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réflexion arbitraire. On peut poser: A = xyz, ou z, y et z sont
trois réflexions non incidentes. Comme A est involutif, on a:

XyxX = zy.XzXx,

ce qui montre que les réflexions xyxr et xzr appartiennent au
faisceau ®(y, z). En vertu du lemme de la proposition 5, &(y, z)
est entiérement perpendiculaire & x. Par suite:

(yz)* = xyz.xyz = A*> = 1.

Donc y et z sont perpendiculaires et le systeme polaire &(y, 2)
de x est de premiére classe. Prenons un élément quelconque y’
dans @(y, z) et posons z° = y'yz. D’apres ce qui précéde, A = zy'z’
et z’ est la réflexion perpendiculaire & y’ dans &(y, z). D’autre
part, A commute avec x; et comme x est arbitrairement choisi
dans X, A est un élément central de G.

En résumé G ne posséde d’élément central distinct de / que
lorsque les systemes polaires sont de premiére classe, autrement,
dit quand 1l n’existe pas de faisceaux de seconde classe dans Z.
Dans ce cas, G ne contient quun seul élément de cette espece.

C.Q.F.D.

COROLLAIRE. Lorsqu'tl contient des faisceaux de seconde classe,
2 constitue U'ensemble de tous les éléments tnvolutifs impropres
de G. Dans le cas contraire, il existe dans G un élément involutif
umpropre n appartenant pas a X, et un seul. Cet élément en-
gendre le centre de G. Il peut étre mis sous la forme abe, ot
a, b et ¢ sont trois réflexions deux a deux perpendiculaires.

2. LPL’axiome d’Euclide

2.1 Les axlomes précédents ne permettent aucune conclusion
quant a 'existence de faisceaux de seconde classe dans ¥, parti-
culierement de ceux d’entre eux qui ne sont pas des systémes
polaires, et que nous qualifierons de singuliers. Remarquons a ce
propos que si 'on admet I'existence de faisceaux singuliers dans
Z, toute réflexion appartient & deux d’entre eux, au moins. En
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effet, prenons un faisceau singulier @,, un élément a dans @,
et une réflexion quelconque ¢. Si u est un élément bissecteur de
a et t, &, = udu est un faisceau singulier contenant ¢. Soit
alors m une réflexion perpendiculaire & ¢; elle n’est pas dans &,
en vertu de la proposition 8. Le faisceau &, = m®.m est
singulier et il contient £. De plus il est distinct de @;, car sans
cela @, serait le systéme polaire de m (lemme prop. 5), contraire-
ment a Uhypothese faite sur @,.

Parmi les hypothéses les plus simples que I'on puisse poser
au sujet de existence de faisceaux singuliers dans 2, il convient
de signaler les trois suivantes:

a) 1l n’existe pas de faisceau de seconde classe dans X

b) toute réflexion appartient a un faisceau de seconde classe
et un seul

c) toute réflexion appartient & deux faisceaux singuliers
exactement.

L’hypothese a) est vérifiée dans le cas de la géométrie elliptique
plane continue. Le groupe fondamental G, de cette géométrie
est engendré par des éléments involutifs, mais ce n’est pas un
R-groupe. En revanche, le R-groupe G naturellement associé a
- (G, satisfait les quatre premiers axiomes ainsi que I’hypothése a).
I1 est isomorphe au R-groupe des isométries de 'espace euclidien
R? laissant fixe un point de cet espace. Nous dirons d’un groupe
vérifiant les quatre premiers axiomes et I’hypothese a) qu’il est
de type elliptique plan. L’hypothése ¢) caractérise les géomeétries
de type hyperboliqgue plan. Nous ne nous attarderons pas aux
hypotheses a) et c¢); nous allons admettre I’hypothese b) et
montrer que, jointe aux quatre premiers axiomes, elle fixe assez
étroitement la structure algébrique de G.

Axrome P V. (Axiome d’Euclide). Toute réflexion appartient
a un faisceau de seconde classe, et a un seul.

On peut aussi énoncer cet axiome en disant que X contient
des faisceaux de seconde classe et que deux faisceaux de seconde
classe distincts sont disjoints: il résulte de 'axiome de bissection
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que les faisceaux de seconde classe de X déterminent une parti-
tion de X. Nous qualifierons de paralléles deux réflexions dis-
tinctes ou non appartenant & un méme faisceau de seconde
classe. Le parallélisme est. une relation d’équivalence dans X.
En vertu de la proposition 3, cette relation est compatible avec
les transformations induites dans X par les automorphismes
intérieurs de G.

~ 11 découle immédiatement de 'axiome P V que tout faisceau
de seconde classe est un systéme polaire, et réciproquement. De
plus, tout faisceau de seconde classe est déterminé par un seul
de ses éléments et nous désignerons parfois par @,(s) le faisceau
de seconde classe contenant la réflexion s.

Les systémes polaires attachés a deux réflexions paralléles

a et b sont confondus. En effet, a et b appartiennent & un méme
systeme polaire II(s), ou seX. La réflexion s appartient aux
systémes polaires II(a) et II(b) qui, n’étant pas disjoints, sont
confondus. Il s’ensuit que l’ensemble des bases du systéme
polaire II(s) est ®y(s).

2.2. Considérons le R-groupe g(®,) engendré par les éléments
d’un faisceau de premieére classe @. Il résulte de la proposition
2 que l'ensemble des éléments propres de g(®,) constitue un
sous-groupe abélien d’indice 2 dans g(®,). Nous désignerons ce
groupe par p(®;) et nous lappellerons groupe des rotations
autour de ®;. De méme, & toute réflexion s on peut associer le
R-groupe g(II(s) ) engendré par les éléments du systéme polaire
l(s). Les éléments propres de g(II(s) ) forment un sous-groupe
abélien d’indice 2 dans g(II(s) ). Nous noterons ce groupe 7(s)
et nous I'appellerons groupe des translations de direction s. 1,)616-
ment neutre / de G est a la fois une rotation et une translation
que nous qualifierons de banales. Nous pouvons affirmer qu’il
n’existe pas de translation involutive non banale. En revanche,
le groupe des rotations autour du faisceau de premiére classe @,
contient une rotation involutive non banale (prop. 7) et une
seule (prop. 9 et lemme prop. 11). Nous appellerons cette rotation
le demi-tour autour de @,. On voit ainsi apparaitre une corres-
pondance biunivoque entre ’ensemble des demi-tours et celui
des faisceaux de premiére classe.
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ProrosiTioN 13. Le produit de deux demi-tours est une transla-
tion. Réciproquement, il est possible de considérer toute trans-
lation comme le produit de deux demi-tours dont I'un peut étre
librement choist a I’avance.

Soit D et D’ les demi-tours relatifs & deux faisceaux de
premiére classe @, et @';. Quand D = D’, le produit DD’ est la
translation banale /. Quand D # D’, désignons par s la réflexion
commune & ¢, et &;. Prenons les éléments u et v perpendicu-
laires & s dans @, et @) respectivement. On peut écrire:

DD’ = us.sv = uv,

qui est une translation de direction s.

Réciproquement, soit 7' une translation de direction a, avec
acX, et soit un demi-tour D autour d’un faisceau de premiere
classe @,. Soit b et c les éléments de @, respectivement paralléle
et perpendiculaire & a. Il existe dans le systéme polaire I1(b) deux
éléments d’ et d” tels que:

T =¢ed" =d" €.

11 est clair que D égale bec et cb. Les éléments bd’ et d"b sont
deux demi-tours D’ et D", respectivement. De plus:

T = cbbd =DD', T=d"bbc=D"D. C.Q.F.D.

CoROLLAIRE. Le produit de trois demi-tours est un demi-tour.

Soulignons le fait que si D et D’ sont les demi-tours opérant
autour des faisceaux de premiére classe distincts &, et @,
DD’ est une translation dont la direction est donnée par I’élément
s commun & @, et &;, ou par toute autre réflexion paralléle & s.

ProrositioN 14. Dans G, I'ensemble des translations constitue
un sous-groupe distingué abélien 7.

Soit T'; et T, deux translations. Donnons-nous un demi-tour
D. En vertu de la proposition 13, il existe deux demi-tours D,
et D, tels que:
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D’ou:
T1 Tz_l = (DlD)(DzD)_l — Dl DDD2 = Dl D2 ’

ce qui montre que ensemble J des translations est un sous-
groupe de G. De plus, comme:

DT,D = D(D,D)D = DD, = T, !,

r automorphlsme intérieur de G associé & un demi-tour D envoie
toute translation sur son inverse. Il en découle que T est abélien,
car:

Tz T1 T2‘1 — DzD(DlD)DDZ = DzDD1D2 — DlD — Tl'

Enfin le fait que 7 est distingué dans G résulte de la conservation

du parallélisme par les automorphismes intérieurs de G.
C.Q.F.D.

Prorosition 15. Le groupe I des translations est isomorphe
au produit =(a) X t(a), owt a est une réflexion quelconque.

Quelles que soient les réflexions a et b, les groupes t(a) et
7(b) sont isomorphes. En effet, s1 a et b sont distinctes, prenons
un élément bissecteur u de a et b; application 7' —» uTu définit
un isomorphisme entre t(a) et t(b). Dés lors, 1l nous suffit d’éta-
blir que 7 est isomorphe au produit direct z(r) X (s),our et ssont
deux réflexions sécantes.

Considérons l’ensemble t(r).z(s) des produits de la forme
T.T,, ou T,e t(r) et T, t(s). Comme J est abelien, 1(r).t(s) est
un sous-groupe de 7. Les réflexions r et s étant sécantes, 'inter-
section de z(r) et 7(s) se réduit a 1’élément neutre et 7(r).z(s) est
isomorphe au produit direct t(r) X t(s).

Il reste & montrer que J = 1(r). t(s). Prenons une translation
quelconque; elle peut se mettre sous la forme DD”, ou D est le
demi-tour autour de &(r, s) et D" est le demi-tour autour d’un
faisceau de premiére classe convenable ¢,. Prenons dans &,
I’élément s’ paralléle & s et soit D’ le demi-tour autour de &(r, s').
On peut écrire: DD" = DD'.D'D" , ot DD’ € z(r) et D'D" € 1(s).

| C.Q.F.D.

I Enseignement mathém., t. X, fase. 1. 3
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Etant données deux réflexions sécantes r et s, nous appel-

lerons isomorphisme canonique de 7~ sur (r) X t(s) 'application
T > (T,; T) dans laquelle 7 = T,T,, T,e (r) et T 1(s).

2.3. On dit qu'un groupe I' est le produit semi-direct de deux
sous-groupes I'; et I', pris dans cet ordre lorsque tout élément
X de I" possede exactement deux décompositions

X = X1X2 =X2X’1,

ou X, et X; sont dans I'; et X, est dans I',. Cela entraine, en
particulier, que I'y est distingué dans I' et que I'/T"; est iso-
morphe & I',. La définition précédente nous permet d’énoncer un
théoréme important sur la structure algébrique de G.

TueoreME 1. Le sous-groupe G, des éléments propres de G est
le produit semi-direct du groupe I des translations et du groupe
p(®,) des rotations autour d’ un faisceau de premicére classe @ ;.

Prenons un faisceau de premiére classe @, et un élément quel-
conque A dans G,. S1 A est une translation non banale, désignons
par a ’élément de @, perpendiculaire & la direction de 4. Si 4
est une rotation autour d’un faisceau de premiére classe @,
désignons par ¢ un élément commun & &, et ®;. Dans tous les
cas, il existe une réflexion b telle que A = ab. Soit b’ I'élément de
¢, paralléle & b. On peut écrire:

A =ab = ab'.b’'b = (a.bb'.a)ab’.

Il est clair que T, = bb" et T, = abb’a sont des translations et
que R = ab’ est une rotation autour de @;. D’ou:

A =RT1 = TzR.

Ces deux décompositions sont univoquement déterminées par le
choix de A et de &4, car l'intersection de J et de p(®,) se réduit
a I’élément neutre I. C.Q.F.D.

CoroLLAIRE. Tout élément impropre de G peut étre consideéré
comme le produit d’une réflexion et d’une translation.

En effet, soit X un élément impropre de G, @, un faisceau de
premiére classe et ¢ un élément de @,. L’élément a X est propre.
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On peut donc le mettre sous la forme RT, ou R est une rotation
autour de @, et 7 une translation. On peut poser R = ab ou b
est dans @,. D’ou X = bT. On peut encore écrire X = 7", ou
T" est la translation 670.

La réflexion b est entiérement déterminée par le choix de
X et de @, comme on le voit sans peine. Signalons enfin que,
quel que soit I’élément impropre X, on peut trouver une réflexion
s et une translation U de direction s telles que X = sU = Us.

2.4. Nous allons examiner quelques faits relatifs aux auto-
morphismes intérieurs de G. Pour simplifier, nous appellerons
transformation par U'élément A de G I'automorphisme intérieur
de G défini par X - A7' XA.

ProprositionN 16. Pour que la transformation par un élément A
de G envoie toute réflexion sur une réflexton paralléle, il faut
et 1l suffit que A soit un demi-tour ou une translation.

Soit D le demi-tour autour d’un faisceau de premiére classe
@,. Prenons une réflexion quelconque s. Soit a et b les éléments
de @, respectivement parallele et perpendiculaire a s. Il est
clair que D = ab. Par suite, DaD = a. Donc la transformation
par D laisse a fixe; comme elle conserve le parallélisme, elle
envole s sur une réflexion parallele a s. Il résulte de la proposition
13 qu’il en est de méme pour toute translation.

Passons a la réciproque. Considérons d’abord deux réflexions
sécantes non perpendiculaires a et b. L’élément aba coupe b.
Par suite, la transformation par une réflexion n’envoie pas
chaque élément de X sur un élément paralléle. Examinons en-
suite le cas d’une rotation R autour d’un faisceau de premiére
classe @,. Il existe dans @, deux éléments c et d tels que R = cd.
I’élément

¢’ = R"'¢R = dcd,

appartient & @,. Pour que ¢ et ¢’ soient paralleles — ¢’est-a-dire
confondus, dans ce cas— 1l faut que ¢ et d soient confondus ou
perpendiculaires; R est alors la rotation banale ou le demi-tour
autour de @,. Prenons enfin un élément impropre X de G. En
vertu du corollaire du théoréme 1, X peut se mettre sous la
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forme T's ou s est une réflexion et 7' une translation. La trans-
formation par X est donc le produit de la transformation par T
qui envole toute réflexion sur une réflexion parallele, et de la
transformation par la réflexion s qui ne posséde pas cette pro-
priété. Il s’ensuit que la transformation par X ne la posséde
pas non plus. C.Q.F.D.

Le groupe de stabilité d’'une partie £ de G est le sous-groupe
de G formé des éléments X tels que X 'EX = E.

ProprositioNn 17. Le groupe de stabilité d’un faisceau de pre-
miére classe @ est le sous-groupe g(®,) de G engendré par les
éléments de P ,.

Comme ¢, n’est pas un systéme polaire, les seules réflexions
appartenant au groupe de stabilité de @, sont les éléments de @,.

Recherchons maintenant les éléments propres du groupe
étudié. Ils peuvent se mettre sous la forme rs, our, seX. Il résulte
de ce qui précéde que si r est dans &4, il en est de méme de s.
Placons-nous dans le cas ou r n’appartient pasa @,. Il existe un
faisceau @ contenant r et s. Soit v la seule réflexion appartenant
a la fois & @ et & @;. On peut poser rs = uv, ou u = rsv € @. 1l
est clair que u appartient au groupe de stabilité de ¢,. Par consé-
quent u est dans @4, et u = v. Donc rs est I’élément neutre [ de G.

Il reste & considérer les éléments du groupe de stabilité de
@, qui sont de dimension 2 dans G. Un tel élément peut toujours
se mettre sous la forme axy, ou a est arbitrairement choisi dans
@, et ou x et y sont des réflexions distinctes convenables. Il est
clair que zy appartient au groupe de stabilité de &,. Il résulte
alors de ce qui précede que z et y sont dans @, et qu’il n’existe
pas d’élément de dimension 2 dans le groupe étudié.

En résumé, le groupe de stabilité de @, est le R-groupe de
dimension 1 engendré par ¢,. C.Q.F.D.

‘CoroLLAIRE 1. Le groupe G est le produit semi-direct du groupe
des translations et du groupe de stabilité d’un faisceau de pre-
miére classe.

Cela découle immédiatement de ce qui précede et des consi-
dérations accompagnant le corollaire du théoréeme 1.
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COROLLAIRE 2. Lorsqu une réflexion commute avec un demi-
tour D elle appartient au faisceau de premiére classe associé a
D, et réciproquement.

En effet, comme le demi-tour D détermine univoquement le
faisceau @, autour duquel il opére, toute réflexion commutant
avec D appartient au groupe de stabilité de @,, et réciproque-
ment.

CoroLLAIRE 3. Soit trois faisceaux de premiére classe sans
élément commun. L’ ensemble des éléments de G qui déterminent
une transformation laissant tnvartant chacun de ces faisceaux
se réduit a {I}.

 En effet, soit &, et ®; deux de ces faisceaux. Ils n’ont en
commun qu'une seule réflexion a. Tout élément propre du
groupe de stabilité de @, peut se mettre sous la forme ab, ou
bed,. Cet élément ab ne peut appartenir au groupe de stabilité
de @) que si b = a. Soit ", le troisitme faisceau considéré. Il
ne contient pas a. L’intersection des groupes de stabilité des
faisceaux @,, ®; et @; se réduit donc & {/}. |
Deux éléments A et B de G sont dits congrus, ce que 'on
note A ~ B, quand 1l existe un élément propre X dans G tel que
la transformation par X envoie A sur B. On définit ainsi une
relation d’équivalence dans G. L’ensemble X consitue une classe
d’équivalence vis-a-vis de cette relation. Les éléments de G
congrus & une rotation sont des rotations; les éléments congrus
& une translation sont des translations. Il résulte immédiatement
de la définition que AB ~ BA dés que 'un au moins des élé-
ments 4 et B est propre.
Soit a, b et ¢ trois réflexions quelconques. On peut écrire
ab ~ c(ba)e, car cbac = ca(ab)ac. Donnons-nous une rotation R
et un faisceau de premiére classe @;. L.e groupe p(®,) des rota-
tions autour de @, contient une rotation R’ congrue a R. C’est
evident quand R est banale; ¢al’est aussi quand R est dans p(®,).
Sinon soit @ le faisceau de premiére classe autour duquel opére
R, avec & # &, et soit s I’élément commun a ¢ et &,. Consi-
dérons les réflexions a et b perpendiculaires & s dans @ et @,
respectivement, et soit m I’élément bissecteur de a et b. Le demi-
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tour sm transforme a en b et s en lui-méme. Il transforme done
® en ¢, et R en une rotation congrue R, opérant autour de
@,. Nous verrons que R, est entiérement déterminée par R et
(2

1-

ProrosiTioN 18. La condition nécessaire et suffisante pour que
deux rotations R, et R, soient congrues est qu’il existe une
translation T telle que R, = TR;.

Soit R, et R, deux rotations congrues. Quand I'une d’elles
est banale, 1l en est de méme de I'autre et la proposition est
vraie dans ce cas. Dés maintenant, placons-nous dans le cas ou
R, et R, ne sont pas banales. Par hypothése, il existe dans G,
un élément A tel que:

Désignons par @ le faisceau de premiere classe autour duquel
opere R;. En vertu du théoreme 1, il existe une rotation R
autour de @ et une translation 7'; telles que A = RT,. D’ou:

R, =T 'R 'R,RT, =T 'R, Ty,

car le groupe des rotations autour de ¢ est abélien. On peut
alors trouver une translation 7', telle que 7, = T ,R,. En intro-
duisant la translation 7 = T{'T,, on obtient R, = TR,.
Réciproquement, soit 1, une rotation non banale autour d’un
faisceau de premiére classe @ et soit une translation 7' que I'on
peut aussi supposer non banale, sans restriction. Soit a I’élément
de @ perpendiculaire a la direction de 7'. Il existe dans X un
élément b paralléle & a et dans @ un élément ¢ tels que 7T = ba
et R, = ac. Considérons alors la rotation R, = TR, = bc.
Nous devons montrer que R, et R, sont congrues. Comme R,
n’est pas banale, b et ¢ se coupent. Prenons les éléments r et s
perpendiculaires & ¢ dans @ et @(b, c) respectivement. La trans-
lation 7" n’étant pas banale, r et s sont distincts; soit u leur
élément bissecteur. Il est clair que udu = &(b, c), car u est
perpendiculaire a c¢. Par suite, la transformation par le demi-
tour D = uc envole tout élément de & sur un élément paralléle
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de ®(b, ¢), et en particulier a sur b et ¢ sur lui-méme. Il en
découle que: ’

DR, D = DacD = DaD.DcD = bc = R, . C.Q.F.D.

CorOLLAIRE 1. Quels que soient les faisceaux de premiére classe
@ et @', il existe au moins une réflexion u telle que @ = udu.

CoroLLAIRE 2. Tout élément congru & une rotation R peut
étre obtenu en transformani R par une translation convenable.

CORrROLLAIRE 3. La condition nécessaire et suffisante pour que
deux rotations R, et R, soient congrues est qu’il existe une
translation T’ telle que Ry = R,T".

Cela résulte de la proposition 18 et du fait que deux éléments
de G sont congrus en méme temps que leurs inverses.

COROLLAIRE 4. Quels que soient la rotation R et le faisceau de
premiére classe @, il existe une rotation congrue a R opérant
autour de @, et une seule.

(’est une conséquence de la proposition 18 et du théoréme
1. En particulier, on peut affirmer que deux rotations congrues
opérant autour d’'un méme faisceau de premiére classe sont con-
fondues.

Prorosition 19. Soit a, a’, b et b’ quatre réflexions telles que
a coupe b et que a et a’ sotent paralléles. Si'b et b’ sont paralléles,
ab et a’b’ sont congrus. Réciproquement, si ab et a’b’ sont
congrus, b et b’ sont paralléles.

Prenons d’abord le cas ou a et b sont deux réflexions sécantes
et ou a’ et b’ sont deux réflexions respectivement paralléles &
a et b. Les éléments ab, a'b et a’b’ sont des rotations, tandis que
aa’ et bb’ sont des translations. En vertu de la proposition 18,
ab est congru & a'b, car ab = aa’.a’b. En vertu du corollaire 3
de la proposition 18, a’b est congru & a’b’, car a’'b = a'b’.b’b. Par
suite ab ~ a'b’.
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Réciproquement, considérons quatre réflexions a, b, a’ et b’
telles que a coupe b, que a et a’ soient paralléles et que ab ~ a'b’.
Les rotations ab et a’b’ ne sont pas banales. Prenons dans
D(a’, b') I'élément b” parallele a b. Il résulte de la premiére partie
de Ja démonstration que ab et a'b” sont congrus. Mais en vertu
du corollaire 4 de la proposition 18, a'd’ = a’b". Par conséquent
b” est confondu avec b, et b’ est parallele a b. C.Q.F.D.

PropositioNn 20. Soit A, B et C trois éléments propres de G.
St A et B sont congrus et st AC est une rotation non banale,
AC et BC sont congrus.

Il résulte des hypothéses que lorsque A est une translation,
B en est une également et que C est une rotation non banale.

Fig. 4.

Dans ce cas, la conclusion découle immédiatement de la proposi-
tion 18. Placons-nous donc dans le cas ou A est une rotation non
banale autour d’un faisceau de premiére classe @. En vertu du
théoréme 1 et de la proposition 18, il existe trois translations
T, T’ et T” ainsi qu’une rotation R autour de @ telles que:

B=TA; C=T'R; AC = AT'R = T" AR;
BC = TAT' R = TT" AR.
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I1 résulte du fait que AC n’est pas une rotation banale qu’il en
est de méme de AR et, par suite, de BC. En vertu de la proposi-
tion 18, AC et BC sont congrues a AR, donc congrues entre
elles. C.Q.F.D.

2.5. Il nous faut encore établir deux propositions dont les con-
séquences algébriques se révelent importantes. La premiére a
trait & une propriété élémentaire des angles du quadrilatére
inscriptible. La deuxiéme est connue sous le nom de « théoréme’
de Pappus».

Considérons quatre faisceaux de premiére classe tels que trois
quelconques d’entre eux n’aient pas d’élément commun. Les
intersections de ces faisceaux pris par paires déterminent six
réflexions distinctes qui sont les cdtés d’un quadrangle complet.
Désignons par a, b et ¢ les trois cOtés appartenant & 'un des
quatre faisceaux. Soit a’ I'élément commun aux deux faisceaux
ne contenant pas a. Nous dirons que a et a’ sont opposés. Intro-
duisons de méme les cotés b’ et ¢’ respectivement opposés a
b et c¢. Nous désignerons le quadrangle complet considéré par
(a, a"; b, b"; ¢, c').

PropositioN 21. Dans un quadrangle complet donné, on con-
sidére toutes les congruences de la forme ab ~ b’a’ ou a, b,
a’ et b’ sont quatre cotés distincts du quadrangle complet, a’ et
b’ étant respectivement opposés a a et b. La validité de I'une
de ces congruences eniraine celle de toutes les autres.

Soit a, b et ¢ trois cotés incidents du quadrangle complet et
soit a’, b’ et ¢’ les cOtés respectivement opposés. On peut écrire
les 1ncidences suivantes: (e, b, ¢), (', a, ¢), ic’, b, a') et
i(a’, ¢, b’). Introduisons les réflexions:

r = b'ac’ s = ¢’ ba’ t = a’cb’
Elles sont incidentes, car:

rst = b'.abc.b’ .

Remarquons que ¢ coupe b car sinon « et ¢’ seraient confondus,
ce qui est impossible dans un quadrangle complet. Comme a,
b et a’ ne sont pas incidents, ¢ est distinct de rst.




— 49 —
Admettons maintenant que ab et b’a’ soient congrus. Alors:
b'.rst.b'c = ab ~b'a’. (1)

Comme b’a’.ch’ = b't est une rotation non banale, la proposition
20 permet de déduire de (1) que b'rst est congru a &'t. Il découle
alors de la proposition 19 que rst est paralléle a ¢ Puisque rst
et ¢ sont distincts, r, s et ¢ sont paralléles. On tire de la:

!/ /

ac’ = arr¢’ =arb'.a~b'r~b't =b'.achb ~ca.

On peut établir de la sorte toutes les congruences annoncées.

C.Q.F.D.

On remarque que la démonstration précédente revient essen-

tiellement a établir un fait bien connu concernant I'image du

cercle circonscrit au triangle de base dans une transformation
1sogonale.

Soit r et s deux réflexions distinctes. Soit un cycle de six
faisceaux de premiére classe distincts, différents de &(r, s),
numérotés de 1 a 6, et tels que les faisceaux portant un numéro
impair contiennent r, les autres contenant s. Introduisons les
réflexions a, b, ¢, a’, b" et ¢’ représentant les intersections respec-
tives des faisceaux 1 et 2,2 et 3,3 et 4,4 et 5,5 et 6,6 et 1; elles
constituent un hexagone inscrit dans la paire (r, s) dont elles sont
les cotés; a’, b’ et ¢’ sont les cotés respectivement opposés & a, b
et ¢ (voir fig. b).

Proprosition 22. (Théoréme de Pappus). Lorsque, dans un
hexagone inscrit dans une paire de réflexions, deux paires de
cotés opposés sont formées d’éléments paralléles, il en est de
méme de la troisiéme paire.

Reprenons les éléments de la figure 5. 11 existe dans le faisceau
3 un élément a, tel que:

ra; ~ as. (2)

Comme ‘@ coupe r, a, coupe s en vertu de la proposition 19.
Appelons b, I'intersection du faisceau 1 et de &(a,, s). Lorsque
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a, est différent de b, on voit apparaitre le quadrangle complet
(r, s; a,ay; b, by); & cause de (2):

bs~rb;, (3) | ar~sa; (4)

b b

Fig. 5.

Lorsque @, se confond avec b, b, se confond avec a. En faisant
usage de la proposition 20, on tire de (2):

bs = a, s~a.sa;.a~raq.a;a = ra = rb,
puis:

ar = byr~sb = say,
ce qui redonne encore (3) et (4).

Admettons maintenant que a et a’ sont paralléles. On
déduit alors de (4) et (2) que:

a'r~ar~sa; (5) a's~as~ra, (6)

Désignons par ¢, U'intersection du faisceau 5 et de ¥(a,, s). Lors-
que a, est différent de ¢, on considére le quadrangle complet
(r,s; a’, aq; ¢ cq), et (D) permet d’écrire:

re~cy s. (7

Quand a, se confond avec ¢, ¢, se confond avec a’. Dans ce cas,
la relation (7) se déduit immédiatement de (6).
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Introduisons alors I’hypothése selon laquelle b et ' sont
paralleles. On tire de (3):

b's~bs~rby. (8)

Lorsque b, est distinct de ¢’, on voit apparaitre le quadrangle
complet (r, s; 0, by; ¢/, ¢,). La relation (8) entraine alors:

re’ ~cy S 9)

Lorsque b, est confondu avec ¢’, ¢; se confond avec &’ et la
relation (9) se déduit immédiatement de (8). Comparons alors
les relations (7) et (9); la proposition 19 permet d’affirmer que
c et ¢’ sont paralleles. C.Q.F.D.

Les démonstrations des propositions 21 et 22 peuvent etre
considérées comme classiques (voir par exemple [3], pp. 17-19).

2.6. Nous nous disposons & construire une famille de trans-
formations agissant dans le groupe Z des translations: les
homothéties. Nous montrerons que ces homothéties constituent
un corps K et que 7 peut étre regardé comme un espace vectoriel
sur K. Pour notre construction, nous nous appuierons sur les
propriétés de la projection dans une direction donnée, que nous
allons définir maintenant.

Soit u et v deux réflexions quelconques et soit d une réflexion
coupant v. Nous appellerons projection de II(1n) dans I1(v) suivant
la direction d I"application P définie ainsi: soit zell(u);1’élément
p paralleéle & d dans @(u, x) coupe v; soit z' I'élément de I1(v)
contenu dans @(v, p); alors P(x) = z’. Lorsque d coupe également
u, la projection P est bijective et nousla qualifierons de réguliére.
En revanche, quand d est paralléle & u, la projection P envoie
tout élément de II(u) sur ’élément de II(v) incident avec u et v;
P est alors dite stnguliére. Nous n’aurons pas d’autres projections
a considérer par la suite que les deux especes que nous venons de
décrire.

PROPOSITION 23 (Théoréme de Thales). Soit u et v deux ré-
flextons quelconques. Soit P une projection réguliére de II(u)
sur II(v). L’application :

zy-P(2)P(y)  Vy,zell(u),

est un isomorphisme de t(u) sur (v).
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Commengons par deux remarques. Choisissons une réflexion
p dans II(z). Toute translation prise dans t(u) peut se mettre
sous la forme xp, ot zell(u). 11 suffira de démontrer que I'appli-

cation:

P’': xp—P(x)P(p) Vxell (u) ,

est un isomorphisme de t(z) sur t(v). En effet, dans ce cas, si
y et z sont deux éléments de IT(u) tels que zp = zy, I'applica-
tion P’ envoie zp = pyzp sur P(p)P(y)P(z)P(p) = P(z)P(y).

\ c
: bub’

Fig. 6.

5 Prenons ensuite la réflexion ¢ perpendiculaire & la direction
i d de P dans ®(u, p) et la réflexion ¢' perpendiculaire & d dans
Y @(p’, v), ou p’ = P(p). La projection P est le produit de trois
s projections réguliéres de direction d: la premiére de II(u) sur
I1(t), la deuxiéme de II(z) sur II(¢') et qui est d’ailleurs ’applica-
tion identique de II(?) sur lui-méme, et la troisieme de II(t") sur
II(v). On voit par la que la proposition sera démontrée des que
Pon aura établi sa validité dans le cas particulier suivant: les
réflexions u et v se coupent; la projection de II(u) sur II(v) se fait
suivant une direction perpendiculaire & v et p est 'élément de
@(u, v) perpendiculaire a u.
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La projection P étant réguliere, 'application P’ est bijective.
Elle envoie I’élément neutre de t(u) sur celui de z(v). Prenons
deux éléments a et b dans II(u) et posons ¢ = bpa. On a évidem-
ment: |

cp = bp.ap.

Soit alors a’, b' et p’ les images de a, b et p par P, et posons
¢y = b'p'a’. Comme la direction de P est perpendiculaire a v,
quellé que soit x dans I1(u), les réflexions z, u et P(z) sont inci-
dentes. Pour prouver que P’ est un isomorphisme, il suffit de
montrer que ¢, est I'image de ¢ par P, autrement dit que ¢, u et
¢, sont incidentes. Or on peut écrire:

cuc, = apbu.b’p’a’.

Le lemme de la proposition 11 permet d’affirmer que la réflexion
bub’ est perpendiculaire & p’. Elle commute donc avec p’ et a'.
Par suite:

cuc, = ap.p’ a’.bub’.
Mais on peut remplacer p par upu et pup’ par v. D’ou:
cucy = auva'.bub’ = aua’.v.bub’,

si Pon tient compte du fait que @’ est perpendiculaire a v.
Comme aua’ et bub’ sont des réflexions paralleles & v, cuc, est
une réflexion. C.Q.F.D.

Il 'est clair que la proposition précédente doit étre mise en
relation avec le « petit » théoréme de Thalés, celui1 qui exprime
la conservation du rapport des segments collinéaires commen-
surables dans la projection paralléle.

2.7. Nous avons déja rencontré un isomorphisme «naturel»
P, entre t(u) et t(v) dans le cas ou u et v sont distincts; on peut
I’obtenir en posant:

Py:T->mTm VTet(u),

ou m est un élément bissecteur de u et v. Il est facile de voir que
P’, coincide avec 'isomorphisme associé a la projection de II(u)
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sur TI(v) suivant la direction perpendiculaire & m. Quand u et v
se coupent, il existe un second isomorphisme naturel de z(u) sur
7(v); il est associé a la projection de II(u) sur II(v) suivant la
direction m. On Pobtient aussi en considérant I'application qui
a T fait correspondre I'inverse de Py (T).

v
o
x N
GI
e’—J' b
x (y) a
y T P
Wz
N S < (x)
yl
m - m.o<*(y).m

Fig. 7.

Il résulte de ce qui précede que, lorsqu’on compose ’isomor-
phisme naturel P, avec I'inverse d’un des isomorphismes consi-
dérés sous 2.6, on obtient un automorphisme de 7(u). Nous
allons étudier la famille d’automorphismes ainsi déterminée.
Pour plus de commodité, nous substituerons & u et v des réflexions
perpendiculaires v’ et v. Nous verrons que cette restriction n’est
pas essentielle; elle permet toutefois d’adopter des notations plus
simples. D’autre part, nous ne nous servirons pas directement des
1somorphismes P’ considérés plus haut, mais des projections P
qui servent a les construire.

Choisissons donc deux réflexions perpendiculaires v et v,
ainsi que I'un de leurs éléments bissecteurs m. D’une facon
générale, les éléments pris dans II(v') seront désignés par des
lettres minuscules ordinaires, tandis que les éléments de II(v)
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qui leur correspondent par la projection de direction perpendi-
culaire & m seront désignés par les mémes minuscules accentuées.

Soit a et b deux éléments de I(V'), a étant distinet de v. La
projection de IT(v') dans IT(v) qui applique a sur b’ = mbm sera
notée P(a, b’). De méme, P(a’, b) est la projection de II(v) dans
I1(v') qui envoie ¢’ = mam sur b. Lorsque b # v, on a:

P(a,b) =[P(®',a)]".

Choisissons une fois pour toutes un élément e différent de v dans
II(v'). La projection P(e, e) n’est autre que Vapplication
x — x' = mxm de II(v') sur II(v). D’une fagon générale, on peut
écrire, pour tout s dans IT(v'):

Pe,s)(v) =v'; P(e,s)(v) =,
P(e',e)oP(e,s’) = P(e',s)oP(e,e).

En vertu de cette derniére relation, associons & tout élément s
de II(v) une application ¢* de II(v') dans lui-méme définie par:

c* = P(e',s)oP(e,e’) = P(e',e)oP(e,s'), (1)

appelée dilatation de II(v') associée a s. Elle est dite réguliére
lorsqu’elle est biunivoque, c’est-a-dire lorsque s # v. Clest le
cas, en particulier, quand s = e, ou elle se confond avec ’appli-
cation identique de IT(v') sur lui-méme; cette dilatation est notée
1*. Lorsque s = v, la dilatation est singuliére; elle envoie chaque
élément de II(v') sur v. Elle se note 0*. I’ensemble de toutes
les dilatations de II(v’) définies par (1) sera désigné par K*; il
dépend du choix de v et de e dans II(v'). Si o* et f* sont deux
éléments de K*, nous désignons par f*.a* I'application obtenue
en effectuant successivement o* puis f*. C’est & cette loi de
composition qu’il est fait allusion dans l’énoncé suivant.

ProprositioNn 24. Le produit des dilatations détermine une
structure de groupe abélien dans [l'ensemble des éléments ré-
guliers de K*.

Prenons dans II(v') deux éléments a et b distincts de v, et
soit a* et B* les dilatations qui leur sont associées dans K*.
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Montrons d’abord que p*.a* = o*.f*. Prenons dans II(v') un
élément quelconque x. Nous pouvons écrire:

B*.a*(x) = P(e',e)oP(e,b)oP(e’,a)oP(e,e)(x),
a* B*(x) = P(e’,a)oP(e, b')(x). )

en tenant compte des relations (1). Lorsque z est confondu avec
v, les seconds membres des égalités ci-dessus sont tous deux
égaux a v. Prenons donc z # v, et posons y = p*(x). Les faisceaux
de premiére classe @(v', z), (v, 2’), ®(v', a*(x)v), D(, m.a*(y).m),
D(v', a*(y) ) et &(v, y') pris dans cet ordre déterminent un hexa-
gone inserit dans la paire (v, v), (voir fig. 7). I’intersection du
premier et du deuxiéme faisceau est perpendiculaire & m, comme
celle du quatrieme et du cinquiéme. L’intersection du deuxiéme
et du troisieme faisceau est parallele a la direction de P(e’, a),
comme celle du cinquieme et du sixiéme. Le théoreme de Pappus
permet donc d’affirmer que les deux cotés restants, soit p et p,
sur la figure 7, sont aussi paralléles. Nous pouvons done écrire:

P(e, b)[a*(x)] = P(e, ) [a* (»)].
D’ou:

p*.o*(x) = a*.p*(x) Vxell (v'). (2)

Donc p*.a* = o*.f*. Remarquons encore qu’en posant x = e,
on tire de (2) la relation:

p*(a) = a*(b), (3)

qui reste vraie lorsque o* et B* sont singuliéres.

Montrons maintenant qu’il existe dans IT(v’) un élément ¢ #£v
tel que la dilatation p* associée & ¢ dans K* soit confondue avec
Papplication o*.f*. Prenons en effet ¢ = a*(b). Soit z un élément
quelconque de II(v'); désignons par &* la dilatation associée a
x dans K*. En vertu de (3), on peut écrire:

ot fE(x) = a*.{F(b) = C*a* (D) = &* (o) = y*(x).

Comme cette relation reste vraie quel que soit z dans II(v")
o*.f* est une dilatation réguliére prise dans K*.

?
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Le produit introduit dans K* est associatif puisqu’il est défini
par la composition des dilatations. La dilatation 1* joue mani-
festement le role d’élément neutre. Enfin I'inverse de la dilata-
tion a* = P(e’, e) o P(e, a), out a #v dans II(v'), est la dilatation
P(a’, e) o P(e, ¢'). Les éléments réguliers de K* constituent donc
un groupe abélien pour le produit considéré. C.Q.F.D.

Remarquons que si I'on se donne un élément quelconque d
dans II(v’), il existe une dilatation et une seule dans K* qui
envoie e sur d. Cette dilatation est réguliére quand d est distinct
de v. Par suite, si 'on se donne arbitrairement deux éléments
f et g dans II(v'), f étant différent de v, il existe dans K* une
dilatation et une seule qui applique f sur g.

2.8. Adoptons les mémes notations qu’au numéro précédent.
Soit S une translation de direction v’. Il existe dans II(v') un
élément s bien déterminé tel que S = sv. Soit ¢* la dilatation
associée a s dans K*. Nous appellerons homothétie de z(v')
associée a S 'application ¢ de t(v') dans lui-méme définie par:

! xv — [o* (x)]v Vxell (v'). (4)

Comme o* est un produit de projections et que o*(v) = v, la
proposition 23 permet d’affirmer que o est un endomorphisme
de t(v’). Lorsque § # I, ’homothétie ¢ est un automorphisme
de t(v') et elle est dite réguliére. En particulier, 'homothétie
correspondant & la translation £ = ev est I’automorphisme iden-
tique de t(v), que nous désignerons par le symbole 1. Lorsque §
est la translation banale, I’homothétie correspondante applique
tout élément de 7(v') sur 7; elle est dite singuliére et elle est notée
0. L’ensemble des homothéties de 7(v)" définies par (4), ou o*
parcourt K*, sera désigné par K.

On introduit une loi de composition interne dans K appelée
multiplication en faisant correspondre & tout élément («, f) de
K x K I'application de (v’) dans lui-méme définie par:

B.o(X) = B(a(X)) VXet(v'). (5)

Cela découle de la proposition 24 et de la définition (4). Il résulte
également de la que les éléments réguliers de K forment un
groupe abélien vis-a-vis de la multiplication, I’élément neutre
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étant évidemment 1. De plus, quel que soit ¢ dans K, on peut
écrire: 0.0 = 0.0 = 0.

Les homothéties que nous venons de définir étant des endo-
morphismes de t(v'), on peut associer & toute paire d’éléments
x et B de K un endomorphisme de t(v') noté o-f et défini par:

o+p: X - a(X)p(X) VXet(v'). (6)

Montrons que I’on introduit par 1a une loi de composition interne
dans K. En effet, soit A et B les éléments de t(v’) auxquels sont
associées les homothéties o et f. Il existe dans II(v') deux
réflexions a et b telles que A = av et B = bv. Prenons dans
(v') une translation quelconque X = zv, avec xell(v’); désignons
par £* la dilatation associée &  dans K* et par & ’homothétie
associée & X dans K. On peut écrire:

(@ +p)(X) = [e* )]v[B*(X)]v,
puis, en tenant compte de (3):

[o* () ]v[B*(x) Jv = [E¥(a) Ju [E* (B)]v = &(A4) E(B) = £(4B)
| = [&* (avb)]v .

Posons ¢ = avb et C = avbv = AB. Soit y* la dilatation
associée a ¢ dans K* et y Phomothétie associée & C dans K. Il
vient:

[&* (avb)]v = [E*(0)]v = [y* (D) ]v = y(X) .
En bref:
(x+p)(X) =7y(X).

Cette relation étant vraie quel que soit X dans t(v’), on voit que
a4 appartient a K. Nous venons de définir une addition dans
K. Plus précisément, nous voyons que a-f est I'élément de K
associé & la translation AB; comme il résulte de (1) et de (4) que
I'application § — o de t(v") dans K est bijective, on peut affirmer
que K est un groupe additif isomorphe a (v’).

Montrons que K est un corps relativement aux opérations qui
y ont été définies. Pour cela il reste & établir que la multiplication
y est distributive par rapport a I’addition. Prenons trois éléments
a, p et y dans K et une translation X dans z(v’). On peut écrire:
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[2. (B+M]X) = «[fX)y(X)] = {«[BCO]} {2 [y ()]} =
[(.) ()] [(y) O] = (2.f + ) (X))

Donc a.(f+7y) = a.f+a.y. Nous pouvons énoncer le théoréme
suivant:

Il

TaEOREME 2. L’ensemble K des homothéties de t(v') est un
corps commutatif.

Remarquons que le corps K ne dépend pas du choix de v et
de e dans II(v"), pourvu que e # v. En effet, si 'on substituait
& v et e deux éléments v, et e; de II(v') tels que e;v; = ev, on
pourrait recommencer a partir de v, et e; la construction d’un
corps K; comme on l’a fait pour K a partir de v et e. Désignons
par w I’élément de II(v') déterminé par wvw = v,. Le passage de
la premiére -construction a la deuxiéme se ferait en remplacant
toute réflexion r apparaissant dans la construction de K par
T7'rT, ou T est la translation vw. Or la transformation
X—-T7! XT induit dans t(v') Pautomorphisme identique. D’otu
Pon déduit que les corps obtenus K et K, sont isomorphes. D’autre
part, on vérifie sans peine que le choix de e n’intervient pas
essentiellement dans la définition d’une homothétie, celle-ci
étant entiérement déterminée par son effet sur une translation
différente de 7/ dans t(v'). On pourrait donc, en conservant v,
remplacer e par n’importe quelle réflexion f # v dans II(v').

Il apparait clairement que les définitions (5) et (6) font
de t(v’) un espace vectoriel sur le corps K. Nous désignerons donc
dés maintenant K comme le corps de base. Par ailleurs, il découle
des remarques faites & la fin de 2.7 que si 'on se donne deux
translations 7 et S dans z(v'), avec § # [, il existe dans K une
homothétie unique o telle que a(S) = 7. Ainsi t(v’) est un espace
vectoriel de dimension 1 sur K.

Donnons une propriété importante de K.

Prorosition 25. L’élément —I1 n’est pas un carré dans le corps
de base K.

I1 est évident que 0> % —1. Prenons donc dans K un élément,
non nul § et montrons que 6> # —1. Reprenons les éléments de la
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figure 7 et les définitions qui 8’y rapportent. Il existe dans II(v")
une réflexion d # v telle que 6 soit Phomothétie associée & la
translation dv. Soit &* la dilatation attachée & d dans K*.
Désignons comme d’habitude par d’ I'élément mdm et posons:

(r}=0o@,)n®@,d); {s}= d,e)n d(@,d).

e
o
g f
\X\<}\ @ v
s \
t
e d
r
m 4

Fig. 8.

On voit immeédiatement que s = mrm. Désignons par ¢ ’élément
de &(v, d’') paralléle & s, par ry 'élément de &(v’, v) parallele a
r et par u élément vtv. Il est clair que u est parallele & vsv =
vmrmv qui est lui-méme paralléle & vmr;mv. D’autre part:

vmry my = vmomr, = vv' ¥y .

En vertu du lemme de la proposition 11, vv'r, est perpendicu-
laire & ry, done & r. Par suite u est perpendiculaire a r. :

Désignons alors par f I’élément de &(v’, t) perpendiculaire
a v’ et posons g = vfv. Par construction:

f=(0%().

Done:
6% (ev) = fv; (=% (ev) = of = gv.
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Supposons par absurde que -6 = 1. Cela entrainerait g = e.
Comme les faisceaux @(v’, e) et &(v, d’) sont distincts, r serait
confondu avec u, contrairement & ce qui a été montré plus haut.

C.Q.F.D.

Il convient de retenir au passage le procédé permettant de
construire une réflexion perpendiculaire a n’importe quel élé-
ment de &(v’, e) distinct de v’ et de e.

2.9. Nous sommes maintenant en mesure d’introduire dans le
groupe J de toutes les translations une structure d’espace
vectoriel sur K. Cela se fait en prolongeant & J les homothéties
définies dans un sous-groupe 7(v’) de 7.

Reprenons les éléments de la figure 7. Soit o* une dilatation
de II(v’) prise dans K*. I’application:

y' o m(e*(my' m)m,  Vy'ell(v),

peut étre considérée comme une dilatation de II(v) obtenue
« par réflexion » & partir de celle de II(v"); nous la désignerons
encore par o*. Nous allons examiner un procédé permettant de
passer de I'une & 'autre de ces dilatations par certaines projec-
tions de II(v') dans II(v).

Placons-nous dans le cas ou «* est réguliére et ou y' # v'.
Posons y = my'm et choisissons un élément x # v dans II(v"). Il
existe une dilatation réguliére p* de II(v') prise dans K* qui
applique z sur y. Nous retrouvons exactement la disposition de
la figure 7, et si nous posons:

{p} =2, x)nD(v,))
et {p} =0, a*X)nmd(v,a*()),

nous pouvons affirmer que p et p; sont deux réflexions paralleles.
Ainsi la projection de II(v') dans II(v) qui applique z sur y’
envoie oa*(z) sur a*(y ) Cette affirmation est banale quand a* est
singuliére et quand y’ = v'.

I1 est clair qu'on obtient une homothétie de 7(v) lorsqu’on
forme l'application:

y'v - a*(y)o Vy'ell (v).

Nous la désignerons encore par «.



Considérons alors une translation 7. On peut la décomposer
canoniquement en un produit 7.7, ou T, € w(v') et T,e t(v).
Introduisons I'application:

T—a(T,)a(T,) VTeT .

En vertu de la proposition 15, cette application est un endo-
morphisme de . Ses restrictions a t(v’) et t(v) se confondent
avec ce que nous avons désigné par o. Nous pouvons donc la
désigner par la méme lettre et dire que ¢’est une homothétie de 7.

| " .

(Cest un automorphisme de J et elle est dite réguliére quand sa
restriction & t(v’) est réguliere. Sinon elle est dite singuliére et
elle applique tout élément de 7 sur I.

Examinons l'effet d’'une homothétie réguliére « de J sur une
translation 7 n’appartenant ni & z(v), n1a «(v). 1 ' =T, T,
est la décomposition canonique de T suivant z(v") et 7(v), posons:

T, =y'v, yellI,; T,=yv, yell().
Alors:
o(T) = a*(y)a*(x)v'v.
Posons:

{s}=2@,v)nd(x,y); {s; )= @(v,v')m@(a*(x),oc*(y’)).
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Les réflexions s et s; sont les directions respectives de T et de
a(7). Considérons les quadrangles complets (v', y";v, x; p, s) et
(v, a*(y'); v, a*(x); pq, 8;). Dans le premier, v'v et a2y’ sont con-
grus et v’ est parallele a y’; il résulte alors des propositions 21
et 19 que:

v's ~ pv'.

Dans le second, v’v est congru a o*(x) oa*(y’) et o«* (y') est
paralléle a v’; par suite:
v'sy ~pv.

Mais comme p et p, sont paralléles, il résulte dela proposition 19
que v’'s est congru a v’s,, puis que s et s; sont paralléles (autre-
ment dit confondus, dans ce cas). Par conséquent, 7" et a(7") ont
la méme direction. Cette affirmation est banale quand « est
singuliére et quand 7" appartient & t(v’) ou a 7(v).

Ainsi, quelle que soit la réflexion s, le sous-groupe z(s) de I
est stable pour ’ensemble des homothéties de J. D’autre part,
s1 'on se donne deux translations 7', et T,, avec 7'; # I, ainsi
que I'image «(7';) de 7'; par une homothétie « de 7, on peut
construire a(7’,) par des projections. Donc si 'on se donne une
paire ordonnée de translations de meéme direction, la premiére
n’étant pas banale, il existe une homothétie de J et une seule qui
applique la premiére translation sur la seconde.

De tout ce qui précede, nous déduisons que ’ensemble des
homothéties de J consitue un corps isomorphe a-K, que nous
identifierons immédiatement & XK. On peut écrire:

(a+pX) = a(X)p(X);  0(X) =1 VXeT,
(B.0)(X) = B(a(X)); 1(X) = X

ou « et B sont deux éléments quelconques de K. Ainsi J est niuni
d’une structure d’espace vectoriel de dimension 2 sur K. Nous
désignerons cet espace vectoriel par J g pour le distinguer du
sous-groupe J de G. Les sous-espaces de dimension 1 de J g sont
donnés par les sous-groupes t(s) de J, ou se2.

Soit E et F deux translations linéairement indépendantes
dans J g. Toute translation 7' peut se mettre sous la forme:

T = {(E)n(F),
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ou & et n sont deux éléments de K univoquement déterminés
par 7. L’application 7" — (&, 1) est un isomorphisme de J g sur
Iensemble K x K muni de sa structure d’espace vectoriel sur K.
Nous dirons que (&, 1) est la paire de coordonnées de T relative-
ment & la base (E, F). Le systéme de coordonnées ainsi introduit
dans I g est dit orthonormal quand E et F sont deux translations
congrues de directions perpendiculaires.

Les propriétés des homothéties de J nous permettent d’af-
firmer que, lors de la construction des homothéties du groupe
7(v’), le choix d’un élément v perpendiculaire a v’ n’avait rien
d’essentiel (voir fig. 7); nous aurions pu y remplacer v par n’im-
porte quelle autre réflexion coupant v’

2.10. Nous disposons d’assez de renseignements sur le groupe G
pour en tirer les éléments d’une géométrie plane. Choisissons a
nouveau deux réflexions perpendiculaires v" et v, 'un de leurs
éléments bissecteurs m, et un élément e # v dans II(v’). Dési-
gnons par g le groupe de stabilité de @ (v, v’). Soit @ un faisceau
de premiere classe quelconque. Il existe au moins une réflexion
s telle que @ = s®(v, v')s, (coroll. 1, prop. 18). Le groupe de
stabilité de @ est sgs. L’intersection des sous-groupes sgs de G,
ol s parcourt X, se réduit a {I} (coroll. 3, prop. 17). On peut
donc définir la géométrie de G relativement a g (voir introduc-
tion). L’espace homogene G/g sera appelé le plan; ses éléments
seront les points. Il existe entre le plan, le groupe 7, ’éspace
vectoriel I g, 'ensemble des demi-tours et celui des faisceaux de
premiére classe des correspondances biunivoques «naturelles »
que nous allons mettre en évidence.

Il résulte du corollaire 1 de la proposition 17 que ’on obtient
toutes les classes (& gauche) de G suivant g en formant les classes
Tg, ou T parcourt 7. On détermine ainsi des correspondances
biunivoques entre le plan, le groupe J et I'espace vectoriel 7 .
La classe T'g est celle qui contient le demi-tour D tel que T =
Dv'v; elle n’en contient pas d’autre car g ne contient pas de
translation non banale. On obtient de la sorte une correspon-
dance parfaite entre les points du plan et les demi-tours. D’autre
part, nous avons déja relevé I'existence d’une correspondance
biunivoque naturelle entre les demi-tours et les faisceaux de
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premiére classe (voir 2.2). Pour alléger le texte, convenons
d’appeler homologues les éléments du plan, de I, de T, de
I'ensemble des demi-tours et de celui des faisceaux de premiére
classe qui se correspondent naturellement.

Posons E = ev et F = mv'Ev'm = mEm. Comme v et v" sont
perpendiculaires el que E et F sont congrues, le systeme de
coordonnées associé a la base (E, F) de J ¢ est orthonormal.
Nous appellerons coordonnées d’un point P (relativement au
systeme (v, v, m, e)) les coordonnées (&, #) de la translation
homologue a P, relativement a la base (£, F'). Nous désignerons
parfois ce point par P(&, 7).

Nous appellerons droite homologue a la réflexion s, et nous
noterons § 'ensemble des points homologues aux faisceaux de
premiere classe contenant s. Si 7';g est un point de §, on obtient
la droite § en formant ’ensemble des points 7'7T,g, ou T par-
court le groupe t(s). On peut alors représenter paramétrique-
ment une droite par (u+mn.l; p'+n'.{), ot { est un élément par-
courant K, ou u, n, u' et n’ sont des éléments déterminés de K,
et ou m et 7’ ne sont pas nuls en méme temps. Convenons d’écrire
dorénavant aff le produit de deux éléments « et f de K que nous
notions jusqu’ici «.f, aucune ambiguité n’étant plus & craindre.
Il résulte de ce qui précéde qu'une droite § est ’ensemble des
points dont les coordonnées (&, #) satisfont une équation de la
forme:

(5)=al+pn+y =0; o, f,yeK; (x,p) #(0,0). (1)

Réciproquement, I'ensemble des points dont les coordonnées
(&, n) satisfont une équation de la forme (1) est une droite.

Deux droites § et 5" sont dites sécantes, paralléles ou perpendi-
culaires en méme temps que leurs réflexions homologues respec-
tives s et s'. Soit: |

()=l n+y =0, - (2)

I'équation de §'. La condition de parallélisme de § et §’ est donnée
par:

af —o' f = 0. (3)
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Montrons que la condition de perpendicularité de ces mémes

droites s’exprime par:
aa' +pp = 0. (4)

Fig. 10.

(’est le cas manifestement lorsque s et s’ sont confondues avec
v et v’ respectivement, car alors f = o' = 0. Pour examiner les
autres cas, reportons-nous a la figure 8. La réflexion r est arbi-
trairement choisie parmi les éléments de @(v’, e) différents de v’
et de e. Elle appartient au faisceau @(v, d’), ou d’ # v’; donc la
droite homologue 7 contient les points de coordonnées (1, 0) et
(0, 8), ou & # 0. La réflexion u, qui est perpendiculaire & r,
appartient aux faisceaux @(v, d’) et ®(v', g); donc la droite
homologue i contient les points de coordonnées (0, 8) et ( — &2, 0).
Les équations respectives de 7 et #i peuvent s’écrire:

(7 =0E+n—50 =0; () =EE-0n+d*=0.

Ces équations vérifient la condition (4). Réciproquement, toute
droite dont I’équation jointe a celle de 7 satisfait la condition (4)
est parallele a iu; elle est donc perpendiculaire & 7. Comme la
perpendicularité des droites 5 et §' et la condition (4) restent
inaltérées lorsqu’on substitue & § et & §° des droites respective-
ment paralleles, (4) est bien la condition nécessaire et suffisante
pour que les droites § et §' soient perpendiculaires.

Nous pouvons apporter une précision nouvelle surle corps K.




TuEorREME 3. Le corps de base est formellement réel et pytha-
goricien.

Un corps commutatif est dit formellement réel quand —1
ne peut s’y mettre sous forme d’une somme de carrés. I1 est
pythagoricien quand la somme des carrés de deux quelconques
de ses éléments est un carré. En vertu de la proposition 25, il
suffit de montrer que K est pythagoricien, ce qui s’énonce
encore ainsi: quel que soit « dans K, 1+ o est un carré dans K.

Reprenons deux réflexions perpendiculaires v’ et v, I'un de
leurs éléments bissecteurs m et un élément e # v dans II(v").
Soit @ un élément de @(v, v’) différent de v’. Soit r et s les éléments
bissecteurs de v’ et a. Posons:

{b} = d@,e)n D(a, rer),
{c} = ®(',vev)n P (a, rer).

Les réflexions b et ¢ sont respectivement perpendiculaires a
r et s; elles sont donc perpendiculaires entre elles. Ainsi quel que
soit a dans P(v, v’), il existe deux réflexions perpendiculaires
b et ¢, incidentes avec a, la premiére dans &(v’, e), la deuxieme
dans &(v’, vev). Quand a et v’ sont distincts, il en est de méme
de b et e. ,

Prenons alors un élément o dans K. Soit @ la droite d’équa-
tion:

@=&+an =0, (5)

relativement au systéme (v’, v, m, e). La réflexion homologue a
appartient au faisceau @(v, v’) et elle est distincte de v’. Soit b une
droite contenant le point de coordonnées (1,0) et non perpendi-
culaire & v’. Son équation peut s’écrire:

(b)y=pE—n—-p =0,  pekK. (6)

Soit ¢ la droite perpendiculaire a b et contenant le point de
coordonnées (—1, 0). Son équation peut s’écrire:

@ =&¢+pn+1 = 0. (7
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En vertu de ce qui précéde, il existe dans K un élément f tel
que les équations (5), (6) et (7) en & et # soient compatibles.
Cet élément satisfait la relation:

B2—20f—1 =0.

Ce qui implique que 1+« est un carré dans K. C.Q.F.D.

Ce théoréme implique, en particulier, que la caractéristique
du corps K est nulle, autrement dit que le groupe G ne contient
pas de translation non banale d’ordre fini. Nous assimilerons le
corps premier de K au corps () des nombres rationnels.

2.11. Reprenons les coordonnées. orthonormales introduites
dans le plan relativement au systéme (v’, v, m, e). Le plan étant
Pespace homogene G/g, ot g est le groupe de stabilité de II(v, v'),
on peut associer & tout élément X de G une transformation X du
plan donnée par:

X: Tg— XTg VIiedT (1)

On définit de la sorte un groupe de transformations isomorphe-a
G, agissant effectivement et transitivement dans le plan. La
transformation X peut encore se formuler ainsi:

T oc?'—ﬁzﬁ 20f . 20 ¢ a? —p2 5).
Ve~ (G ey 1 g e 1)

aaﬁ:?séeKn (OC,ﬁ);é(0,0), 8=i1

(2)

[’¢élément ¢ égale 1 ou —1 suivant que X est un élément propre
de G ou non. La condition nécessaire et suffisante pour que X
soit une réflexion est donnée par:

e=—1; y=pp; 6= —ap, (3)

ol @ est un élément quelconque de K. Les translations de G sont
caractérisées par ¢ = 1 et f = 0. Les éléments de g s’obtiennent
en posant y = § = 0.

Réciproquement, soit K’ un corps formellement réel et
pythagoricien. L’ensemble des transformations de K’'x K’ dis-




62 —

tinctes données par les expressions de la forme (2), ou «, 8, y et 6
sont dans K’, constitue un R-groupe G’ engendré par celles de
ces transformations qui vérifient (3),-avec peK’. On montre de
plus que G’ satisfait les cinq axiomes posés jusqu’ici et que K’
est le corps de base relatif & G'.

Tous les résultats que nous venons de citer s’obtiennent par
des calculs bien connus en géométrie analytique élémentaire, a
cecl preés que, dans le cas élémentaire, K est généralement le
corps des nombres réels. Nous n’avons pas repris ici ces dévelop-
pements classiques que ’on trouvera, par exemple, dans [3],pp.
210-215.

En revanche, nous retiendrons ceci: d’'une certaine maniére,
on peut considérer que les cing premiers axiomes que NOus avons
posés caractérisent les corps formellement réels et pythagori-
clens.

On peut encore caractériser le groupe G d’une autre maniére.
A toute paire de points P,(&y, n,) et P,(&,, n,) attachons I'élé-
ment: ’ |

D(Py, Py) = (&, =) +(n—1y)?, (4)

qui est un carré dans K. Il est clair que D(P,, P,) = D(P,, P,).
D’autre part, D(P,, P,) est nul lorsque P, et P, coincident, et
dans ce cas seulement, en vertu de la proposition 25. On vérifie
sans peine que, quelle que soit la transformation X donnée par
(2), on a:

D(X(PQ:X(P?.)) = D(Py, Py).

On peut montrer que cette propriété caractérise le groupe des
transformations X, qui est isomorphe & G et que nous assimile-
rons & G dans ce qui suit. Etablissons d’abord un lemme.

LemME. Le groupe G est constitué par I'ensemble des transforma-
ttons du plan de la forme:

{ ¢ = pé+n+n

W = pEanti w,v,m,p,0,7€K,  (5)

qui admettent D comme tnoariant.
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Désignons par G, I'ensemble des transformations considérées.
Comme D(P,, P,) n’est nul que lorsque P, et P, coincident, les
substitutions linéaires (5) admettant D comme invariant sont
réguliéres et G, est un groupe. De plus G est un sous-groupe de
G,. Nous pouvons donc nous borner & déterminer les coefficients
u, 0, p et ¢ quand 7 et 7 sont nuls. Dans ce cas le point O de
coordonnées (0, 0) est fixe; soit alors P'(¢’,n’) 'image du point
P(&, n). En exprimant que D(0, P) égale D(O, P’), on trouve les
conditions nécessaires sulvantes:

pr4p* =1; v 402 = 1; w4+ps =0, (6
qui sont équivalentes a:
pr4p? =1; V= —¢p; c = gu; e = +1

On obtient tous les éléments p de K tels que 1 —p? soit un carré
de K en posant:

2¢
1492

p pek ,

ar équation pp® — 29+ p = 0 a des solutions dans K. Par suite,
on peut poser:

1—o?

= 4
a 1 49?

Ainsi la solution générale du systéme (6) peut s’écrire:
o — B2 . 20f

H —062+ﬁ2’ p"‘az_*_ﬁz’

V= —¢p; o=¢u; ¢e&==+1,

ou o et f sont deux éléments arbitraires de K non nuls simulta-

nément. Il s’ensuit immédiatement que G, = G. C.Q.F.D.
Remarquons que les conditions (6) sont également suffisantes

pour que la transformation (5) appartienne & G, comme le montre
notre démonstration.

ProrosiTion 26. Le groupe G est constitué par I'ensemble des
transformations du plan qui admettent D comme inyariant.

Désignons par G’ I’ensemble des transformations étendues
a tout le plan et admettant D comme invariant. Il est évident
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que G est contenu dans G’. De plus, chaque élément de G’ est
une injection du plan dans lui-méme.

Soit P,(&;, n;), avec ¢ = 1, 2, 3, trois points quelconques du
plan. Posons: ,

puis:

S(Py,P,,P;) =2(D;D,+D,D;+Dj, D1)*(D% +D§ +D§)- (7)

Par des calculs élémentaires, on montre que:

&y 1 g
S(P19P2>P3):4 Er My 1 (8)

¢z n3 1

I1 résulte de la définition (7) que S est un invariant relativement
a G'. Le second membre de (8) est nul quand P,, P, et P,
appartiennent & une méme droite, et dans ce cas seulement. Il
s’ensuit que tout élément de G’ transforme trois points d’une
droite en trois points d’une droite.

Prenons un élément quelconque Z dans G'. Soit A’ (o, f’)
Pimage par Z d’un point A(a, B). Désignons par T'; et T, les
translations envoyant le point 0(0,0) sur A et sur A’, respective-
ment. La transformation Z, = T, 'ZT, appartient & G’ et elle
laisse 0 fixe. Soit B’ (y’, 6') I'image par Z, d’un point B (y, J)
distinct de 0. Les éléments y*>--6° et 72+46'% égalent le carré
d’un méme élément non nul ¢ de K. Les transformations:

Y 0 0 Y
R;: @,m~<—f—~n;—é+—n>'
® ® ® ®

y/ 5/ (SI ,yl
R,: ¢,p—-|—¢——mn; —E+ =1
¢ @ ® @

appartiennent a G, car elles vérifient les relations (6). Elles
envoient le point C(¢@, 0) sur B et B’, respectivement. La trans-
formation Z, = R;'Z,;R, appartient & G’ et laisse fixes les points
O et C. L’image d’un point M(u, 0) par Z, est un point M'(y’, 0)
tel que:

w=p? (u—-)? = (W —e)?.
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Comme ¢ #0, u = p'; ainsi Z, laisse fixes tous les points de la
droite OC. On en déduit que Z applique une droite sur une
droite et, par suite, le plan sur le plan. De plus, comme elle con-
serve le parallélisme, elle est de la forme (5). Donc G’ est confondu

avec G. C.Q.F.D.

3. Les deux derniers axiomes de la géométrie
euclidienne plane

I1 convient d’introduire de nouveaux axiomes afin de para-
chever la construction de ce que nous avons appelé la géométrie
euclidienne plane. Ces axiomes nous permettront d’affirmer que
le corps de base K appartient & une certaine famille de corps
réels. Alors que les axiomes précédents ont essentiellement un
contenu algébrique, les prochains — 'un d’eux, tout au moins —
précisent la structure topologique de K.

3.1. Soit un corps L. A et B étant deux parties non vides de
L, on désigne par A+B l'ensemble des éléments a0, ou
a € A et beB. De méme, on note AB I’ensemble des éléments
ab, ot a € A et b € B;’ensemble { —1}4 s’écrit —A. Rappelons
qu’on ordonne le corps L en y déterminant une partie P, appelée
partie positive de L pour l'ordre considéré, satisfaisant les con-
ditions suivantes:

1) Pu(—P) = L,

2 Pa(-P) ={0},

3) P+P =P,

4 PP =P.

Les points (1), (2) et (3) introduisent une structure de groupe
abélien ordonné dans le groupe additif sous-jacent & L. Alors
sia, b el,on écrit ¢ =<0b quand b-a appartient & P. On écrit
a<b quand, de plus, a et b sont distincts. Comme o* = (—a)?
quel que soit @ dans L, P contient tous les carrés de L et, en
particulier, I’élément unité 1 de L. Il en résulte immédiatement
qu'un corps dans lequel (—1) est un carré n’est pas ordonnable.
En revanche, il existe un critére important concernant les corps
commutatifs ordonnables. C’est le théoréme de Artin-Schreier
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