Cette
correspondance est manifestement compatible avec les
transformations induites par les éléments de GE(n, K) dans
l'ensemble des gerbes de Z(n, K) et dans Kn.

Nous avons déjà vu que Gn peut être considéré comme un
sous-groupe de GE(n, K). Prenons alors une réflexion a' dans

Z(n, K). Il existe dans Z(n, K) n gerbes Eu E2, r'n dont
l'intersection se réduit à {af}. Soit Pt le point homologue de Ei}
où i — 1, 2, n. Il résulte du corollaire de la proposition 44

que, mis à part l'élément neutre, a' est le seul élément de GE(n, K)
laissant fixes les points Pt. Soit r t la gerbe de Zn correspondant
au point Pu i 1, 2, ..* f n. Tout élément commun aux gerbes

Et laisse fixes les points Pt. Or l'intersection de ces gerbes n'est

pas vide (prop. 42) et elle ne contient évidemment pas l'élément
neutre. Comme Gn est contenu dans GE(n, A), il résulte de ce qui
précède que cette intersection se réduit à l'élément a\ Donc

Z(n, K) est contenu dans Trt et, par suite, Gn est confondu avec

GE(n, K). C.Q.F.D.

Corollaire. (G„, Zn) est isomorphe, en tant que R -groupe^ à

(GE(n, K), S(n, K)
En effet, le raisonnement précédent prouve que Zn et Z(n, K)

sont confondus.
Afin de mieux percevoir la précision apportée par ce corollaire

au théorème 7, considérons un exemple. Dans GE(n, A),
où n > 5, désignons par Z'{n, A) l'ensemble distingué des

éléments involutifs de la forme a&c, où a, b et c sont trois éléments
de Z(n, A) perpendiculaires deux à deux. Quelle que soit la
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réflexion u dans Z(n, K), on pent en trouver quatre autres

v, w, x, et y, perpendiculaires à u et perpendiculaires entre elles,

de sorte que:
u uyv.vxw.wxy

Par suite, GE(n, K) est un i?-groupe engendré par Z'(n, K).
Mais (GE(n, if), Z'{n, if) ne satisfait pas l'axiome d'incidence.

Il suffît de le montrer pour n 5. Rapportons l'espace if5 à un

repère orthonormal et désignons par (xx, x2, x3, x4, x5) un point
quelconque de if5. Considérons les transformations M, B, C et

D envoyant [xx, x2, x3, x4, x5) respectivement sur (x±, x2,

^3, *^4? ^5) i 1 ^2 7 X4,t ^5)5(^X5 *^2? ^3? *^4? ^5)

et — xt, — x2, x3, — x4, x5), où t est un élément non nul de if, Il
est clair que A, B, C et D sont dans Z'(5, K). D'autre part:

CBA (x1 x2 x2 x4 x^) ^ (xi 5 x2 x2 5 x4 £ *^5) f

DCA : (x^ 5X25X35X4, x5) —» — Xi 5 x2 5
— x3 — x4 x5)

D CB (xj x2 5 X3 x4 X5) > x 1 5 x2 } x3 x4 5 t -f- X5)

Donc CBA et DCA sont dans Z'(5, K). Il n'en est pas de même de

DCB, qui n'est pas involutif. Comme A et C sont distincts, on

peut affirmer que (GE(n, if), l\n, K) n'est pas un Bl-groupe
(n > 5). Il ne saurait donc être isomorphe, en tant que ü-groupe,
k(GE(n, K), Z(n, K)).

Nous avons donc montré que les axiomes En I et En II, joints
aux axiomes P I à P VII caractérisent les groupes GE(n, K),
où K est un corps réel contenant la racine carrée de chacun de

ses éléments positifs. Il convient de noter que l'on peut omettre
les axiomes P VI et P VII sans changement pour le reste de la
construction. Les sept autres axiomes caractérisent les groupes
des if-isométries des espaces Kn munis de leur if-métrique
euclidienne, où K est un corps formellement réel pythagoricien.

L'examen critique des axiomes En I et En II se réduit à fort
peu de chose pour ce qui concerne la consistance et l'indépendance
relative, qui sont manifestes. On pourrait cependant se proposer
d'étudier s'il est possible de substituer à l'un ou l'autre de ces
axiomes un axiome plus faible. Peut-on, par exemple, renoncer
à exiger de Gn qu'il satisfasse l'axiome d'incidence? Ces questions,
qui sont probablement assez délicates, ne sont pas abordées ici.
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