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Nous avons vu que D(P,, P,) est un carré dans le corps K, qui
est pythagoricien. Posons alors:

d(P1:P2) :(D(PI,PZ))%.

Il découle immédiatement des propriétés de D que d est in-
variante relativement a G et qu’elle satisfait les conditions 1)
et 2) appliquées aux K-distances dans le plan. De plus, prenons
trois points quelconques P, P, et P, et désignons par d,, d,
et d; les éléments d(P,, Pj), d(P;, P,) et d(P,, P,) respective-
ment. On voit sans peine que:

S(Py, Py, P3) = (dy+d,+d;) (—dy +d, +d3) (dy—d, +d3) (dy +dy —ds3),

ou S(P,, P,, P3) est la quantité définie par (7) au n° 2.11. En
vertu de la relation (8) figurant au méme numéro, S(P, P,, P3)
est un carré dans K. Mais, dans ’égalité ci-dessus, trois au moins
des facteurs apparaissant au second membre sont positifs; il en
est alors de méme du quatrieme. Par suite:

d(Pl>P2)éd(P19P3)+d(P29P3)a

quels que soient les points P,, P, et P;. Donc d est une K-dis-
tance dans le plan. La proposition 26 permet d’affirmer que G
est le groupe des K-isométries du plan relativement a d.
Lorsque ’axiome P VII est satisfait, d est une distance dans
le plan. Si, de plus, 'axiome P VI est vérifié, on peut énoncer:

TuroreEME b. Toul groupe satisfaisant les axiomes P 1 a P VII
est tsomorphe a un groupe GE(2, K), ou K est un corps réel
contenant la racine carrée de chacun de ses éléments positifs.

4. Critique du systéme des axiomes P1 a P VII

4.1. Lorsqu’on expose une théorie mathématique, il convient
d’examiner le systeme des axiomes adoptés sous le triple aspect
de la consistance, de la catégoricité et de l'indépendance. La
consistance — ou non-contradiction — des axiomes que nous
avons posés est assurée par ’existence d’un modéle satisfaisant:
la géométrie euclidienne plane continue, par exemple.



Un systéme d’axiomes consistant est dit catégorigue lorsque
deux quelconques des modéles qui le satisfont sont isomorphes,
c¢’est-a-dire quand ces modeéles ne different éventuellement que
par la désignation des objets qui les composent (pour une eompli-
cation adéquate de la question, voir [5]). Dans le cas qui nous
occupe, nous savons que les axiomes posés caractérisent indirec-
tement les corps réels contenant la racine carrée de chacun de
leurs éléments positifs. Le plus petit S de ces corps est une
extension algébrique de type infini du corps @ des nombres
rationnels; il est donc dénombrable. Il en est de méme du
eroupe GE(2, §). Ce groupe ne saurait étre isomorphe au groupe
GE(2, R) de la géométrie euclidienne plane continue. Ainsi notre
systéme d’axiomes n’est pas catégorique. Il ne pouvait d’ailleurs
Pétre, étant donnée la définition que nous avons adoptée pour
les géométries euclidiennes. Cependant il résulte du théoréme 5
que le systeme des axiomes P [ & P VII est équivalent a la
définition que nous avons prise pour le groupe fondamental d’une
géometrie euclidienne plane.

Reste I'indépendance des axiomes. Les axiomes d’un systéme
consistant (A4, 4,, ..., 4,) sont indépendants 1, quel que soit
t =1, 2, ..., n, on peut trouver un modele satisfaisant les n-1
axiomes A, pour lesquels k& 7, mais ne vérifiant pas 4;. Remar-
quons d’emblée que notre systeme d’axiomes ne possede pas
cette propriété qui, d’ordinaire, n’est obtenue qu’au dépens de la
simplicité ou de la clarté. Ainsi plusieurs de nos axiomes n’ont
de signification que si certains de ceux qui les précédent sont
satisfaits. On peut toutefois exiger des axiomes d’un systéme
une indépendance relative dans le sens que voici: les axiomes

d’un systéme consistant ordonné (A4,, 4,, ..., A,) sont relati-
vement indépendants si, quel que soit ¢t = 2, 3, ..., n, il existe un
modele satisfaisant le systéme (A, A,, ..., 4,_,), mais ne véri-

fiant pas 4;. Nous allons montrer que ¢’est le cas de notre systéme.

Avant de passer & cet examen, formulons une derniére re-
marque d’ordre général. Ayant élaboré un systéme d’axiomes
pour une théorie déterminée, on peut se proposer de réunir
plusieurs axiomes consécutifs dans un méme énoncé. Cest ce
que nous avons fait dans le cas de I'axiome P I, par exemple,
qui contient les axiomes du groupe, entre autres. L’exposé y
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gagne sans doute en simplicité, mais le procédé n’est pas ortho-
doxe du strict point de vue de 'axiomatique.

4.2. Examinons l'indépendance relative de l'axiome d’inci-
dence P 1. Considérons Je groupe H des isométries propres de
I'espace euclidien R>. 1) est engendré par 'ensemble E des demi-
tours par rapport aux droites de R®. H n’est pas un R-groupe
relativement & E, car le produit de deux demi-tours d’axes per-
pendiculaires est encore un demi-tour. Formons alors le R-
groupe H’ naturellement associé & H (voir 1.1). Il est engendré
par I'ensemble E’ des éléments de la forme o' = (a,—1), ol a
est dans £. Le groupe H ne se confond pas avec £; d’autre part,
tout élément de H peut étre obtenu en formant le produit de
deux éléments convenablement choisis dans E. Il s’ensuit que
H' est un R-groupe de dimension 2 engendré par E’.

Soit a, b et ¢ trois éléments de F, et soit a' = (a,—1),
b' =(b,—1)et ¢’ = (c,—1)les éléments de £’ qui leur sont associés.
Affirmer que a'b’c’ est dans E’, ¢’est affirmer que abe est dans E,
ce qul revient encore a dire que les axes des demi-tours a, b et ¢
admettent au moins une perpendiculaire commune. Considérons
alors dans l'espace R® quatre droites distinctes a, b, ¢ et d,
telles que b, ¢ et d soient les cOtés d'un triangle, que @ et b soient
paralleles et que le plan (a, b) soit perpendiculaire au plan
(b, ¢). Soit a, b, ¢ et d les demi-tours d’axesrespectifs a, b, ¢ et d,
et soit a’, 0, ¢’ et d’ les éléments de £’ qui leur sont associés. On
voit alors que a'b’c’ et a’b'd’ sont dans £’ mais que a’c’'d’ n’y est
pas. Par suite, le R-groupe H' ne vérifie pas 'axiome d’incidence,

4.3. Passons a l'axiome de bissection P III. Considérons le
R-groupe de I'icosaedre régulier. A titre d’exercice, 1l est intéres-
sant de décrire ce groupe d’ailleurs bien connu en utilisant le
langage des R-groupes. Désignons par 4 I'un des sommets de
Iicosaedre, que nous supposons plongé dans l’espace euclidien
R?. Désignons par BCDEF le pentagone convexe régulier déter-
miné par les extrémités des arétes issues de A. Soit O le centre
de I'icosaédre et soit A’, B, C', D', E' et I'' les sommets respec-
tivement opposés a A, B, C, D, E et I. Désignons par G le
groupe des isométries de 'espace euclidien R* laissant invariant
I'icosaédre dans son ensemble. Ce groupe est évidemment fini.
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Par chaque aréte de l'icosaédre, il passe un plan de symétrie
de la figure. Désignons par ¥ 'ensemble des quinze réflexions de
Iespace R® ainsi introduites, deux arétes opposées correspondant
4 une méme réflexion. Quelle que soit la paire de sommets non
opposés que l’on prenne dans I'icosaédre, la réflexion envoyant
I'un sur autre appartient & 2.

Fig. 11.

AB étant une aréte quelconque, on peut trouver deux arétes,
DE et CF'par exemple, telles que AB, DE et CF’soit orthogonales
deux a deux. Les réflexions attachées a ces trois arétes ont pour
produit la symétrie ¢ de centre O. Soit X un élément de G
différent de o. Il existe au moins un sommet, mettons 4, que X
n’envoie pas sur son opposé. Soit r l'élément de X envoyant
X(A) sur A. Quand X #r, 'un au moins des sommets B et C

" de la face ABC n’est pas fixe pour la transformation r X; admet-

tons que r X(B) est distinct de B. Ces deux sommets ne sont pas
opposés: soit s ’élément de X qui envoie r X(B) sur B. La trans-
formation srX laisse fixes A et B. Lorsque X #rs, srX(C) est
distinct de C. La réflexion ¢ associée dans X & 'aréte AB envoie
srX(C) sur C. L’élément tsrX appartient & G. Comme il laisse




fixes les sommets A, B et C, il n’est autre que I’élément neutre
de G. Par suite X = rst. D’autre part, X est distingué dans G.11
résulte donc de ce qui précéde que G est un R-groupe de dimen-
sion 2 engendré par X.

La condition nécessaire et suffisante pour que trois éléments
de X aient pour produit un élément de X est que les plans qui
leur sont associés admettent une droite commune. Cela déter-
mine une relation d’incidence dans X. Pour étudier les faisceaux
dans X, combinons Paréte AB avec chacune des autres arétes
de I'icosaedre, en nous bornant aux seuls couplages essentielle-
ment différents.

Les arétes AB et AC déterminent le faisceau des cing élé-
ments de X laissant fixe le point A. On peut attacher un tel
faisceau & chaque paire de sommets opposés et nous désignerons
par ®(A) celui qui correspond & A4 (et A’). La réflexion associée
a I'aréte AB appartient encore au faisceau @(B).

Les réflexions correspondant & AB et E'F’ déterminent un
faisceau contenant encore la réflexion associée a C'D’. Les plans
de ces trois réflexions se coupent suivant la normale abaissée
de O sur la face BD'E’. On peut ainsi attacher un faisceau de
trois éléments a chaque paire de faces opposées; nous désignerons
par ¢(BD'E’) celui qui correspond aux faces BD'LE" et B'DE. La
réflexion associée a AB appartient aux deux faisceaux ¢(BD'E")
et ¢(ADE).

Les réflexions correspondant & AB et CF’' déterminent un
faisceau ne contenant pas d’autre réflexion. Leurs plans se
coupent suivant la perpendiculaire abaissée de O sur AB. On
peut attacher de la sorte un faisceau de deux éléments & toute
paire d’arétes opposées, et nous appellerons ®(AB) celui qui
correspond aux arétes AB et A'B’.

Un décompte facile nous permet d’affirmer que nous avons
ainsi épuisé tous les faisceaux auxquels appartient la réflexion
relative a AB. Le R-groupe G, dont nous avons vu qu’il satisfait
Iaxiome d’incidence, ne satisfait pas ’axiome de bissection,
puisqu’il contient des faisceaux formés de deux éléments distincts
seulement.

Remarquons en passant que les faisceaux @(A) et @(BE')
sont disjoints, tout comme les faisceaux ®(BE’) et d(ABC).
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I’exemple précédent montre les interprétations géométriques
que I'on peut faire intervenir assez naturellement dans I'étude
des RI-groupes finis (voir [9]). Toutefois, on aurait pu le rem-
placer par des exemples plus simples tels que celui-ci: dans le
plan euclidien continu, prenons trois points non alignés A, B
et C. Considérons le groupe G’ engendré par les demi-tours ayant
pour centres A, B et C. C’est visiblement un R-groupe engendré
par ensemble X’ des demi-tours ayant pour centres les points
d’un réseau plan: le réseau ayant pour maille génératrice le
parallélogramme ABCD construit sur ABC. Dans le plan, le
produit de trois demi-tours est un demi-tour. I’axiome d’inci-
dence est donc satisfait dans G’ qui est un R-groupe de dimen-
sion 1. Le seul faisceau de 2’ est constitué par X’ tout entier.
Lorsque trois demi-tours z, y et z, les deux derniers étant dis-
tincts, sont tels que y = zzz, le centre de x est au milieu des
centres de y et de z. Il en résulte que les demi-tours de centres A
et B n’ont pas d’élément bissecteur dans 2.

A propos de ce dernier exemple, remarquons que les éléments
impropres du R-groupe G’ ne sont pas des isométries impropres,
c’est-a-dire ne sont pas des éléments impropres du R-groupe
GE(2, R).

4.4. Passons a lUexamen de l'axiome P IV. Considérons le
groupe GE(3, R) des isométries de 'espace euclidien R>. C’est
un R-groupe engendré par ’ensemble X(3, R) des réflexions par
rapport aux plans de I'espace R>. Le produit de trois réflexions
dans R® est une réflexion quand leurs plans ont une droite com-
mune ou une normale commune. Cela définit manifestement une
relation d’incidence dans X(3, R). Deux réflexions distinctes
dans R*® admettent au moins un élément bissecteur, 4 savoir une
réflexion transformant leurs plans I'un en 1'autre. Cependant,
GE(3, R) ne vérifie pas 'axiome P IV, car il est bien connu qu’il
est de dimension 3.

Nous avons observé a ce propos que tout RI-groupe satisfai-
sant I’axiome des faisceaux de premiére classe est de dimension 2
(voir prop. 4). En revanche, il existe des RI-groupes de dimen-
sion 2 ne contenant pas de faisceau de premiére classe: le
R-groupe de I'icosaédre en est un exemple.
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L’indépendance relative de I'axiome d’Euclide est assurée
par I'existence de la géométrie elliptique plane continue, comme
nous I’avons déja remarqué (n° 2.1).

4.5. Pour critiquer les deux derniers axiomes, nous utiliserons
le fait que les cinq axiomes précédents caractérisent les corps
formellement réels pythagoriciens. L’indépendance relative de
I’axiome P VI sera établie lorsque nous aurons donné ’exemple
d’un corps formellement réel pythagoricien dans lequel il existe
des éléments positifs qui ne sont pas des carrés. Bien qu’il soit
possible de trouver des exemples plus simples, nous allons cons-
truire un tel corps a l'aide de séries formelles (voir [6] et [8]).

Prenons une lettre 7' avec laquelle nous formons I’ensemble
L des séries formelles:

o =YaT , ae€R, (1)
ieZ

ou ¢ est un indice parcourant 'ensemble Z des entiers rationnels,
et ou les coefficients a; sont des nombres réels, égaux & zéro
sauf éventuellement pour un nombre fini ou non de valeurs de ¢
supérieures a un certain entier rationnel dépendant de I’élément
choisi dans L. I’élément nul de L, que nous noterons O, est celui
dont tous les coefficients sont nuls. Pour un élément o« non nul
de L, soit n la plus petite valeur de ¢ pour laquelle a;#0; n est
Vordre de «, et a, est le coefficient dominant de «. Par convention,
Iordre de O est infini. Nous assimilerons & R les éléments de L
ayant la forme a,7°. On introduit dans L une structure de
groupe abélien noté additivement en posant:

Z ai Ti + Z bi Ti — Z (ai + bl) Ti . (2)
ieZ ieZ ieZ
On définit une multiplication dans L en posant:

<ZaiTi>'<Zbi Ti>=z e T = % arI;S. 3)

ieZ ieZ ieZ ) r+s=i
Il résulte immédiatement de cette définition que la multiplica-
tion est associative, commutative et distributive par rapport &

Iaddition; 'élément 1 est neutre vis-a-vis de la multiplication.
D’autre part, si o et f sont deux éléments non nuls de L, I’ordre
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du produit af est la somme des ordres de « et f;le coefficient
principal de «f est le produit de ceux de « et f. Il s’ensuit que L
est un anneau d’intégrité commutatif avec élément unité.

L est méme un corps commutatif. Pour le montrer, on peut
procéder par voie topologique, entre autres. On introduit une
valuation dans L en posant |0| = O et |a| = 27" oun est I'ordre
de I’élément non nul «. En effet, on voit que:

ol = lal-1B]; lotpl=max (la],[f]); Va,peL,

et que |¢| = O dans le seul cas ot ¢ est nul. On peut alors cons-
truire une distance d dans L en posant:

d(a, ) = [f—al.

Comme on le voit sans peine, cette distance définit dans L une
structure de groupe additif métrisable complet. On peut méme
utiliser le critere de convergence suivant: la condition nécessaire
et suffisante pour qu’une suite (o) = (g, oy, %z, ...) d’éléments
de L converge est que d(o; 1 — o) tende vers zéro lorsque % tend
vers I'infini. Il en résulte que, quelle que soit la suite (f;) d’élé-
ments de L convergeant vers O, la suite (y,) définie par:

k=r
yr = Z ﬁka
k=o

o0

converge dans L; sa limite est désignée par ) B, .
k=0

Prenons dans L un élément o d’ordre fini n et de coefficient
principal a,. On peut le mettre sous la forme:

o = d, Tn(1_5)9

ou ¢ est un élément de L d’ordre au moins égal & 1. La suite des
puissances naturelles de 6 tend vers O dans L. Il en est de méme
de la suite des éléments (1 —6)d*, ou k= 0, 1, 2, ... Par consé-
quent, 'expression:

(1-0) 3 &,
k=0




80 —

a un sens. Un calcul facile montre qu’elle représente 1’élément
unité de L. Il en découle immédiatement que « posséde un
inverse dans L, qui n’est autre que:

ol =aq, T 5. (4)

Donc L est un corps.

Ordonnons L en choisissant comme partie positive P l'en-
semble des éléments dont le coefficient principal est strictement
positif dans R, auxquels nous adjoignons I'élément 0. P posséde
bien les propriétés indiquées au n° 3.1, et nous convenons de
noter a=p lorsque o et f sont deux éléments de L tels que f—a
appartient a P. L’ensemble des carrés non nuls de L se confond
avec celul des éléments strictement positifs d’ordre pair. En
effet, si acL est d’ordre n et de coefficient principal a,, «® est
d’ordre 2n et son coefficient principal est a;. Réciproquement,
prenons dans L 1’élément:

B=>bT; by>0,b=0 Fk<2m.

JezZ

I1 existe dans L un élément y = Y ¢, 7% dont le carré égale B.
keZ

On I'obtient en résolvant la suite d’équations:

2 . .
Cm = byms 2¢nCmi1r = Domyy,

k=m+j—1
2Cmcm+j = b2m+j _ Z Ckc2m+j—k9 .] = 2> 39
k=m+1
et en posant ¢, = O pour tout k<m; de la sorte, on obtient
d’ailleurs deux solutions opposées dans L. Il résulte immédiate-
ment de la que la somme de deux carrés dans L est encore un
carré et que —1 n’est pas un carré dans L. Donc L est formelle-
ment réel et pythagoricien. En revanche, il existe dans L des
éléments positifs qui ne sont pas des carrés, comme ’élément T’
par exemple.

4.6. Passons a I’axiome P VII. Pour en montrer 'indépendance
relative, nous nous proposons de donner l’exemple d’un corps
commutatif ordonné non archimédien dans lequel tout élément
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positif est un carré. Prenons une lettre U et formons I’ensemble
M des séries formelles:

o =Y aU?"  aeR, )

icZ

o1 les coefficients a; sont des nombres réels, nuls sauf pour un
nombre fini ou non de valeurs de ¢ supérieures a un certain
entier rationnel dépendant de @, et ou p est un entier rationnel
non négatif dépendant lui aussi de «. On peut encore obtenir
tous les éléments de M en remplacant 7' par U™ dans I'expres-
sion (1) des éléments du corps L, p prenant toutes les valeurs
entiéres rationnelles non négatives. Dans l’expression (5), p est
le poids de o. Si n est la plus petite valeur de i pour laquelle
a; # 0, a, est le coefficient principal de a.

Considérons comme équivalents deux éléments de M dont
les développements sont formés des mémes termes. Ainsi, on
obtient tous les éléments de M équivalents & o et de poids

supérieurs a p en posant:

;L R e (A0 A B si j =127,
* _gfo > {0 si pged(j,27) # 27,
ou r parcourt 'ensemble des nombres naturels. Appelons M
I’ensemble des classes de M pour la relation d’équivalence que
nous venons de définir. L’élément O de M, dont le poids peut
étre considéré comme indéterminé, constitue une classe a lui
seul. Si & est la classe contenant I'élément non nul o donné par
(5), nous dirons que o est un représentant de poids p de &. Tous
les éléments de la classe @ ont le méme coefficient principal, que
nous appellerons coefficient principal de a. A tout couple d’élé-
ments & et f de M, on peut associer au moins un couple de
représentants o et f de méme poids. On définit alors la somme
et le produit de o et f & Paide des relations (2) et (3), ou I'on
pose T = U™ ¢ étant le poids commun de « et . Les expres-
sions trouvées sont équivalentes & celles que on obtiendrait en
remplacant o et B par des éléments respectivement équivalents,
de poids commun s’. Par passage au quotient, on définit manifeste-
ment une addition et une multiplication dans M. Les considéra-

I’Enseignement mathém., t. X, fasc. 1. : 6
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tions faites au sujet de L montrent que M constitue un corps
commutatif pour les opérations indiquées.

On ordonne M en considérant comme strictement positifs les
éléments dont le coefficient principal est strictement positif dans
R. Prenons un tel élément B’. Soit

Bl — Z b; Ui.2—q,
ieZ
un représentant de ', ou b; = O quand i <m, et b,,>0. On peut
former un autre représentant f de B en posant:

p=Yb U2,
JjeZ
01 by; = b; et by = O, quel que soit 7. Associons & f1'élément
p du corps L défini par:
JezZ
Cet élément est strictement positif dans L et son ordre est pair.
I1 existe done dans L un élément

'}’ = Z Ck Tk:
keZ
dont le carré égale B. Il résulte de 1a que I’élément j de M ayant
pour representant:
—(a+1)

,)') — Z Cy Uk.2 ,

kez
admet pour carré I’élément B. Donc tout élément positif de M
est un carré.
Cependant, le corps M n’est pas archimédien. Désignons

par & et @ les éléments de M admettant pour représentants res-
pectifs U% et U™'. Quel que soit entier naturel n, on a né<@.

4.7. Nous aurions pu permuter les deux derniers axiomes.
Autrement dit, ’axiome P VI est indépendant du systéme cons-
titué par les six autres axiomes. En effet, les axiomes P 1 a P V
ainsi que 'axiome P VI/I caractérisent les corps réels pytha-
goriciens, comme on l’a vu. Soit @ le plus petit d’entre eux




(suivant la désignation adoptée par Hilbert). Le plan euclidien
I, relatif & @ peut étre assimilé & une partie du plan euclidien
T, relatif au corps R des nombres réels: ayant introduit dans
IT; un systéme de coordonnées orthonormales, on désigne par
A et B les points de coordonnées (0, 0) et (1, 0); ITp est Uen-
semble des points de ITp dont les coordonnées sont dans £.
Mais IT, est également 1’ensemble des points de ITx que l'on
peut construire & partir de A et B par un nombre fini d’opéra-
tions & la régle et au transporteur de distances —ce dernier
instrument permettant uniquement de reporter un segment
connu sur une droite connue, & partir d’un point connu de cette
droite. Or il existe des constructions possibles & la regle et au
compas qui ne le sont pas a la régle et au transporteur de dis-
tances (comme la recherche d’un cercle tangent & trois cercles
connus) (voir [15]). Il en résulte que 'axiome du compas n’est
pas vérifié dans le groupe des isométries de I1,,.

4.8. Pour terminer, revenons a 'axiome d’Euclide. Nous avons
montré que dans un groupe satisfaisant les cing premiers axiomes
les demi-tours engendrent un R-groupe de dimension 1 (corol-
laire prop. 13). Pourrait-on substituer cette affirmation &
I’axiome P V? Il n’en est rien, comme le montre exemple
suivant.

Soit L le corps des séries formelles a une lettre 7" sur le corps
R des nombres réels, tel qu’il a été introduit au n® 4.5. Soit
A Tensemble des éléments de L dont l'ordre n est tel que
0 =n = o0. Gest un sous-anneau de L. Le groupe GE(2, L)
obtenu en substituant L & K dans la définition de GE(2, K)
satisfait les cing premiers axiomes. Dans le plan L?, on peut
introduire les notions de droite, de parallélisme, de perpendicula-
rité, de point milieu comme en géométrie élémentaire.

Le plan A? est une partie du plan L*. Nous appellerons
droite de A* toute droite de L* contenant un point de A*. Pour
qu'une droite d’équation:

ax+by+c = 0 a,b,ceL; (a,b) # (0,0),

appartienne a A°, il faut et il suffit que c(a’®+b*)"% €A. Deux
droites de A%, perpendiculaires dans L2, se coupent en un point
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de A’. La réflexion de L? suivant une droite de A2 applique
A? sur lui-méme. Le groupe des isométries de L> appliquant A*
sur lui-méme est isomorphe au groupe obtenu en substituant
A 4 K dans la définition de GE(2, K). Nous le désignerons par
GE(2, A). 1] est engendré par 'ensemble X(2, A) des réflexions
de L? suivant les droites de A”.

(GE(2, A), X(2, A)) est un RI-groupe. Trois droites de A°
sont incidentes quand elles contiennent un méme point de L’
ou quand elles sont perpendiculaires & une méme droite de L.
L’axiome de bissection est satisfait dans GE(2, A). En effet,
soit @ et b deux droites distinctes de A>. En tant que droites de
L?, elles admettent au moins une bissectrice u. Si a et b se
coupent en un point P de A”, u passe par P et appartient donc
a A”. Si a et b sont paralléles, u contient le milieu M de toute
paire de points de A pris 'un sur a et Vautre sur b. Comme M
est dans A%, u appartient & A”. Il reste & examiner le cas ou
a et b se coupent en un point de L* n’appartenant pas a A°.
On peut se borner au cas ou a et b ont les équations suivantes
(voir (1), n° 1.4):

by =x =0,
(@) = mx—y+h =0; m,heL; hé¢Ad; h(1+m») *ed.

Dans L?, les bissectrices de a et b sont données par les équations:

(m + \/1+m2)x——y+h =0.

Pour que 'une de ces droites appartienne & A2, il faut que I'un
des éléments:

h(1+m?)™F [ +m?)*£m]?,

soit dans A. Pour cela, il suffit que I'un des éléments k, et k,

donnés par (\/1 +m?® + m)~ " soit dans A. Par hypothése, % est
d’ordre —r dans L, ot r > 0. Comme la droite b appartient & A,

m est d’ordre —s, ot s > r. Par suite \//1 +m? est d’ordre —s, et
Pun des éléments k, et k, est d’ordre positif s; il est dans A.
[’une des deux bissectrices de a et b appartient donc & 4?%; on
vérifie aisément que ce n’est pas le cas pour Iautre.
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Dans X(2, A), un faisceau de premicére classe est ’ensemble
des réflexions de L> suivant les droites de A” contenant un
méme point de A”. Il existe deux familles de faisceaux de
seconde classe: les systemes polaires et les faisceaux singuliers;
un faisceau singulier est constitué par les réflexions de L7
suivant les droites de A? passant par un méme point de L*
n‘appartenant pas a4 A°.

Tout élément de X(2, A) appartient & un seul systéme polaire.
On peut en déduire que la proposition 13, qui ne s’appuie que
sur cette partie de I'axiome d’Euclide, est encore vraie ici. Il en
est de méme de son corollaire. Nous avons donc construit un
exemple de géométrie satisfaisant les quatre premiers axiomes
ainsi que le corollaire de la proposition 13, mais ne vérifiant pas
Iaxiome d’Euclide. De plus, dans le groupe GE(2, A), chaque
réflexion appartient a une infinité de faisceaux de seconde
classe, dont un seul systéeme polaire. Cela montre que I'on n’épuise
pas toutes les possibilités en énoncant les hvpotheses a), b) et ¢)
indiquées au n° 2.1.

5. Axiomes de la géomeétrie euclidienne
a plus de deux dimensions

9.1.  Désignons par (K;) .y la famille des corps réels contenant
la racine carrée de chacun de leurs éléments positifs, J étant un
ensemble convenable d’indices. Pour chaque entier naturel n
GE(n, K;) désigne le groupe des isométries de l'espace K
muni de la meétrique euclidienne ordinaire. C’est un R-groupe
engendré par I'ensemble X(n, K;) des réflexions par rapport aux
hyperplans dans Ki. Les axiomes considérés jusqu’ici con-
cernent les groupes GE(2, K;). Nous nous proposons de
formuler un systeme d’axiomes caractérisant les groupes
GE(n, K;), 1eJ et n > 2. Toutefois, pour utiliser les résultats
obtenus pour n = 2 et pour éviter des répétitions, nous pro-
céderons par récurrence sur n.

Auparavant, précisons quelques points. Soit (G, 2) et (&, 27)
deux R-groupes G et G’ respectivement engendrés par des
parties distinguées X et X’. Ils seront dits « 1somorphes en tant
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