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Nous avons vu que D(PÎ1 P2) est un carré dans le corps Jf, qui
est pythagoricien. Posons alors:

d(Pt,P2)

Il découle immédiatement des propriétés de D que d est
invariante relativement à G et qu'elle satisfait les conditions 1)

et 2) appliquées aux if-distances dans le plan. De plus, prenons
trois points quelconques P±, P2 et P3 et désignons par d2

et d3 les éléments d(P2, P3), d(P3l Px) et d{Pu P2) respectivement.

On voit sans peine que:

S (JPj P2 jP3) — (d± 4- d2 + dy) — d± 4~ d2 4- d3^ (jd\ — d2 4- d^) (d± 4~ d2 — d3)

où S(Ptf P2, P3) est la quantité définie par (7) au n° 2.11. En
vertu de la relation (8) figurant au même numéro, S(P.U P2, P3)
est un carré dans K. Mais, dans l'égalité ci-dessus, trois au moins
des facteurs apparaissant au second membre sont positifs; il en
est alors de même du quatrième. Par suite:

d(Pl9P2)^d(Pl9P3) + d(P29P3),

quels que soient les points Pu P2 et P3. Donc d est une if-dis-
tance dans le plan. La proposition 26 permet d'affirmer que G

est le groupe des if-isométries du plan relativement à d.

Lorsque l'axiome P VII est satisfait, d est une distance dans
le plan. Si, de plus, l'axiome P VI est vérifié, on peut énoncer:

Théorème 5. Tout groupe satisfaisant les axiomes PI à P VII
est isomorphe à un groupe GE(2, K), où K est un corps réel

contenant la racine carrée de chacun de ses éléments positifs.

4. Critique du système des axiomes P I à P VII

4.1. Lorsqu'on expose une théorie mathématique, il convient
d'examiner le système des axiomes adoptés sous le triple aspect
de la consistance, de la catégoricité et de l'indépendance. La
consistance — ou non-contradiction — des axiomes que nous
avons posés est assurée par l'existence d'un modèle satisfaisant:
la géométrie euclidienne plane continue, par exemple.
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Un système d'axiomes consistant est dit catégorique lorsque
deux quelconques des modèles qui le satisfont sont isomorphes,
c'est-à-dire quand ces modèles ne diffèrent éventuellement que

par la désignation des objets qui les composent (pour une complication

adéquate de la question, voir [5]). Dans le cas qui nous

occupe, nous savons que les axiomes posés caractérisent indirectement

les corps réels contenant la racine carrée de chacun de

leurs éléments positifs. Le plus petit S de ces corps est une
extension algébrique de type infini du corps Q des nombres

rationnels; il est donc dénombrable. Il en est de même du

groupe GE(2, S). Ce groupe ne saurait être isomorphe au groupe
GE(2, R) de la géométrie euclidienne plane continue. Ainsi notre
système d'axiomes n'est pas catégorique. Il ne pouvait d'ailleurs
l'être, étant donnée la définition que nous avons adoptée pour
les géométries euclidiennes. Cependant il résulte du théorème 5

que le système des axiomes P I à P VII est équivalent à la
définition que nous avons prise pour le groupe fondamental d'une
géométrie euclidienne plane.

Reste l'indépendance des axiomes. Les axiomes d'un système
consistant {Au A2, A„) sont indépendants si, quel que soit
i 1, 2, n, on peut trouver un modèle satisfaisant les n-1
axiomes Ak pour lesquels mais ne vérifiant pas At. Remarquons

d'emblée que notre système d'axiomes ne possède pas
cette propriété qui, d'ordinaire, n'est obtenue qu'au dépens de la
simplicité ou de la clarté. Ainsi plusieurs de nos axiomes n'ont
de signification que si certains de ceux qui les précèdent sont
satisfaits. On peut toutefois exiger des axiomes d'un système
une indépendance relative dans le sens que voici: les axiomes
d'un système consistant ordonné (Au A2, An) sont
relativement indépendants si, quel que soit i 2, 3, ...,72, il existe un
modèle satisfaisant le système (A1, A2, Ai_1)1 mais ne vérifiant

pas At. Nous allons montrer que c'est le cas de notre système.
Avant de passer à cet examen, formulons une dernière

remarque d'ordre général. Ayant élaboré un système d'axiomes
pour une théorie déterminée, on peut se proposer de réunir
plusieurs axiomes consécutifs dans un même énoncé. C'est ce
que nous avons fait dans le cas de l'axiome P /, par exemple,
qui contient les axiomes du groupe, entre autres. L'exposé y
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gagne sans doute en simplicité, mais le procédé n'est pas orthodoxe

du strict point de vue de l'axiomatique.

4.2. Examinons l'indépendance relative de l'axiome d'incidence

P II. Considérons le groupe H des isométries propres de

l'espace euclidien R3. Il est engendré par l'ensemble E des demi-
tours par rapport aux droites de R3. H n'est pas un iî-groupe
relativement à E, car le produit de deux demi-tours d'axes
perpendiculaires est encore un demi-tour. Formons alors le R-

groupe H' naturellement associé à H (voir 1.1). Il est engendré

par l'ensemble E' des éléments de la forme a' (a, — 1), où a

est dans E. Le groupe H ne se confond pas avec E; d'autre part,
tout élément de H peut être obtenu en formant le produit de

deux éléments convenablement choisis dans E. Il s'ensuit que
H' est un iî-groupe de dimension 2 engendré par E'.

Soit a, b et c trois éléments de E, et soit a' (a, — 1),
V =(b, —1) et c' (c, —1) les éléments de E' qui leur sont associés.

Affirmer que a'b'c' est dans E\ c'est affirmer que abc est dans 2?,

ce qui revient encore à dire que les axes des demi-tours a, b et c

admettent au moins une perpendiculaire commune. Considérons
alors dans l'espace R3 quatre droites distinctes â, 5, c et 3,
telles que 5, c et 3 soient les côtés d'un triangle, que ä et b soient

parallèles et que le plan (â, b) soit perpendiculaire au plan
(5, c). Soit a, 6, c et d les demi-tours d'axes respectifs ây 5, c et 3,

et soit a', bf, cf et d'les éléments de E' qui leur sont associés. On
voit alors que a'b'c' et a'b'd' sont dans E' mais que a'c'd' n'y est

pas. Par suite, le iî-groupe H' ne vérifie pas l'axiome d'incidence.

4.3. Passons à l'axiome de bissection P III. Considérons le

iî-groupe de l'icosaèdre régulier. A titre d'exercice, il est intéressant

de décrire ce groupe d'ailleurs bien connu en utilisant le

langage des iî-groupes. Désignons par A l'un des sommets de

l'icosaèdre, que nous supposons plongé dans l'espace euclidien
R3. Désignons par RCDEF le pentagone convexe régulier déterminé

par les extrémités des arêtes issues de A. Soit 0 le centre
de l'icosaèdre et soit A', B', C", 2)', E' et F' les sommets
respectivement opposés k A, By C, Dy E et F. Désignons par G le

groupe des isométries de l'espace euclidien R3 laissant invariant
l'icosaèdre dans son ensemble. Ce groupe est évidemment fini.
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Par chaque arête de l'icosaèdre, il passe un plan de symétrie
de la figure. Désignons par I l'ensemble des quinze réflexions de

l'espace R3 ainsi introduites, deux arêtes opposées correspondant
à une même réflexion. Quelle que soit la paire de sommèts non

opposés que l'on prenne dans l'icosaèdre, la réflexion envoyant
l'un sur l'autre appartient à I.

AB étant une arête quelconque, on peut trouver deux arêtes,
DE et CFr par exemple, telles que AB, DE et CF' soit orthogonales
deux à deux. Les réflexions attachées à ces trois arêtes ont pour
produit la symétrie cr de centre 0. Soit X un élément de G

différent de cr. Il existe au moins un sommet, mettons A, que X
n'envoie pas sur son opposé. Soit r l'élément de I envoyant
X(A) sur A. Quand X^r, l'un au moins des sommets B et C

de la face ABC n'est pas fixe pour la transformation rX; admettons

que rX(B) est distinct de B. Ces deux sommets ne sont pas
opposés: soit s l'élément de I qui envoie rX(B) sur B. La
transformation srX laisse fixes A et B. Lorsque X^rs, srX(C) est
distinct de C. La réflexion t associée dans 1 à l'arête AB envoie
srX(C) sur C. L'élément tsrX appartient à G. Comme il laisse

A'

Fig. 11
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fixes les sommets A, B et C, il n'est autre que l'élément neutre
de G. Par suite X — rst. D'autre part, I est distingué dans G.I1

résulte donc de ce qui précède que G est un iî-groupe de dimension

2 engendré par I.
La condition nécessaire et suffisante pour que trois éléments

de I aient pour produit un élément de 1 est que les plans qui
leur sont associés admettent une droite commune. Cela détermine

une relation d'incidence dans I. Pour étudier les faisceaux
dans £, combinons l'arête AB avec chacune des autres arêtes
de l'icosaèdre, en nous bornant aux seuls couplages essentiellement

différents.
Les arêtes AB et AC déterminent le faisceau des cinq

éléments de I laissant fixe le point A. On peut attacher un tel
faisceau à chaque paire de sommets opposés et nous désignerons

par <P(A) celui qui correspond à A (et A'). La réflexion associée
à l'arête AB appartient encore au faisceau <P(B).

Les réflexions correspondant à AB et E'F' déterminent un
faisceau contenant encore la réflexion associée à C'D'. Les plans
de ces trois réflexions se coupent suivant la normale abaissée
de 0 sur la face BD'E'. On peut ainsi attacher un faisceau de

trois éléments à chaque paire de faces opposées; nous désignerons

par $(BD'E') celui qui correspond aux faces BD'E' et B'DE. La
réflexion associée à AB appartient aux deux faisceaux ${BD'E')
et $(ADE).

Les réflexions correspondant à AB et CFf déterminent un
faisceau ne contenant pas d'autre réflexion. Leurs plans se

coupent suivant la perpendiculaire abaissée de 0 sur AB. On

peut attacher de la sorte un faisceau de deux éléments à toute
paire d'arêtes opposées, et nous appellerons <P(AB) celui qui
correspond aux arêtes AB et A'Br.

Un décompte facile nous permet d'affirmer que nous avons
ainsi épuisé tous les faisceaux auxquels appartient la réflexion
relative à AB. Le iî-groupe G, dont nous avons vu qu'il satisfait
l'axiome d'incidence, ne satisfait pas l'axiome de bissection,
puisqu'il contient des faisceaux formés de deux éléments distincts
seulement.

Remarquons en passant que les faisceaux $(A) et <P(BE')
sont disjoints, tout comme les faisceaux $(BEr) et $(ABC).
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L'exemple précédent montre les interprétations géométriques

que l'on peut faire intervenir assez naturellement dans l'étude
des iîi-groupes finis (voir [9]). Toutefois, on aurait pu le

remplacer par des exemples plus simples tels que celui-ci: dans le

plan euclidien continu, prenons trois points non alignés A, B
et C. Considérons le groupe G' engendré par les demi-tours ayant
pour centres A, B et C. C'est visiblement un iî-groupe engendré

par l'ensemble Z' des demi-tours ayant pour centres les points
d'un réseau plan: le réseau ayant pour maille génératrice le

parallélogramme ABCD construit sur ABC. Dans le plan, le

produit de trois demi-tours est un demi-tour. L'axiome d'incidence

est donc satisfait dans G' qui est un R-groupe de dimension

1. Le seul faisceau de Z' est constitué par Z' tout entier.
Lorsque trois demi-tours x, y et z, les deux derniers étant
distincts, sont tels que y xzx, le centre de x est au milieu des

centres de y et de z. Il en résulte que les demi-tours de centres A
et B n'ont pas d'élément bissecteur dans Z'.

A propos de ce dernier exemple, remarquons que les éléments
impropres du iî-groupe G' ne sont pas des isométries impropres,
c'est-à-dire ne sont pas des éléments impropres du iî-groupe
GE{2, iî).

4.4. Passons à l'examen de l'axiome P IV. Considérons le

groupe GE(3, R) des isométries de l'espace euclidien R3. C'est
un iî-groupe engendré par l'ensemble 1(3, R) des réflexions par
rapport aux plans de l'espace R3. Le produit de trois réflexions
dans R3 est une réflexion quand leurs plans ont une droite
commune ou une normale commune. Cela définit manifestement une
relation d'incidence dans Z(3, R). Deux réflexions distinctes
dans R3 admettent au moins un élément bissecteur, à savoir une
réflexion transformant leurs plans l'un en l'autre. Cependant,
GE(3, R) ne vérifie pas l'axiome P /F, car il est bien connu qu'il
est de dimension 3.

Nous avons observé à ce propos que tout iîi-groupe satisfaisant

l'axiome des faisceaux de première classe est de dimension 2

(voir prop. 4). En revanche, il existe des iî/-groupes de dimension

2 ne contenant pas de faisceau de première classe: le
iî-groupe de l'icosaèdre en est un exemple.



— 78 —

L'indépendance relative de l'axiome d'Euclide est assurée

par l'existence de la géométrie elliptique plane continue, comme
nous l'avons déjà remarqué (n° 2.1).

4.5. Pour critiquer les deux derniers axiomes, nous utiliserons
le fait que les cinq axiomes précédents caractérisent les corps
formellement réels pythagoriciens. L'indépendance relative de

l'axiome P VI sera établie lorsque nous aurons donné l'exemple
d'un corps formellement réel pythagoricien dans lequel il existe
des éléments positifs qui ne sont pas des carrés. Bien qu'il soit
possible de trouver des exemples plus simples, nous allons
construire un tel corps à l'aide de séries formelles (voir [6] et [8]).

Prenons une lettre T avec laquelle nous formons l'ensemble
L des séries formelles:

a =Yai T'>(1)
ieZ

où i est un indice parcourant l'ensemble Z des entiers rationnels,
et où les coefficients at sont des nombres réels, égaux à zéro
sauf éventuellement pour un nombre fini ou non de valeurs de i
supérieures à un certain entier rationnel dépendant de l'élément
choisi dans L. L'élément nul de L, que nous noterons 0, est celui
dont tous les coefficients sont nuls. Pour un élément a non nul
de L, soit n la plus petite valeur de i pour laquelle at^0; n est
Vordre de a, et an est le coefficient dominant de a. Par convention,
l'ordre de 0 est infini. Nous assimilerons à R les éléments de L
ayant la forme a0T°. On introduit dans L une structure de

groupe abélien noté additivement en posant:

YatT + YbiT1 Ziat + bdT.(2)
ieZ ieZ ieZ

On définit une multiplication dans L en posant:

(Iair)-(YJbir)=YJciTi;c; X aA-
\ieZ J \ieZ J ieZ r + s i WJ

Il résulte immédiatement de cette définition que la multiplication

est associative, commutative et distributive par rapport à

l'addition; l'élément 1 est neutre vis-à-vis de la multiplication.
D'autre part, si a et ß sont deux éléments non nuls de L, l'ordre
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du produit aß est la somme des ordres de a et ß; le coefficient

principal de aß est le produit de ceux de a et ß. Il s'ensuit que L
est un anneau d'intégrité commutatif avec élément unité.

L est même un corps commutatif. Pour le montrer, on peut
procéder par voie topologique, entre autres. On introduit une
valuation dans L en posant |0| 0 et |a] 2~", où n est l'ordre
de l'élément non nul a. En effet, on voit que:

|aj8| |a|-|j8|; | a +ß \ ^ max ([ a | | ß |) ; Va ,ßeL,

et que \ç\ 0 dans le seul cas où Ç est nul. On peut alors
construire une distance d dans L en posant:

d (a ß) | ß — a |

Gomme on le voit sans peine, cette distance définit dans L une
structure de groupe additif métrisable complet. On peut même
utiliser le critère de convergence suivant: la condition nécessaire
et suffisante pour qu'une suite (ak) (a0, aXi a2, d'éléments
de L converge est que d(ak + 1 — ak) tende vers zéro lorsque k tend
vers l'infini. Il en résulte que, quelle que soit la suite (ßk)
d'éléments de L convergeant vers 0, la suite (yr) définie par:

k r

y,Z ßk»

k — o

00

converge dans L; sa limite est désignée par £ ßk
k 0

Prenons dans L un élément a d'ordre fini n et de coefficient
principal an. On peut le mettre sous la forme:

a an Tn (1 — d),

où ô est un élément de L d'ordre au moins égal à 1. La suite des

puissances naturelles de ô tend vers 0 dans L. Il en est de même
de la suite des éléments (1 - ô)ôk, où k 0, 1, 2, Par
conséquent, l'expression:

00

(1-5) 1
k — 0
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a un sens. Un calcul facile montre qu'elle représente l'élément
unité de L. Il en découle immédiatement que a possède un
inverse dans L, qui n'est autre que:

00

a"1 a^T-"£ôk. (4)
k 0

Donc L est un corps.
Ordonnons L en choisissant comme partie positive P

l'ensemble des éléments dont le coefficient principal est strictement
positif dans i?, auxquels nous adjoignons l'élément 0. P possède
bien les propriétés indiquées au n° 3.1, et nous convenons de

noter a^ß lorsque a et ß sont deux éléments de L tels que ß — a

appartient à P. L'ensemble des carrés non nuls de L se confond
avec celui des éléments strictement positifs d'ordre pair. En
effet, si aeL est d'ordre n et de coefficient principal anl a2 est
d'ordre 2n et son coefficient principal est a%. Réciproquement,
prenons dans L l'élément:

ß ~ S bj Tj'b2m >0ï bk0 Vk < 2m
jeZ

Il existe dans L un élément y £ ckTk dont le carré égale ß.
keZ

On l'obtient en résolvant la suite d'équations:

cm — b2m 2cm cm + l b2m + i
k=m+j-1

2cmcm + j ~ b2tn + j ~ S CkC2m + j-k •> j ^ 3
k m+ 1

et en posant ck 0 pour tout k<m\ de la sorte, on obtient
d'ailleurs deux solutions opposées dans L. Il résulte immédiatement

de là que la somme de deux carrés dans L est encore un
carré et que —1 n'est pas un carré dans L. Donc L est formellement

réel et pythagoricien. En revanche, il existe dans L des

éléments positifs qui ne sont pas des carrés, comme l'élément T

par exemple.

4.6. Passons à l'axiome P VIL Pour en montrer l'indépendance
relative, nous nous proposons de donner l'exemple d'un corps
commutatif ordonné non archimédien dans lequel tout élément
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positif est un carré. Prenons une lettre U et formons l'ensemble

M des séries formelles:

a=YaiuL2"P ateR>
ieZ

où les coefficients ax sont des nombres réels, nuls sauf pour un
nombre fini ou non de valeurs de i supérieures à un certain
entier rationnel dépendant de a, et où p est un entier rationnel

non négatif dépendant lui aussi de a. On peut encore obtenir
tous les éléments de M en remplaçant T par U(2~P) dans l'expression

(1) des éléments du corps L, p prenant toutes les valeurs

entières rationnelles non négatives. Dans l'expression (5), p est

le poids de a. Si n est la plus petite valeur de i pour laquelle

a{ # 0, an est le coefficient principal de a.

Considérons comme équivalents deux éléments de M dont
les développements sont formés des mêmes termes. Ainsi, on

obtient tous les éléments de M équivalents à a et de poids
supérieurs à p en posant:

V TTL2~(P + r) ' _ f ai si j - i.2r,
a a

3 Qj i o si pgcd (j, T) # 2r,

où r parcourt l'ensemble des nombres naturels. Appelons M
l'ensemble des classes de M pour la relation d'équivalence que
nous venons de définir. L'élément 0 de M, dont le poids peut
être considéré comme indéterminé, constitue une classe à lui
seul. Si öc est la classe contenant l'élément non nul a donné par
(5), nous dirons que a est un représentant de poids p de ä. Tous
les éléments de la classe ä ont le même coefficient principal, que
nous appellerons coefficient principal de â. A tout couple
d'éléments öc et ß de M, on peut associer au moins un couple de

représentants a et ß de même poids. On définit alors la somme
et le produit de a et ß à l'aide des relations (2) et (3), où l'on
pose T =3 U{2~~s\ s étant le poids commun de a et ß. Les expressions

trouvées sont équivalentes à celles que l'on obtiendrait en

remplaçant a et ß par des éléments respectivement équivalents,
de poids commun s'. Par passage au quotient, on définit manifestement

une addition et une multiplication dans M. Les considéra-

L'Enseignement rnathém., t. X, fasc. 1 6
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tions faites au sujet de L montrent que M constitue un corps
commutatif pour les opérations indiquées.

On ordonne M en considérant comme strictement positifs les
éléments dont le coefficient principal est strictement positif dans
R. Prenons un tel élément ß'. Soit

$' Yb'i VL2~\
ieZ

un représentant de /?', oiibi 0 quand i < m, et bm > 0. On peut
former un autre représentant ß de ß en posant:

ß I bjUJ-2-
JeZ

où b2i — bi et b2i+% 0, quel que soit i. Associons à ß l'élément
ß du corps L défini par:

ß<I bj
jeZ

Cet élément est strictement positif dans L et son ordre est pair.
Il existe donc dans L un élément

y IkeZ

dont le carré égale ß. Il résulte de là que l'élément y de M ayant
pour représentant:

y X ck£/*-2-(9+1)
keZ

admet pour carré l'élément ß. Donc tout élément positif de M
est un carré.

Cependant, le corps M n'est pas archimédien. Désignons

par s et cp les éléments de M admettant pour représentants
respectifs U° et U'1. Quel que soit l'entier naturel n, on a në<cp.

4.7. Nous aurions pu permuter les deux derniers axiomes.
Autrement dit, l'axiome P VI est indépendant du système constitué

par les six autres axiomes. En effet, les axiomes P I à P V
ainsi que l'axiome P VII caractérisent les corps réels
pythagoriciens, comme on l'a vu. Soit Q le plus petit d'entre eux
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(suivant la désignation adoptée par Hilbert). Le plan euclidien

nQ relatif à Q peut être assimilé à une partie du plan euclidien

IIR relatif au corps R des nombres réels: ayant introduit dans

IIR un système de coordonnées orthonormales, on désigne par
A et B les points de coordonnées (0, 0) et (1, 0); 17ß est
l'ensemble des points de IJR dont les coordonnées sont dans Q.

Mais nQ est également l'ensemble des points de IIR que l'on
peut construire à partir de A et B par un nombre fini d'opérations

à la règle et au transporteur de distances—ce dernier
instrument permettant uniquement de reporter un segment
connu sur une droite connue, à partir d'un point connu de cette
droite. Or il existe des constructions possibles à la règle et au

compas qui ne le sont pas à la règle et au transporteur de

distances (comme la recherche d'un cercle tangent à trois cercles

connus) (voir [15]). Il en résulte que l'axiome du compas n'est

pas vérifié dans le groupe des isométries de IIQ.

4.8. Pour terminer, revenons à l'axiome d'Euclide. Nous avons
montré que dans un groupe satisfaisant les cinq premiers axiomes
les demi-tours engendrent un iLgroupe de dimension 1 (corollaire

prop. 13). Pourrait-on substituer cette affirmation à

l'axiome P F? Il n'en est rien, comme le montre l'exemple
suivant.

Soit L le corps des séries formelles à une lettre T sur le corps
R des nombres réels, tel qu'il a été introduit au n° 4.5. Soit
A l'ensemble des éléments de L dont l'ordre n est tel que
o oo. C'est un sous-anneau de L. Le groupe GE(2, L)
obtenu en substituant L à K dans la définition de GE(2, K)
satisfait les cinq premiers axiomes. Dans le plan L2, on peut
introduire les notions de droite, de parallélisme, de perpendicula-
rité, de point milieu comme en géométrie élémentaire.

Le plan A2 est une partie du plan L2. Nous appellerons
droite de A2 toute droite de L2 contenant un point de A2. Pour
qu'une droite d'équation:

ax + by+c 0 a,b,ceL; (a b) # (0 0)

appartienne à A2, il faut et il suffit que e(a2 + b2)~* eA. Deux
droites de M2, perpendiculaires dans L2, se coupent en un point
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de A2. La réflexion de L2 suivant une droite de A2 applique
A2 sur lui-même. Le groupe des isométries de L2 appliquant A2

sur lui-même est isomorphe au groupe obtenu en substituant
A à K dans la définition de GE(2, K). Nous le désignerons par
GE(2, A). Il est engendré par l'ensemble 27(2, A) des réflexions
de L2 suivant les droites de A2.

(GE(2, A), 2(2, A) est un i?/-groupe. Trois droites de A2

sont incidentes quand elles contiennent un même point de L2

ou quand elles sont perpendiculaires à une même droite de L2.

L'axiome de bissection est satisfait dans GE(2, A). En effet,
soit a et b deux droites distinctes de A2. En tant que droites de

L2, elles admettent au moins une bissectrice u. Si a et b se

coupent en un point P de A2, u passe par P et appartient donc
à A2. Si a et b sont parallèles, u contient le milieu M de toute
paire de points de A2 pris l'un sur a et l'autre sur b. Comme M
est dans A2, u appartient à A2. Il reste à examiner le cas où

a et b se coupent en un point de L2 n'appartenant pas à A2.

On peut se borner au cas où a et b ont les équations suivantes
(voir (1), n° 1.4):

(b) x 0

(a) mx — y + h 0 ; m h e L; h £ A; h{ 1 + m2)~* e A

Dans L2, les bissectrices de a et b sont données par les équations:

(m ± -J 1 +m2)x— y + h — 0.

Pour que l'une de ces droites appartienne à A2, il faut que l'un
des éléments:

h (1 + m2)-^ [(1 + m2)^ + m]-1

soit dans A. Pour cela, il suffit que l'un des éléments k1 et k2

donnés par (y/1 + m2 ± m)"1 soit dans A. Par hypothèse, h est

d'ordre — r dans L, où r > o. Comme la droite b appartient à A2,

m est d'ordre —5, où s > r. Par suite y/l+m2 est d'ordre —5, et

l'un des éléments kx et k2 est d'ordre positif s; il est dans A.
L'une des deux bissectrices de a et b appartient donc à A2; on
vérifie aisément que ce n'est pas le cas pour l'autre.
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Dans 1(2,. A), un faisceau de première classe est Pensemble

des réflexions de L2 suivant les droites de A2 contenant un
même point de A2. Il existe deux familles de faisceaux de

seconde classe: les systèmes polaires et les faisceaux singuliers;
un faisceau singulier est constitué par les réflexions de L"
suivant les droites de A2 passant par un même point de L2

n'appartenant pas à A2.

Tout élément de 1(2, A) appartient à un seul système polaire.
On peut en déduire que la proposition 13, qui ne s'appuie que
sur cette partie de F axiome d;Euclide, est encore vraie ici. Il en
est de même de son corollaire. Nous avons donc construit un
exemple de géométrie satisfaisant les quatre premiers axiomes
ainsi que le corollaire de la proposition 13, mais ne vérifiant pas
l'axiome d'Euclide. De plus, dans le groupe GE(2, A)} chaque
réflexion appartient à une infinité de faisceaux de seconde
classe, dont un seul système polaire. Cela montre que Fon m'épuise

pas toutes les possibilités en énonçant les hypothèses a), b) et c)

indiquées au n° 2.1.

5. Axiomes de la géométrie euclidienne
à plus de deux dimensions

q.1. Désignons par (Af) ieJ la famille des corps réels contenant
la racine carrée de chacun de leurs éléments positifs, J étant un
ensemble convenable d'indices. Pour chaque entier naturel n
GE(n, Kt) désigne le groupe des isométries de l'espace K\
muni de la métrique euclidienne ordinaire. C'est un ZCgroupe
engendré par l'ensemble I(n, Kt) des réflexions par rapport aux
hyperplans dans K". Les axiomes considérés jusqu'ici
concernent les groupes GE(2, Kt). Nous nous proposons de
formuler un système d'axiomes caractérisant les groupes
GE(n, Kt), ieJ et n > 2.. Toutefois, pour utiliser les résultats
obtenus pour n ~ 2 et pour éviter des répétitions, nous
procéderons par récurrence sur n.

Auparavant, précisons quelques points. Soit (G, I) et (G', If)
deux ZNgroupes G et Gf respectivement engendrés par des
parties distinguées I et Ils seront dits «isomorphes en tant
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