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Dans X(2, A), un faisceau de premicére classe est ’ensemble
des réflexions de L> suivant les droites de A” contenant un
méme point de A”. Il existe deux familles de faisceaux de
seconde classe: les systemes polaires et les faisceaux singuliers;
un faisceau singulier est constitué par les réflexions de L7
suivant les droites de A? passant par un méme point de L*
n‘appartenant pas a4 A°.

Tout élément de X(2, A) appartient & un seul systéme polaire.
On peut en déduire que la proposition 13, qui ne s’appuie que
sur cette partie de I'axiome d’Euclide, est encore vraie ici. Il en
est de méme de son corollaire. Nous avons donc construit un
exemple de géométrie satisfaisant les quatre premiers axiomes
ainsi que le corollaire de la proposition 13, mais ne vérifiant pas
Iaxiome d’Euclide. De plus, dans le groupe GE(2, A), chaque
réflexion appartient a une infinité de faisceaux de seconde
classe, dont un seul systéeme polaire. Cela montre que I'on n’épuise
pas toutes les possibilités en énoncant les hvpotheses a), b) et ¢)
indiquées au n° 2.1.

5. Axiomes de la géomeétrie euclidienne
a plus de deux dimensions

9.1.  Désignons par (K;) .y la famille des corps réels contenant
la racine carrée de chacun de leurs éléments positifs, J étant un
ensemble convenable d’indices. Pour chaque entier naturel n
GE(n, K;) désigne le groupe des isométries de l'espace K
muni de la meétrique euclidienne ordinaire. C’est un R-groupe
engendré par I'ensemble X(n, K;) des réflexions par rapport aux
hyperplans dans Ki. Les axiomes considérés jusqu’ici con-
cernent les groupes GE(2, K;). Nous nous proposons de
formuler un systeme d’axiomes caractérisant les groupes
GE(n, K;), 1eJ et n > 2. Toutefois, pour utiliser les résultats
obtenus pour n = 2 et pour éviter des répétitions, nous pro-
céderons par récurrence sur n.

Auparavant, précisons quelques points. Soit (G, 2) et (&, 27)
deux R-groupes G et G’ respectivement engendrés par des
parties distinguées X et X’. Ils seront dits « 1somorphes en tant
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que R-groupes» lorsqu’il existe un isomorphisme du groupe G
sur le groupe G’ qui applique X sur X’. Dans un R-groupe
(G, X), nous désignerons comme d’habitude par II(s) le systéme
polaire de la réflexion seX, c¢’est-a-dire 'ensemble des éléments
de II perpendiculaires a s, soit encore 'ensemble des réflexions
distinctes de s qui commutent avec elle. I.ensemble II(s) en-
gendre un R-groupe =n(s) appelé groupe polaire de s, dans lequel
II(s) est distingué. En tant que R-groupe, n(s) est toujours con-
sidéré comme étant engendré par II(s).

Posons maintenant nos axiomes. Désignons par (G,, X,) un
R-groupe satisfaisant les sept axiomes P I a P VII; n étant un
entier naturel susceptible de prendre toutes les valeurs supé-
rieures & 2, considérons la famille de R-groupes (G,, Z2,) satis-
faisant les axiomes suivants:

Axrome E, I. (G,, X,) est un RI-groupe.

Axtome E, II. Dans X,, I'intersection de deux systémes polaires
contient une réflexion s dont le groupe polaire est tsomorphe,
en tant que R-groupe, @ un groupe (G,_{, 2,—{)-

Pour linstant, il faut considérer I'expression (G,, Z,)
comme une désignation générique. Nous montrerons que, pour
chaque valeur de »n’, il y a identité de ’ensemble des R-groupes
(G,’, 2,') avec celui des R-groupes GE(n', K;), avec ieJ.

La récurrence portera sur »n’, que nous appellerons I’échelon.
Notons & ce propos qu’elle se présentera sous deux formes: la
récurrence «locale » intervenant au cours d’une démonstration
isolée; la récurrence « globale » par laquelle on affirme la validité
d’une proposition aux échelons inférieurs a n, réservant a plus
tard le soin de démontrer qu’elle est aussi vraie & ’échelon n.
Une telle hypothése générale de récurrence sera repérée par une
lettre majuscule. Ainsi, pour commencer, nous admettrons qu’a
tout échelon n' tel que 2 =n" = n-1:

(A) Tl existe deux espéces de faisceaux dans X,. A tout élément
a d’un faisceau de premiere espece @’ correspond un élément
de @' perpendiculaire & a, et un seul. De deux éléments
distincts de @', on dit qu’ils se coupent ou qu’ils sont sécants;
ils possedent exactement deux éléments bissecteurs. Un
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faisceau de deuxiéme espéce @'’ ne contient pas de paire
d’éléments perpendiculaires. Deux éléments de @' sont dits
paralléles; quand ils sont distincts, ils admettent un élément
bissecteur unique.

Tous ces faits sont vrais pour n’ = 2; dans ce cas, les faisceaux
de premiére (resp. deuxieme) espeéce coincident avec ce que
nous avons appelé les faisceaux de premiére (resp. deuxieme)
classe. Cependant, pour n’ > 2, il convient de changer de ter-
minologie; on peut montrer que, quel que soit le faisceau @ dans
Y., on peut trouver un faisceau disjoint de @.

L’axiome £, II affirme, entre autres choses, qu’il existe dans
2, une réflexion s dont le groupe polaire n(s) est isomorphe, en
tant que R-groupe, a un certain groupe (G, {, 2,- ). Il est facilede
voir qu’il en est de méme pour tout autre élément ¢ de 2,. En
effet, d’apres 'axiome E, I/, il existe une réflexion u perpendi-
culaire & s et ¢, et dont le groupe polaire est isomorphe, en tant
que R-groupe, & un certain groupe (G,_;, X,-;) qui satisfait
I'axiome de bissection, en vertu de (A). Il existe donc dans X,
un élément bissecteur m de s et ¢. L’application X — mXm
détermine visiblement un isomorphisme de =(s) sur n(f), au sens
des R-groupes.

On déduit d’abord de 14 que dans (G,, 2,) axiome de bissec-
tion est satisfait. De plus, quand la réflexion s parcourt X, le
groupe polaire 7(s) reste constamment isomorphe, en tant que
R-groupe, au méme groupe (G,-, Z,—,). Il en résulte, en parti-
culier, que des que l'on choisit un exemplaire bien déterminé
dans la famille des groupes (G,, X,), on fixe en méme temps
toute une chaine de groupes (G,’, 2,'), ou 2 =n’ = n-1. Nous
pouvons alors considérer que chacun des symboles (G,’, X,’), ou
2 =n'" =n, désigne désormais un R-groupe bien déterminé.
D’autre part, nous pouvons remplacer laxiome FE, II par
les deux axiomes suivants:

Axtome E,' II. Lorsque s parcourt X,, le groupe polaire m(s)
reste constamment isomorphe, en tant que R-groupe, au groupe
(Gn—la Z:n—l)' '

Axrome E," III.  Dans X,, Uintersection de deux systémes polaires
n’est pas vide.




Par la suite, nous noterons G, a la place de (G,, X,) lors-
quaucune confusion n’en résultera. La possibilité de répartir
les faisceaux de X, en deux espéces comme on le fait aux échelons
inférieurs va résulter de la proposition suivante. |

PropositioN 28. Soit a et b deux réflexions distinctes perpen-
diculaires a un méme élément u de X,. Toute réflexion incidente
avec a et b est ausst perpendiculaire a u.

Montrons d’abord que u n’appartient pas a &(a, b). Désignons
par @(a, b; u) le faisceau déterminé par a et b dans le systeme
polaire II(u). C’est aussi I'intersection de ®(a, b) et II(u). Si u
appartenait & ®(a, b), uab serait dans &(a, b; u); par suite, a et b
seraient perpendiculaires (lemme prop. 11); comme 1’élément
uab commute avec a et b, 1l devrait coincider avec 'une de ces
deux réflexions, contrairement aux hypothéses.

Comme u n’appartient pas & ®(a, b) et qu’il est perpendicu-
laire & a et b, on peut affirmer que tout élément de &(a, b) est
perpendiculaire & u (lemme prop. 5). C.Q.F.D.

CorOLLAIRE. Tout faisceau de X, coincide avec un faisceau pris
dans un certain systéme polaire.

~ Par suite, toutes les propriétés que nous avons énoncées au
sujet des faisceaux dans X,,, ou n’ varie de 2 & n-1, sont vraies dans

X,, et nous pouvons faire usage des désignations qui les concer- -

nent. Par ailleurs, I’espece d’un faisceau est invariante vis-a-vis
des automorphismes intérieurs de G,.

5.2. Nous qualifierons de close toute partie de l'ensemble X
engendrant un R/-groupe (G, Z) qui est fermée pour la relation
d’incidence. La partie vide de Z et les parties de X réduites & un
seul élément sont considérées comme closes. Les parties closes
C de X qui comportent plus d’un élément sont caractérisées par
le fait suivant: si a et b sont deux éléments distincts de C, alors
d(a, b) est contenu dans C. Ainsi X est. close, par exemple.
L’intersection d’une famille de parties closes de X est close. La
cloture C(F) d’une partie I/ de X est l'intersection des parties
closes de X qui contiennent F. En particulier, nous désignerons
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par C(ay, a, ..., a,) la cloture d’un ensemble fini d’éléments a;,,
iy, ..., a, de X. La proposition 28 peut s’énoncer en disant que,
dans ¥,, tout systeme polaire est clos.

Nous allons admettre le fait suivant

) Quel que soit s dans X, la cloture de II(s) U {s} est confondue
avec X, ou2 =n' = n-1.

Le fait est manifestement vrai pour n’ = 2. Dans ce cas, en eﬁet
II(s) est un faisceau de deuxiéme classe. La cloture de II(s {s}
contient évidemment tous les faisceaux de premiére classe aux-
quels appartient s, et par suite tous les éléments de X, qui
coupent s. Comme tout élément de X, appartient a un faisceau
déterminé par deux éléments de X, coupan‘n s, II(s)u{s} est
confondu avec X,.

Proposition 29. L’intersection des systémes polaires Il(a) et
II(b) de deux éléments sécants a et b de X, est un systéme
polaire dans I1(a) et dans II(b).

Comme a et b se coupent, 1l existe dans ®(a, b) un élément c
perpendiculaire & a. En vertu de la proposition 28, tout élément
perpendiculaire a a et b l'est aussi a a et ¢, et réciproquement.
L’ensemble des éléments de X, perpendiculaires & a et ¢ est mani-
festement un systeme polaire dans IT(a). 11 en est évidemment de
méme dans I1(b). , C.Q.F.D.

ProrositioN 30. La condition nécessaire et suffisante pour que
deux éléments de X, soient paralléles est que leurs systémes
polaires coincident.

Procédons par récurrence. Admettons que la proposition est
vraie aux échelons inférieurs & n. Nous savons qu’elle Pest &
I’échelon 2.

Soit a et b deux éléments paralleéles de X,. Il existe une
réflexion s perpendiculaire & a et b. Dans II(s), a et b sont paral-
leles, et ’hypothése de récurrence que nous venons d’énoncer
permet d’affirmer que tout élément de II(s) perpendiculaire a
a I'est aussi & b. Donc I'ensemble des réflexions perpendiculaires
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a a et b contient sainsi que le systéme polaire de s dans II(a). Or
1l résulte de la proposition 28 que lintersection des systémes
polaires de a et b est close. On peut alors déduire de 'hypothése
de récurrence (B) que cette intersection se confond avec II(a).
Par raison de symétrie II(a) et II1(b) coincident.
Réciproquement, deux réflexions a et b dont les systémes

polaires coincident sont paralléles, en vertu de la proposition 29.
C.Q.F.D.

Proposition 31. Soit a et s deux réflexions non perpendiculaires
dans Z,. La cloture de II(s)u{a} est X,

Montrons d’abord que la cloture de II(s)u {s} est X,. Prenons
dans X, un élément quelconque u, que ’on peut supposer distinct
de s, sans restriction. Il existe dans II(s) un élément v perpendi-
culaire & u. Soit m un élément bissecteur de s et v; il appartient
a la cloture de II(s)u{s}. D’autre part, la réflexion mum est
distincte de m, car m, qui n’est pas perpendiculaire a v, est
distinct de u. De plus, mum est perpendiculaire & s = mom.
Comme u appartient au faisceau @(m, mum), il est contenu dans
la cloture de II(s)u{s}.

Soit maintenant une réflexion a non perpendiculaire & s.
Lorsque a est parallele & s, les systémes polaires de a et s coinci-
dent et il résulte de ce qui précede que la cloture de II(s)u{a}
est 2,. Lorsque a coupe s, 1l existe dans @&(a, s) un élément b
perpendiculaire a s et distinct de a, par hypothese. Le faisceau
@(a, b), qui contient s, est lui-méme contenu dans la cloture de

u{a,} Il en résulte immédiatement que la cloture de
U {a} contient celle de II(s {s} et que, par suite, elle se
oonfond avec. Z2,,. C Q.F.D.

Avant de passer aux propositions suivantes, formulons une
remarque. Dans 2,, il existe des couples de réflexions perpendi-
culaires. Admettons que ’on puisse trouver n-1 réflexions deux
a deux perpendiculaires dans X,_;. Soit sun élément quelconque
de X,. Il existe dans II(s) n-1 réflexions perpendiculaires deux a
deux. Nous pouvons donc affirmer qu’il est possible de trouver n
réflexions deux a deux perpendiculaires dans X,, 'une d’elles
étant d’ailleurs arbitrairement choisie. Nous pouvons compléter
ce résultat. |
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ProposiTioN 32. Dans X, Uintersection des systémes polaires
de (n-1) réflexions perpendiculaires deux d deux est un fatsceau
de deuxiéme espece.

I’ affirmation est banale a I’échelon 2. Elle est vraie a I’échelon
3, ou elle découle de la proposition 29. Admettons donc qu’elle a
été démontrée a Uéchelon n-1. Désignons par ay, @,, ..., -y n-1
¢léments de X, perpendiculaires deux a deux. L’intersection A; de
M(a;) et I(a,-,), ou j =1, 2, ..., n-2, est un systeme polaire
dans II(a,_,) en vertu de la proposition 29. L’intersection des
systémes polaires II(a;), ou ¢ =1, 2, ..., n-1, se confond avec
celle des ensembles 4, ouj = 1,2, ..., n-2. Or cette derniére est
un faisceau de deuxiéme espéce @'’ dans II(a,-,) en vertu de
Phypothése de récurrence. La conclusion découle du fait que
@'’ est aussi un faisceau de deuxiéme espéce dans 2,. C.Q.F.D.

COROLLAIRE. La condition nécessaire et suffisante pour que deux
réflexions soient paralléles dans X, est que leurs systémes
polaires aient en commun n-1 éléments perpendiculaires deux
a deux.

PropositioN 33. Dans X,, Uintersection d’un faisceau de pre-
miére espéce et d’un systéme polaire n’est pas vide.

La proposition est vraie a I'échelon 2. Admettons qu’elle a
été démontrée a I'échelon n-1, ot n > 2 comme jusqu’ici. Soit
@' un faisceau de premiere espéce et s un élément quelconque de
X,. Nous voulons prouver que 'intersection de @’ et II(s) n’est
pas vide. Remarquons d’abord que ’ensemble des réflexions
perpendiculaires & chaque élément de @’ est I'intersection des
systemes polaires de deux éléments distincts de @’. Or cette
intersection n’est pas vide (prop. 29).

Lorsque @’ est entierement perpendiculaire a s, il n’y a rien
a démontrer. Dans le cas contraire, il existe une réflexion u
perpendiculaire & tous les éléments de @’ et coupant s (prop.
30). L’intersection de II(s) et II(u) est un systéme polaire dans
H(u). Comme @’ est contenu dans II(u), I'hypothése de récur-
rence permet d’affirmer que Uintersection de @', II(s) et IT(u)
n’est pas vide, d’ou la conclusion. | C.Q.F.D.
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COROLLAIRE. Lorsquw’'un faisceau de premiére espéce n’est pas
entiérement perpendiculaire & une réflexion s, il contient un
élément perpendiculaire a s et un seul.

ProrosiTioN 34. Le normalisateur N(s) d’une réflexion s de %,

dans G, est le R-groupe engendré par s et le systéme polaire
I1(s).

I’ensemble des éléments de N(s) de dimension 0 dans G,
est II(s)u{s}. Prenons dans N(s) un élément ab de dimension 1
dans G,, avec a, beZX,. Lorsque s appartient au faisceau &(a, b),
on peut écrire ab = s.sab; comme ab commute avec s, la réflexion
sab est dans II(s). Considérons alors le cas ou s n’appartient pas
a ®(a, b). Comme ab commute avec s, la réflexion sas est dans
d(a, b), car sas.ab = sbs €X,; d’autre part, elle est incidente avec
a et s. Si sas était distinct de a, s serait dans ®(a, b) contraire-
ment & Phypothése. Par suite, ¢ est perpendiculaire a s, et b
aussi.

" Procédons par récurrence sur la dimension dans G, des élé-
ments de /V(s). Soit X un élément de N(s) de dimension n’ supé-
rieure & 1 dans G, et admettons que ’on a prouvé que tout élé-
ment de N(s) de dimension positive n'’ inférieure & n’ dans G,
peut étre mis sous la forme d’un produit de n” -1 éléments de
I(s)u{s}. Ecrivons X sous la forme abcY, ol a, b, ceX, et ou Y
est un élément de dimension n’-3 dans G,. Les réflexions a, b et
¢ ne sont pas paralléles dans leur ensemble. On peut méme
admettre que o et b se coupent, car dans le cas contraire on
remplacerait abc par ac.cbc. Le faisceau de premiere espéce
&(a, b) contient au moins un élément d perpendiculaire a s
(prop. 33). On peut alors poser X = d.dab.c.Y = dZ, ou Z est
un élément de N(s) de dimension n'-1 dans G,. En vertu de
Ihypothése de récurrence, Z peut étre obtenu en formant le
produit de n’ éléments de II(s)u{s}. Donc X peut étre considéré
comme le produit de n'+-1 éléments de II(s)u{s}. C.Q.D.F.

CoroLLAIRE 1. Tout élément de N(s) de dimension r dans G,
peut se meltre sous la forme d’un produit de r-+1 éléments de
H(s)u{s}. |



__ 93 —

Cela revient a dire que la dimension d’un élément de /N(s)
est la méme dans le R-groupe G, et dans le R-groupe N(s). A
priori, si (G, %) et (G', X’) sont deux R-groupes tels que X’ soit
contenu dans X, la dimension d’un élément X de G’ calculée
dans G peut étre inférieure a sa dimension dans G'.

La réflexion s n’appartient pas au groupe polaire n(s), car les
éléments de n(s) commutent avec chaque réflexion paralléle
a s, ce qui n’est pas le cas de s. Donc =n(s) est un sous-groupe
d’indice 2 dans N(s).

CoroLLAIRE 2. Tout élément d’un groupe polaire n(s) a méme
dimension dans 7n(s) et dans G,.

5.3. Dans G,, ou 2 =n’ = n, nous appellerons conversion tout
élément égal au produit de n' réflexions perpendiculaires deux
a deux. Un tel élément est évidemment involutif. A I’échelon 2,
les conversions se confondent avec les demi-tours. D’autre part,
nous appellerons translation le produit de deux éléments paral-
leles de X,.

Nous admettrons que les faits suivants ont été établis pour
tous les échelons »n” allant de 2 & n-1:

(C) G, ne contient pas d’élément involutif de dimension n'.

(D) Dans G,, 'ensenible des conversions se confond avec celui
des éléments involutifs de dimension n’-1.

(E) L’ensemble des éléments de (G,, Z,) qui transforment
chaque élément de X,” en un élément paralléle est formé des
conversions et des translations de G,,.

Tous ces faits ont été vérifiés dans G,. Il résulte immédiate-
ment de 'hypotheése (D), de la proposition 34 et de son corollaire
1 qu’a I’échelon n toute conversion est de dimension n-1.

Proprosition 35. Le R-groupe G, est de dimension n.

Nous savons que G, est de dimension 2. Admettons qu’il
est prouvé que G,_, est de dimension n-1.

Prenons une réflexion s dans ¥,. En vertu de 'hypotheése de
récurrence, 1l existe dans le groupe polaire n(s) un élément A de
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dimension n-1. I’élément sA est manifestement de dimension n
dans le normalisateur V(s) de s. Il résulte du corollaire 1 de la
proposition 34 que la dimension de s4 est aussi n dans G,. Par
suite, G, est de dimension n au moins. D’autre part, nous
observons que tout élément de dimension n dans N(s) est contenu
dans la classe s.7(s).

Soit X un élément quelconque de G,. Placons-nous dans le
cas ou il existe une réflexion u telle que v = X 'uX coupe u.
Désignons par m 'un des éléments bissecteurs de u et v, et par a
I’¢lément de @(u, v) perpendiculaire & ». On peut poser X =mY,
ou Y appartient au normalisateur N(v) de v. Si Y est de dimen-
sion inférieure a n, X est de dimension n, au plus. Si Y est de
dimension n, 1l peut se mettre sous la forme Y = vaZ, ou Z est
de dimension n-2 dans n(v). Comme les réflexions m, v et a sont
incidentes, I’élément X = muva. Z est de dimension n-1.

Il reste & considérer le cas ou la transformation de G, associée
a X envoie toute réflexion sur une réflexion parallele. Prenons
une réflexion ¢ et soit d = X~ !¢ X. Lorsque ¢ et d sont confondus,
X est dans le normalisateur de ¢ et sa dimension n’excede pas n.
Lorsque ¢ et d sont distincts, désignons par e leur élément bis-
secteur et posons X = eU, ou U est dans le normalisateur de d.
Les systémes polaires de ¢, d et e coincident. Par suite, les
restrictions au systeme polaire II(d) des automorphismes inté-
rieurs de G, associés a X et & U sont identiques. Il résulte de
Ihypothese générale de récurrence (E) que U est de 'une des
formes V ou dV, ou V est une conversion ou une translation
dans 7(d). A cause de 'hypothése (D), la dimension de U ne
dépasse pas n-1, et celle de X ne dépasse pas n.

De tout cela il résulte que G, est de dimension n. C.Q.F.D.

Pour tout échelon »’ allant de 2 & n, nous appellerons gerbe
associée a la conversion S et nous noterons I'(S) I'ensemble des
éléments de X, qui commutent avec S. Un tel ensemble con-
tient plus d’un élément car si § = aya, ... a,, ou les g; sont des
réflexions perpendiculaires deux & deux, I'(S) contient ay,
ay, ..., @,y. A Iéchelon 2, la gerbe I'(S) est le faisceau de pre-
miére classe autour duquel opere le demi-tour § (coroll. 2,
prop. 17).
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PropositioN 36. Dans X,, une gerbe ne contient pas d’éléments
paralléles distincts.

Soit I'(S) la gerbe associée & une conversion S de G, , et soit
a un élément de I'(S). S appartient au normalisateur de a.
Comme il n’existe pas d’élément involutif de dimension n-1 dans
le groupe polaire n(a) (hypothese (C) ), S est de la forme § = a5’
ou S’ est une conversion dans n(a) (hypothése (D) ). |

Prenons une réflexion o’ paralléle & @, mais distincte de a.
Comme S’ commute avec a’:

Sa'S = aS".a’.8'a = aa’a # o
Par suite, ¢’ n’appartient pas a I'(5). C.Q.F.D.

CoroLLAIRE. Toute conversion S de G, peut se metire sous la
forme S = aS’, on a est un élément arbitrairement choist dans
la gerbe I'(S), et ot S’ est une conversion dans n(a).

ProrositioN 37. Toute gerbe de X, est close.

Prenons deux éléments distincts a et b dans la gerbe I'(S5)
associée & une conversion S. En vertu de la proposition 36, le
faisceau &(a, b) est de premiere espéce; 1l contient donc un
élément bien déterminé ¢ perpendiculaire & a. Comme la trans-
formation par § conserve l'incidence et la perpendicularité dans
%,, et comme § commute avec a et b, § commute aussi avec c.
Donc ¢ est dans I'(S). En vertu du corollaire de la proposition 36,
on pose S = ad’, ou S’ est une conversion dans =n(a). S’ com-
mute avec ¢ et sa dimension dans G, est n-2. On peut donc
mettre $” sous la forme §" = ¢§”, ou §” est dans le groupe polaire
assoclé a ¢ dans le systéme polaire II(a). §” est un produit de
réflexions perpendiculaires & la fois & a et & ¢, et par suite per-
pendiculaires & tous les éléments du faisceau @(a, ¢). Ainsi S”
commute avec chaque élément de ®(a, c¢). Il en est de méme
d’ailleurs de ac, car a et ¢ sont perpendiculaires. Il s’ensuit que

S = acS” commute avec chaque élément du faisceau @(a, ¢). Donc -

®(a, b), qui est confondu aveec P(a, c), est contenu dans I'(S).
C.Q.F.D.
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ProrosiTioN 38. Quelles que soient la gerbe I' et la réflexion a
dans X,, T contient un élément paralléle a a et un seul.

La proposition est vraie a I’échelon 2. Admettons qu’elle
a été établie a I’échelon n-1.

Prenons deux éléments distinets u et v dans la gerbe I'. Le
faisceau de premiere classe @(u, v) est contenu dans I' et il
contient une réflexion s perpendiculaire a la réflexion donnée a.
Désignons par S la conversion a laquelle est attachée I On
peut poser S = s5’, ou S’ est une conversion dans le groupe polaire
n(s). L’intersection du systéme polaire II(s) et de la gerbe I' est
Iensemble des éléments de II(s) qui commutent avec S’. C’est
donc une gerbe I'y dans II(s). En vertu de 'hypothése de récur-
rence, I'g contient un élément a’ parallele & a. Ce qui démontre
I'existence dans I' d’une réflexion paralléle & a. L’unicité de cette
réflexion découle de la proposition 36. C.Q.F.D.

CoROLLAIRE 1. L’intersection d’une gerbe et d’un systéme polaire
de X, est une gerbe dans le systéme polatre.

En effet, comme on I’a vu en cours de démonstration, 'inter-
section d’une gerbe I' et du systéme polaire d’un élément s de I
est une gerbe dans I1(s). Or il résulte des propositions 30 et 38
que tout systéme polaire peut étre déterminé par un élément
convenablement choisi dans I'.

CoroLLAIRE 2. Une gerbe ne contient pas d’ autre gerbe qu’elle-
méme.

En effet, soit I'y et I', deux gerbes telles que I', = I';. S’1l
existait dans I'; un élément @ non contenu dans I',, on pourrait
trouver dans I', une réflexion a’ parallele & a et distincte de a,
ce qui contredirait la proposition 38.

CoROLLAIRE 3. L’application S — I'(S) définit une correspon-
dance biunivoque entre I'ensemble des conversions et celui des
gerbes dans G,.

Il suffit de montrer que deux conversions S et § , déterminant
la méme gerbe I' sont confondues. Le fait est vrai & ’échelon 2;
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admettons donc qu’il P'est aussi & ’échelon n-1. Prenons un
élément a dans I'. On peut écrire S; = aS; et S, = aS,, ou
S, et S, sont des conversions dans n(a). L’intersection de I
et du systéme polaire II(a) est une gerbe associée & la fois &
S’ et & 5’, dans II(a). En vertu de 'hypothése de récurrence
S1 = S, et, par suite, S; = S,.

Prorosition 39. Soitay,a,, ..., a, nréflexions perpendiculaires
deux a deux dans X, et soit S la conversion a,a, ... a,. Tout
élément de la gerbe I'(S) peut se mettre sous la forme d’un pro-
duit d’éléments pris dans les faisceauxr ®(a;, a;y,), avec
1=1,2,...,n-1.

La proposition est banale dans 2,. Admettons qu’elle a été
démontrée pour toutes les dimensions inférieures & n. Prenons
dans I'(S) un élément z que nous pouvons supposer différent de
ay, sans restriction. Soit b ’élément perpendiculaire & a, dans
le faisceau de premiére espéce ®(a,, x); b appartient & la gerbe
I'(S)n II(a,) de II(a,). Si b est confondu avec a,, posons y = a,.
Sinon soit ¥ I'un des éléments bissecteurs de b et a,. La réflexion
y appartient & I'(S) n II(a,;). En vertu de I’hypothése de récur-
rence, elle peut étre mise sous la forme d’un produit d’éléments
pris dans les faisceaux ®(a;, a;4), 00 1 =2, 3, ..., n-1. Posons
alors: z = yxy; cet élément appartient au faisceau:

yo(a,,x)y = y®(ay,b)y = &(a;, a,).
La proposition résulte du fait que x = yazy. C.Q.F.D.

9.4. Soit I'(S) la gerbe associée & une conversion S de G, et soit
a une réflexion quelconque. On voit facilement que aSa est une
conversion et que la gerbe qui lui est attachée n’est autre que
al'(S)a. Nous nous proposons d’examiner les transformations
ainsi définies dans I'ensemble des gerbes de X,. Mais auparavant
établissons quelques lemmes.

Lemme 1. L’intersection de deux gerbes n’est pas vide.

Il en est ainsi pour la dimension 2. Admettons que le fait
est prouvé pour la dimension n-1. Soit I' et I deux gerbes dans
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2,. Prenons une réflexion s. Les intersections respectives de
I' et I'" avec le systéme polaire TI(s) sont des gerbes dans II(s).
Leur intersection n’est pas vide, par hypothése. Il en est donc de
méme de celle de I' et T’. C.Q.F.D.

LemME 2. Soit I et I'" les gerbes attachées dans X, a deux conver-
siwons distinctes S et S’. Dans Uintersection de I' et I'’, il existe
n-1 réflexions perpendiculaires deux a deux: a,, a,, ..., a,_.
De plus, on peut écrire:

S == al a, ...an_l b; Sl = a1 a2 ...an_.l.b,,

o b et b" sont deux réflexions paralléles distinctes, perpendi-
culaires a tous les a; et situées dans I' et I'', respectivement.

Tout cela est banal dans le cas de la dimension 2, ou il con-
vient toutefois de remarquer que la condition de perpendicu-
larité des a; disparait. Admettons que le lemme est établi pour
la dimension n-1. En vertu du lemme 1, prenons un élément a;
dans I' n I"". On peut écrire S = a,S, et S = a,5;, ou S, et ]
sont deux conversions distinctes dans le groupe polaire 7(a,).
Les ensembles I' n II(a,) et I'" n I1(ay) sont les gerbes respective-
ment associées a S, et S; dans II(a;). En vertu de 'hypothése
de récurrence, on peut trouver dans I' N I'" n II(a) n-2 éléments
a,, as, ..., a,-,; perpendiculaires deux & deux quand n > 3.
De plus, on peut écrire:

. S '
Sl = 61203...an_1.b, Sl — a2a3 ...an,_l.b 5

ou b et b’ sont deux réflexions paralleles distinctes, perpendicu-
laires & tous les a;, 1 = 1, 2, ..., n-1, et situées dans I' n I1(a,)
et I'' n II{a,), respectivement. La conclusion en découle immé-
diatement. C.Q.F.D.

ProrositioN 40. Soit I' et I deux gerbes distinctes dans 2,. 11
existe une réflexion u et une seule par laquelle I' est trans-
formée en I".

Désignons par S et S’ les conversions auxquelles sont atta-
chées I' et I'', et reprenons les éléments figurant dans I’énoncé
du lemme 2. 11 réstulte en particulier de ce lemme que b et b’ ont
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un élément bissecteur unique u qui est parallele a b et 0; u est
donc perpendiculaire a chaque élément ¢;. Par suite, §" = udu
et I'' = ul'u.

Etablissons 'unicité de 1’élément considéré. Prenons un élé-
ment a dans I'nI”. 11 est distinct de b qui n’est pas dans I”.
Comme a commute avee S et S’, il commute avec S5 = bb'.
Si bab était différent de a, les réflexions b et b" seraient des élé-
ments bissecteurs distincts de a et bab: ce serait absurde car
b et b’ sont paralléles. Par suite, a est perpendiculaire & 0. Il
commute done avec a,a, ... a,_ ;. Réciproquement, toute réflexion
perpendiculaire & b qui commute avec aya, ... a,—, appartient
& I'nI’. On peut donc affirmer que I'nI"" est la gerbe déterminée
dans IT1(b) par I nII(b),et aussi par I''nII(b). Cet ensemble contient
les éléments ;. 11 en résulte que toute réflexion perpendiculaire
a chacun des éléments de I'nI"" est paralléle a b (coroll. prop. 32).
La gerbe I' en contient une seule, qui est b; I'" en contient égale-
ment une seule, b’.

Soit v une réflexion par laquelle I' est transformée en I".
La transformation par v laisse I'nI” invariant dans son en-
semble. Elle envoie donc une réflexion perpendiculaire & tous
les éléments de I'nI” sur une réflexion ayant la méme propriéteé.
Par conséquent, elle applique b sur &'. Il s’ensuit que v coincide
avec l'élément bissecteur u de b et 0. C.Q.F.D.

Convenons d’appeler élément médiateur de deux gerbes dis-
tinctes I' et I'" la réflexion u telle que I'" = ul'u.

CorROLLAIRE 1. L’intersection de deux gerbes distinctes I' et T

est une gerbe dans le systéme polaire attaché a I’ élément média-
teur de T et 1V,

COROLLAIRE 2. Le produit de deux conversions est une transla-
tion. Réciproguement, toute iranslation peut étre considérée
comme le produit de deux conversions dont U'une est choisie
[tbrement.

Lorsque les conversions § et S” sont distinctes, nous avons
vu en démontrant la proposition précédente que SS’ est une

translation. Lorsque S = §’, le produit S§’ est la translation
banale /.
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Réciproquement, soit une translation 77 = cc¢’, ou ¢ et ¢’ sont
deux réflexions paralléles, et soit S une conversion arbitraire.
Prenons dans la gerbe I'(S) I’élément b parallele & ¢. On peut
alors écrire: § = aqa, ... a,_4.b, ou les g; sont n-1 éléments per-
. pendiculaires deux & deux dans I'(S) n II(b) (coroll. prop. 36).
Posons 6" = bec” et b” = cc’b; les réflexions b'et b” sont paralléles

a b. Les éléments 8" = a,a, ... a,_,.0" et 8" =aja, ... a,_.b"
sont manifestement des conversions. Kt 'on peut écrire:
T=c' =8S =8"8S. C.Q.F.D.

ProrositioN 41. La dimension d’un élément involutif X de G,
nexcede pas n-1; cette valeur n’est atteinte que lorsque X est
une conyersion.

Si X laisse invariantes toutes les gerbes de X,, prenons deux
gerbes distinctes I'y et I',. Il résulte de la proposition 40 que
X commute avec I’élément médiateur de I'; et I',. Si X trans-
forme une gerbe I' en une autre gerbe I'’, il commute avec
I’élément médiateur de I' et I''. Dans tous les cas, 1l existe dans
X, une réflexion a qui commute avec X. Quand X est dans le
groupe polaire n(a), sa dimension ne dépasse pas n—2 (hypothése
de récurrence (C), n° 5.3). Quand X n’est pas dans z(a), 1l est
de la forme X = aY, ou Y appartient & n(a). On peut affirmer
que Y est un élément involutif de n(a) dont la dimension égale
n-2 au plus, cette valeur n’étant atteinte que lorsque Y est une
conversion dans n(a) (hypothese de récurrence (D) ). Par suite,
la dimension de X ne dépasse pas n-1 et n’atteint cette valeur
que lorsque X est une conversion dans G,. C.Q.F.D.

ProrositionN 42. Soit r gerbes et n-r systémes polaires dans 2,
oul =r = n. L'intersection de ces n ensembles n’est pas vide.

La proposition est vraie, pour la dimension 2. Admettons
qu'elle est établie pour la dimension n-1. Dans X,, soit C;, ol
i =1,2, ..., n,les n ensembles considérés que I’on peut supposer
distincts, sans restriction; nous admettrons que C, est une
gerbe. Lorsque C, est le systeme polaire II(s) d’une réflexion s,
considérons les ensembles Cy = C,nC,, ou k=1, 2, ..., n—1.
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Chacun d’eux est une gerbe ou un systéme polaire dans II(s),
C', étant d’ailleurs une gerbe. Il résulte de ’hypothése de récur-
rence que l'intersection des €', n’est pas vide. Or cette inter-
section coincide avec celle des ensembles C;, 1 =1, 2, ..., n.
Lorsque C, est une gerbe, soit u ’élément médiateur de €y
et C,. D’aprés le corollaire 1 de la proposition 40, €y n II(u) et
C. n II(u) sont confondus avec C; n C,, qui est une gerbe dans
I(u). Les ensembles Cy, = C, 0 H(u),ouk=1,2,..., n—1, sont
des gerbes et des systémes polaires dans II(u), le premier d’entre
eux étant une gerbe. En vertu de I'hypothése de récurrence,
Vintersection de ces ensembles — qui coincide avec celle des
ensembles C;, i =1, 2, ..., n —n’est pas vide. C.Q.F.D.

CorOLLAIRE. Quand n = 3, U'intersection de deux faisceaux d’ une
méme gerbe n’est pas vide.

En effet, soit @ et ¢’ deux faisceaux contenus dans une méme
gerbe I' de X;. Comme @ est de premiere espece, il peut étre
déterminé par deux éléments perpendiculaires de I'. Il existe
dans 25 une réflexion s perpendiculaire a tous les éléments de
@ (prop. 32), et @ est 'intersection de I' et II(s). De méme, il
existe une réflexion s’ telle que &’ soit 'intersection de I' et II(s").
[’intersection de @ et @’ se confond avec celle de I', II(s) et
II(s"), qui n’est pas vide. C.Q.F.D.

D’apres la proposition 42, 'intersection de n gerbes de X,
n’est pas vide. Il arrive que cette intersection se réduise a un
seul élément. Pour le voir, prenons n réflexions a;,, t = 1, 2, ...
n—1, n, perpendiculaires deux a deux, ainsi que n—1 réflexions
a';, 7 =1,2,..., n—1, telles que pour toute valeur de I'indice j,
a; et a’; solent paralleles et distinctes. Considérons la conversion
S=ay a,..a,-,a, et soit I' la gerbe associée & S. Cons-
truisons les gerbes I'; = a;I" a;, ] =1, 2, ... n—1. L’ensemble
I'nl’; est confondu avec I'nII(a;). Par suite, I'intersection des
gerbes I', I'y, I',, ..., I',_, se confond avec celle de I' et des
systémes polaires II(a;),; = 1,2, ... , n—1. Ilrésulte des proposi-
tions 32 et 38 que cette derniére intersection se réduit & un
élément unique, qui n’est autre que a,. Il découle de 'axiome de
bissection que tout élément s de X, peut 8tre déterminé par
Pintersection de n gerbes bien choisies dans X,. D’autre part, si
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Pon prend dans X, une réflexion a, paralléle & a, et distincte
d’elle, une gerbe I', contenant a, ne contient pas a,. Par consé-
quent, il est possible de trouver dans X, n+1 gerbes disjointes
dans leur ensemble.

ProprosiTION 43. Le normalisateur N(S) d’ une conversion S de
G, est confondu avec le R-groupe engendré par la gerbe T'(S) et
avec le groupe de stabilité de I'(S). En tant que R-groupe
engendré par I'(S), sa dimension égale n—1.

Désignons par g(8) le R-groupe engendré par la gerbe I'(S)
et par p(5) le groupe de stabilité de I'(S) dans &,. On voit immé-
diatement que g(S5) est contenu dans N(§), car il est engendré par
une partie de N(S), soit I'(S). D’autre part, N(S) est contenu
dans y(S5). Prenons en effet un élément X quelconque dans N(S)
et une réflexion a quelconque dans I'(S). Comme I'(S) est conte-
nue dans N(S), X 'aX est une réflexion commutant avec S, tout
comme XaX~'. Donc X '.I(S).X = I'(S) et X appartient a
(S)-

Montrons que y(S) est contenu dans g(S). Procédons par
récurrence. Le fait est vrai dans G, (prop. 17); admettons qu’il
Pest pour la dimension n—1. Prenons alors un élément Y dans
7(S) et une réflexion b dansla gerbe I'(S). L’élément ¢ = Y 1Y
est dans I'(S). Lorsque b et c sonit confondus, Y laisse invariante
la gerbe I'(S) nII(c) dans IT(c). Des deux éléments Y et c¢Y, 'un
appartient au groupe polaire =n(c). Il résulte de I'hypothese de
récurrence que cet élément est le produit d’un certain nombre
de réflexions prises dans I'(S)nII(c). Par suite, Y est bien dans
g(S). Lorsque b et ¢ sont distincts, prenons un élément bissecteur
u de b et ¢. Comme u est dans I'(S), Z = uY est dans yp(S) et
il commute avec ¢. On montre comme précédemment que Z et,
- par suite, Y = uZ appartiennent a g(J5).

Montrons maintenant que, comme R-groupe engendré par
Ir'(S), N(S) est de dimension n —1. L’affirmation est vraie dans G,.
Admettons qu’on I’a prouvée pour ladimensionrn —1. Le R-groupe
N(S) est au moins de dimension n —1, car il contient la.conversion
S qui est de dimension n—1 dans G,. Prenons alors dans V(§) un
élément A = a,a, ... a,a,+, o les q; sont dans I'(S). Montrons .
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que A peut se mettre sous forme d’un produit de moins de n-+1
éléments pris dans I'(S). C’est évidemment le cas lorsque a, = as.
Sinon prenons un élément b, perpendiculaire a ¢, dans le faisceau
de premiére espece ®(a,, a;), et posons a; = b,a,a;. On a alors
A = a,baza, ... a,a,.,. Admettons que lon ait mis A sous
la forme:

A =abyby ...y peq .. 00,41,

oules b, 1 =1, 2, ..., k—1)sont dans I'(S)nIl(a,), et ael(S).
Lorsque a; = @44, la démonstration est achevée. Dans le cas
contraire, on prend un élément b, perpendiculaire a a, dans le fais-
ceau de premiére espece By, Gpsq); ON POSE Qpyq = bl oy
Il résulte de 1a que I'on peut écrire:

A = a1b2b3...bn€ = b2b3...bna1€,

ou les b; sont des éléments de I'(S)n II(a,), et e est dans I'(5).
Lorsque a; = e, la démonstration est achevée. Dans le cas
contraire, on prend ’élément d, perpendiculaire & a; dans le fais-
ceau de premiere espece &(a,e). Dans IT(a,),la gerbe I'(S)n I1(a,)
engendre un ZR-groupe de dimension n—2, en vertu de
I'hypothése de récurrence. Comme les réflexions b; ainsi que d,
appartiennent & I'(S)n II(a,), on peut trouver n —2 éléments d,,

ds, ..., d,—; dans ce méme ensemble, tels que b,b; ... b, =
dyds ... d,_d,. D ou:

A == d2d3 "'dn—-l .dnale.

Gomme d,a,e est dans I'(S), A est de dimension n —2 auplus. 1l en
résulte que le R-groupe N(S) engendré par I'(S) ne contient pas
d’élément de dimension supérieure & n—1. Par suite, il est de
dimension n—1. C.Q.F.D. |

COROLLAIRE. Quand n = 3, le normalisateur d’une conversion
est un groupe de type elliptique plan.

Cela résulte de ce qui précéde, du corollaire de la proposition
42 et de la définition donnée au n° 2.1.

Il est clair qu’a tout élément X de G, on peut associer une
transformation de I’ensemble des gerbes définie parI' - X ' X.



— 104 —

Pour simplifier, nous dirons que X laisse fixe la gerbe I" lorsque
X7'IrX = TI. Montrons que le groupe des transformations ainsi
définies est isomorphe & G,. Pour cela, nous établirons un fait un
peu plus précis.

Proposition 44. Le seul élément de G, laissant fixes n-+1
gerbes disjointes dans leur ensemble est I'élément neutre 1.

Le fait est vrai dans G, en vertu du corollaire 3 de la pro-
position 17. Admettons qu’il est établi pour la dimension n —1. Soit
I'iyi=1,2,...,n,n+1, n+1 gerbes de 2, disjointes dans leur en-
semble. Désignons par u I'élément médiateur de I', et I, ..

Posons I''; = I'inM(u), 1 =1, 2,..., n+1. Il est clair que
ry=7r=,,, = I',nI,.,. Par suite, lintersection des gerbes
Iiyoui=1,2,..,n, nt+1, est confondue avec celle des gerbes

I'jouj=1,2, ..., n, dans II(u), qui est donc vide.

Soit A un élément de G, laissant fixes les n-+1 gerbes I,
oui =1,2,...,n,n+1. Onvoit que A commute avec la réflexion
u et qu'il laisse fixes les gerbes I';, ouj =1, 2, ... n, dans I(u).
Lorsque A est dans le groupe polaire n(u), il est confondu avec Z,
en vertu de I’hypothese de récurrence. S1 A n’était pas dans
n(u), 'élément uA y serait; or uA laisse fixes les gerbes I,
dans II(u); par suite A serait confondu avec u, ce qui est exclu
car la transformation par u envoie I', sur I',;;. Lia seule possi-
bilité reste done 4 = 1. C.Q.F.D.

CorOLLAIRE. Soit n gerbes de X, dont U'intersection se réduit a
un seul élément a. Les seuls éléments de G, laissant fixes ces n
gerbes sont I et a.

En effet, soit I';, ou i = 1, 2, ..., n, les n gerbes considérées.
Tout élément de G, laissant fixes ces n gerbes appartient au
normalisateur N(az) de a. Comme les ensembles I'; = I';n1I(a)
sont n gerbes disjointes dans leur ensemble, dans II(a), le seul
élément de n(a) laissant fixe chacune des I'; est 7. Il en résulte
que les seuls éléments de G, laissant fixes les gerbes I';, ou
1 =1,2, ..., n, sont [ et a. '

5.5. Nous allons parvenir a un théoréme concernant la struc-
ture du groupe G,. Mais auparavant, nous allons considérer les
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translations de G,. Lorsque T = ba, ou a et b sont deux réflexions
paralléles, nous convenons de dire que 7 est une translation
de front a. Les translations de front @ constituent dans G, un
sous-groupe abélien: ce sous-groupe coincide avec celui des élé-
ments propres du R-groupe engendré par le faisceau de deuxiéme
espece contenant a. Lorsque a parcourt X,, le groupe des trans-
lations de front a parcourt une famille de sous-groupes conjugués
dans G, tous isomorphes a I’'un d’entre eux que nous désignerons
par 7. Il va de soi que deux translations de méme front ou de
fronts perpendiculaires commutent.

ProposiTioN 45. L’ensemble T, des translations de G, constitue
un sous-groupe distingué, abélien, isomorphe a t".

Bien que la démonstration de ces faits soit essentiellement
analogue a celle des propositions 14 et 15, nous la retracons
brievement ici. Soit 7" et 7" deux translations quelconques
prises dans G,. Choisissons une conversion §; il existe deux
conversions bien déterminées S’ et S” telles que 77" = §'S et
I'" = §"S (coroll. 2, prop. 40). Par suite:

T/ T//—-l — S/ ‘S”,

qui est une translation. Donc 'ensemble 77, des translations de
G, est un sous-groupe de G,. Comme les automorphismes inté-
rieurs de G, induisent dans X, des transformations conservant le
parallélisme, 7, est distingué dans G,.

On peut trouver n réflexions a,, a,, ..., a, perpendiculaires
deux & deux, telles que § = aa, ... a,. Dans la gerbe I'(S)
attachée a la conversion S’ considérée plus haut, il existe n
éléments bien déterminés b,, b,, ..., b,, respectivement paral-
leles aux réflexions a,, a,, ..., a,, de sorte que S’ = bb, ... b,.
Si Pon pose T; = b;a;, on voit que 7" est le produit de n trans-
lations univoquement déterminées 7; de front a;, ou i = 1,
2,..., n. De méme, la translation 7" peut se mettre, d’une
maniére et d’une seule, sous la forme 7" = 7.7, ... T, ou
T; est une translation de front a;. Quelles que soient les valeurs
de i et j, T; et T; commutent; alors:

T'T" =T,T,.T,T",..T' T" .
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Par suite, 7, est isomorphe au produit direct des n groupes de
translations de fronts a,, a,, ... , a,. Il est donc abélien et iso-
morphe a 7". C.Q.F.D.

COROLLAIRE. Soil a,, a,, ..., a, n réflexions perpendiculaires
deux a deux. Toute translation de G, peut étre représentée par
un produit de réflexions paralléles d ay, a,, ..., a,, respective-
ment.

THEOREME 6. Le groupe G, est le produit semi-direct du groupe
des translations F , et du normalisateur dans G, d’ une conversion
arbitrairement chotiste.

Prenons une conversion S dans G, et soit a une réflexion
quelconque. Dans la gerbe I'(S) associée a .S, 1l existe un élément
o’ paralléele & a, et un seul. Comme ¢ = aa’.a’ = a'.a'a,laréflexion
a peut se mettre sous la forme d’un produit d’une réflexion
bien déterminée ' prise dans I'(S) et d’une translation 7' qui
dépend de Vordre adopté pour les facteurs a’ et 7'. Il découle de
cela et du fait que le groupe 7, est distingué dans G, que tout
élément X de G, peut se mettre sous les deux formes suivantes:

X=XT =T,X,

ou X’ est dans le normalisateur N(S) de S et ou 7'; et T, sont
des translations. Les éléments X', 7'y et T, sont univoquement
déterminés par X, car N(S) ne contient aucune translation non
banale. En effet, si 7 est une translation de front 6 dans N(S),
il existe dans I'(S) une réflexion ¢ paralléle a b. La réflexion ¢T

est paralléle & b et elle commute avec S. Par suite T = 1.
| C.Q.F.D.

ProrosiTioN 46. Les seuls éléments de G, qui transforment
chaque réflexion en une réflexion paralléle sont les conversions
et les translations.

Désignons par X Pensemble des éléments de G, possédant la
propriété indiquée; il constitue évidemment un sous-groupe de
G, ne contenant aucune réflexion. Prenons une conversion bien
déterminée S. Elle commute avec chaque élément u de la gerbe
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I'(S) attachée a S. Elle transforme toute réflexion u' paralléle
4 u en une réflexion paralléle & u, done a u'. Il résulte de la pro-
position 38 que S appartient a £. Gomme on peut en dire autant
de toute conversion de G,, E contient toutes les conversions et
les translations de G, (coroll. 2, prop. 40). En vertu du théoréme
6, tout élément A de E estle produit d'un élément A" de £ contenu
dans le normalisateur NV(S) de S et d’une translation. Pour établir
la proposition, il suffit de montrer que A’ ne peut étre que / ou S.
Prenons un élément a dans I'(S). A" appartient au normali-
sateur de a dans G,. Lorsque A’ est dans le groupe polaire n(a),
il laisse fixe chaque élément de la gerbe I'(S)nII(a) dans II(a).
Donc, dans II(a), A’ transforme toute réflexion en une réflexion
parallele. Comme N(S) ne contient pas de translation non banale,
1l résulte de ’hypotheése générale de récurrence (F) (voir n° 5.3)
que A’ est soit I, soit la conversion 5’ = a8 dans n(a). Or A’ ne
saurait étre confondu avec S’, car S'S = a n’est pas dans E.
Dans le cas présent, A’ est donc 1'élément /. En revanche,
lorsque A’ est dans a.n(a), aA” = §’. Par suite A" = 5. C.Q.F.D.
Avec cette proposition, nous avons achevé de prouver que
les faits énoncés dans les hypothéses générales de récurrence sont,
également vrais pour la dimension n. Ces démonstrations font
I'objet du corollaire de la proposition 28 (hyp. (4) ), et des pro-
positions 31 (hyp. (B) ), &1 (hyp. (C) et (D)) et 46 (hyp. (E) ).

9.6. Prenons dans X, n réflexions u; perpendiculaires deux a
deux, ¢ =1, 2, ..., n. Pour tout indice i différent de 1, prenons
un élément bissecteur my; de u; et u;. Comme u; coupe u, lorsque
L # k # 1, my; coupe my, (prop. 46). Soit m;, I’élément perpen-
diculaire & u; dans le faisceau @(my;, my;). Posons m, =
myimymy,. On voit sans peine que my est un élément bissecteur
de u; et u;. Par la suite, nous pourrons admettre que m;; et m;,
ou t # j, désignent le méme élément. Prenons ensuite une ré-
flexion e, parallele & u; mais distincte d’elle. Posons e, =
myeymy; pour tout indice ¢ différent de 1. On peut vérifier que
pour toute paire d’indices distincts (j, k) on a e, = M j1 €M iy
[’ensemble des éléments u;, m,, e; constitue dans 2, un repeére
orthonormal Z. Nous admettrons quune définition analogue a
¢té faite & chacun des échelons inférieurs. On voit d’ailleurs que
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c¢’est bien ainsi que nous avons procédé & I'échelon 2. L’inter-
section du repére orthonormal # considéré ci-dessus dans X,
avec le systeme polaire IT(u;) détermine dans celui-ci un repere

orthonormal %;, avec 1 =1, 2, ..., n.
Nous savons qu’en fixant le groupe G, nous déterminons une
chaine de groupes G,,, oun’ =2, 3, ..., n—1, n, telle que pour

tout n’ supérieur a 2, G, satisfait les axiomes £, [ et £, I1.
Le groupe G, est isomorphe au groupe GE(2, K), ou K est un
corps réel bien déterminé contenant la racine carrée de chacun
de ses éléments positifs. Nous appellerons K le corps de base, et
nous nous proposons de prouver que G, est isomorphe a GE(n, K).
En vue de cette démonstration, nous allons admettre les hypo-
theses de récurrence suivantes:

a) Dans G,_4, il existe une correspondance biunivoque entre
I’ensemble des gerbes de X,_; et K"~*. Cette correspondance est
déterminée par le choix d’un repere orthonormal dans %,_;.

b) Admettons qu'on s’est donné un repere (u;, my, ¢;) dans
Zo—1,avec i, k=1,2,...,n—1et1 # k.Soit I et I'" deux gerbes
quelconques dans X,_,; pour tout indice 7, désignons respective-
ment par z; et x’; les éléments de I' et I'" paralléles & u;. Soit
(&1, &2y ooy Eumy) et (&1, &, oo, E,my) les éléments de K"7*
associés & I' et I relativement au repére considéré. Alors les
égalités x; = x; et & = & sont équivalentes.

¢) La quantité:
n—1 1
dn—l (Fa F/) = [ Z (61 - é;)zi]
i=1

est invariante par rapport aux transformations induites par les
éléments de G,_, dans ’ensemble des gerbes de X,_ ;.

Ces faits sont vrais & I’échelon 2. Nous allons montrer qu’ils
le sont ausst a ’échelon n. Introduisons une fois pour toutes un
repere orthonormal # formé d’éléments u;, my; et e;, avec
L, k=1,2,...,nett # k,comme nous 'avons décrit plus haut.
L’intersection de % et II(u;)) détermine dans II(u;) un
repére orthonormal £, pour tout indice i. Prenons une
gerbe quelconque I' dans X2,. Dans H(u;), I'nIl{u;) est une
gerbe & laquelle on peut attacher un élément de K"~' bien
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déterminé (..., &;, ...) relativement & £;, avec 1 =] =n et
j # 1. Silon substitue & I une gerbe I'" ayant avec I" un élément
commun 1z, parallele & w,, k # i, U'élément (..., ¢}, ...) de
K" 1 avec 1 =] =n et ] # i, associé & I''nII(u;) relativement
a &, est tel que & = &'4. Sil’on applique ces considérations aux
gerbes I' et I'" = m;,I'm;;, ou i’ # i, on voit que I’élément
(«..,my,...)de K" ' avec 1 =j = net] # 1, associé a I'nIl(u;)
relativement au repére #Z; est tel que &; = 5; pour tout indice j
différent de ¢ et de ¢. On peut donc attacher & la gerbe I' un
élément (&,, &,, ..., &) de K" de maniére que l’on obtienne
I'élément de K"~ ! associé & I'mII(u;) relativement aurepére £ ; en
biffant I’élément &,, pour tout indice . On détermine ainsi une
correspondance biunivoque entre ’ensemble des gerbes de X,
et K", correspondance déterminée par le choix du repére #£.
Nous dirons que &; est la i-ieme coordonnée de I'relativement & £.

Lorsqu’on transforme la gerbe I' par une réflexion a prise
dans II(u;), on obtient une nouvelle gerbe dont la i-iéme coor-
donnée coincide avec celle de I'. Il résulte de I’hypotheése c) faite
plus haut que la transformation considérée laisse invariante la
quantité:

d,(I',T") = [Z (& — 52)2]?

ou (&, &y eny &) et (&, &5, ..., &) sont les coordonnées de
deux gerbes quelconques I' et I'', relativement & %. Or il découle
de la proposition 39, du corollaire de la proposition 45 et du
théoréme 6 que tout élément de G, peut étre considéré comme
un produit d’éléments pris dans les systémes polaires II(u)),
out=1,2, ..., n Donc d, est invariante par rapport aux trans-
formations induites dans I’ensemble des gerbes de X, par les
éléments de G,. Comme on le sait d’ailleurs, d, est une distance
dans K". D’autre part, il résulte de la proposition 44 que G, agit
effectivement dans I’ensemble des gerbes de X,. En faisant
usage de la correspondance biunivoque introduite précédemment
entre les gerbes de X, et les éléments de K", on peut assimiler G,
a un groupe d’isométries de K" muni de la distance d,,.

On a pu observer en passant que les hypotheses a), b) et ¢)
sont également satisfaites a I’échelon n.
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THEOREME 7. Le groupe G, est isomorphe a un groupe GE(n, K),
o K est un corps réel contenant la racine carrée de chacun de
ses éléments positifs. |
Nous appellerons « points » les éléments de K”. La famille de

R-groupes (GE(rn/, K), 2(n/, K) ) satisfait les axiomes que nous

avons posés pour la famille de R-groupes (G,, Z,), ou n’' =

2, 3, ..., n. 1l en résulte que toutes les propositions que nous

avons établies pour G, conviennent & GFE(n, K). Ainsi, a toute

gerbe I'" dans X(n, K) correspond biunivoquement un point de

K" qui n’est autre que le centre P de la conversion déterminant

I'". Nous qualifierons I'" et P d’éléments homologues. Cette

correspondance est manifestement compatible avec les trans-

formations induites par les éléments de GE(n, K) dans len-
semble des gerbes de X(n, K) et dans K,. ’

Nous avons déja vu que G, peut étre considéré comme un
sous-groupe de GE(n, K). Prenons alors une réflexion a’ dans

X(n, K). Il existe dans X(n, K) n gerbes I'y, I'y, ..., I, dont
Iintersection se réduit a {a’}. Soit P; le point homologue de I},
out =1, 2, ..., n Il résulte du corollaire de la proposition 44

que, mis a part I’élément neutre, a’ est le seul élément de GE(n, K)
laissant fixes les points P;. Soit I'; la gerbe de X, correspondant
au point P, 1 =1, 2, ..., n. Tout élément commun aux gerbes
I'; laisse fixes les points P;. Or Pintersection de ces gerbes n’est
pas vide (prop. 42) et elle ne contient évidemment pas I’élément
neutre. Comme G, est contenu dans GE(n, K), il résulte de ce qui
précede que cette intersection se réduit a 1’élément a’. Donc
X(n, K) est contenu dans X, et, par suite, G, est confondu avec
GE(n, K). C.Q.F.D.

CoroLLAIRE. (G,, Z,) est isomorphe, en tant que R-groupe, a

(GE(n, K), Z(n, K)).

En effet, le raisonnement précédent prouve que 2, et X(n, K)
sont confondus.

Afin de mieux percevoir la précision apportée par ce corol-
laire au théoréme 7, considérons un exemple. Dans GE(n, K),
ou n >bH, désignons par 2X'(n, K) l'ensemble distingué des
éléments involutifs de la forme abe, ou a, b et ¢ sont trois éléments
de X(n, K) perpendiculaires deux a deux. Quelle que soit la

T R T R TR
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réflexion u dans X(n, K), on peut en trouver quatre autres
v, w, x, et y, perpendiculaires & u et perpendiculaires entre elles,

de sorte que:
= UYV.UXW.WXY .

Par suite, GE(n, K) est un R-groupe engendré par X'(n, K).
Mais (GE(n, K), X'(n, K)) ne satisfait pas I'axiome d’incidence.
11 suffit de le montrer pour n = 5. Rapportons I’espace K> a un
repére orthonormal et désignons par (x4, 75, 23, Z4, Z5) un point
quelconque de K°. Considérons les transformations A4, B, C et
D envoyant (z, Z,, 3, %4, &s) respectivement sur (z;, Z,,
— &3y — X4y —Xs), (By, Bay — &3, — L4yt —Ts), (Ty, —La, L3, —Tg, —T5)
et (—xy, —2,, T3, — T4, Ts), OU ¢ est un élément non nul de K, Il
est clair que A, B, C et D sont dans 2'(5, K). D’autre part:

CBA: (xl,XZ,X3,X4,xS) —?(Xl, —xZ,x3, '_'X4, —-t-—x5),
DCA: (%{,%Xy,%X3,X4,Xs) > (—X{,Xy, —X3, —X4,Xs5),
DCB : (xl » X3 5 X3 ,X4,x5) —"\'(—xl s Xp, —X3, —X4, __t+x5)'

Donc CBA et DCA sont dans X'(5, K). Il n’en est pas de méme de
DCB, qui n’est pas involutif. Comme 4 et C sont distincts, on
peut affirmer que (GE(n, K), 2'(n, K) ) n’est pas un RI-groupe
(n > b). Il ne saurait donc étre isomorphe, en tant que R-groupe,
a (GE(n, K), 2(n, K)).

Nous avons donc montré que les axiomes E, [ et E, I, joints
aux axiomes P I & P VII caractérisent les groupes GLE(n, K),
ou K est un corps réel contenant la racine carrée de chacun de
ses éléments positifs. Il convient de noter que 'on peut omettre
les axiomes P VI et P VII sans changement pour le reste de la
construction. Les sept autres axiomes caractérisent les groupes
des K-isométries des espaces K" munis de leur K-métrique eucli-
dienne, ou K est un corps formellement réel pythagoricien.

I’examen critique des axiomes £, [ et E, II se réduit a fort
peu de chose pour ce qui concerne la consistance et I'indépendance
relative, qui sont manifestes. On pourrait cependant se proposer
d’étudier s’il est possible de substituer a 'un ou 'autre de ces
axiomes un axiome plus faible. Peut-on, par exemple, renoncer
a exiger de G, qu’il satisfasse 'axiome d’incidence? Ces questions,
qui sont probablement assez délicates, ne sont pas abordées ici.
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