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réflexion arbitraire. On peut poser: A xyz, où x, y et z sont

trois réflexions non incidentes. Comme A est involutif, on a:

xyx zy.xzx

ce qui montre que les réflexions xyx et xzx appartiennent au
faisceau <P(y, z). En vertu du lemme de la proposition 5, <P(y, z)

est entièrement perpendiculaire à x. Par suite:

(yz)2 xyz.xyz A2 I.
Donc y et z sont perpendiculaires et le système polaire $(?/, z)

de x est de première classe. Prenons un élément quelconque y'
dans <P(y, z) et posons z' y'yz. D'après ce qui précédé, A xy'z'
et z' est la réflexion perpendiculaire à y' dans $(y, z). D'autre
part, A commute avec x; et comme x est arbitrairement choisi
dans Z, A est un élément central de G.

En résumé G ne possède d'élément central distinct de / que
lorsque les systèmes polaires sont de première classe, autrement
dit quand il n'existe pas de faisceaux de seconde classe dans L.
Dans ce cas, G ne contient qu'un seul élément de cette espèce.

C.Q.F.D.

Corollaire. Lorsqu'il contient des faisceaux de seconde classe,

I constitue V ensemble de tous les éléments involutifs impropres
de G. Dans le cas contraire, il existe dans G un élément involutif
impropre nyappartenant pas à Z, et un seul. Cet élément
engendre le centre de G. Il peut être mis sous la forme abc, où

a, b et ù sont trois réflexions deux à deux perpendiculaires.

2. L'axiome d'Euclide

2.1 Les axiomes précédents ne permettent aucune conclusion
quant à l'existence de faisceaux de seconde classe dans Z,
particulièrement de ceux d'entre eux qui ne sont pas des systèmes
polaires, et que nous qualifierons de singuliers. Remarquons à ce

propos que si l'on admet l'existence de faisceaux singuliers dans
I, toute réflexion appartient à deux d'entre eux, au moins. En
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effet, prenons un faisceau singulier $s, un élément a dans <PS

et une réflexion quelconque t. Si u est un élément bissecteur de

a et £, <PS u<Psu est un faisceau singulier contenant t. Soit
alors m une réflexion perpendiculaire à £; elle .n'est pas dans <PS

en vertu de la proposition 8. Le faisceau <PS m<Psm est

singulier et il contient t. De plus il est distinct de <PS, car sans
cela <PS serait le système polaire de 7n(lemme prop. 5), contrairement

à l'hypothèse faite sur <PS.

Parmi les hypothèses les plus simples que l'on puisse poser
au sujet de l'existence de faisceaux singuliers dans Z", il convient
de signaler les trois suivantes:

a) il n'existe pas de faisceau de seconde classe dans 1

b) toute réflexion appartient à un faisceau de seconde classe

et un seul

c) toute réflexion appartient à deux faisceaux singuliers
exactement.

L'hypothèse a) est vérifiée dans le cas de la géométrie elliptique
plane continue. Le groupe fondamental G1 de cette géométrie
est engendré par des éléments involutifs, mais ce n'est pas un
R-groupe. En revanche, le R-groupe G naturellement associé à

G1 satisfait les quatre premiers axiomes ainsi que l'hypothèse a).

Il est isomorphe au iî-groupe des isométries de l'espace euclidien
R3 laissant fixe un point de cet espace. Nous dirons d'un groupe
vérifiant les quatre premiers axiomes et l'hypothèse a) qu'il est
de type elliptique plan. L'hypothèse c) caractérise les géométries
de type hyperbolique plan. Nous ne nous attarderons pas aux
hypothèses a) et c); nous allons admettre l'hypothèse b) et

montrer que, jointe aux quatre premiers axiomes, elle fixe assez

étroitement la structure algébrique de G.

Axiome P V. (Axiome d'Euclide). Toute réflexion appartient
à un faisceau de seconde classe, et à un seul.

On peut aussi énoncer cet axiome en disant que I contient
des faisceaux de seconde classe et que deux faisceaux de seconde

classe distincts sont disjoints: il résulte de l'axiome de bissection
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que les faisceaux de seconde classe de 1 déterminent une partition

de S. Nous qualifierons de parallèles deux réflexions
distinctes ou non appartenant à un même faisceau de seconde

classe. Le parallélisme est. une relation d'équivalence dans 1.
En vertu de la proposition 3, cette relation est compatible avec
les transformations induites dans S par les automorphismes
intérieurs de G.

Il découle immédiatement de l'axiome P V que tout faisceau
de seconde classe est un système polaire, et réciproquement. De

plus, tout faisceau de seconde classe est déterminé par un seul

de ses éléments et nous désignerons parfois par <P2(s) faisceau
de seconde classe contenant la réflexion s.

Les systèmes polaires attachés à deux réflexions parallèles
a et b sont confondus. En effet, a et b appartiennent à un même

système polaire II(s), où sel. La réflexion s appartient aux
systèmes polaires 11(a) et 11(b) qui, n'étant pas disjoints, sont
confondus. Il s'ensuit que l'ensemble des bases du système
polaire Il(s) est <P2(s).

2.2. Considérons le if-groupe g(^x) engendré par les éléments
d'un faisceau de première classe <PV II résulte de la proposition
2 que l'ensemble des éléments propres de constitue un
sous-groupe abélien d'indice 2 dans g(^x). Nous désignerons ce

groupe par p(I>1) et nous l'appellerons groupe des rotations
autour de De même, à toute réflexion s on peut associer le

iî-groupe g(ll(s) engendré par les éléments du système polaire
n(s). Les éléments propres de g(Il(s) forment un sous-groupe
abélien d'indice 2 dans g(ll(s) Nous noterons ce groupe t(s)
et nous l'appellerons groupe des translations de direction s. L'élément

neutre I de G est à la fois une rotation et une translation
que nous qualifierons de banales. Nous pouvons affirmer qu'il
n'existe pas de translation involutive non banale. En revanche,
le groupe des rotations autour du faisceau de première classe
contient une rotation involutive non banale (prop. 7) et une
seule (prop. 9 et lemme prop. 11). Nous appellerons cette rotation
le demi-tour autour de <PV On voit ainsi apparaître une
correspondance biunivoque entre l'ensemble des demi-tours et celui
des faisceaux de première classe.
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Proposition 13. Le produit de deux demi-tours est une transla¬
tion. Réciproquement, il est possible de considérer toute translation

comme le produit de deux demi-tours dont l'un peut être

librement choisi à Vavance.

Soit D et D' les demi-tours relatifs à deux faisceaux de

première classe $1 et Quand D — D', le produit DD' est la
translation banale I. Quand D ^ D', désignons par s la réflexion
commune à <P1 et <P\. Prenons les éléments u et v perpendiculaires

à 5 dans $1 et <P\ respectivement. On peut écrire:

DD' us.sv uv

qui est une translation de direction s.

Réciproquement, soit T une translation de direction a, avec

ael, et soit un demi-tour D autour d'un faisceau de première
classe Soit b et c les éléments de <P1 respectivement parallèle
et perpendiculaire à a. Il existe dans le système polaire 11(b) deux
éléments d'et d" tels que:

T cd' d" c.

11 est clair que D égale bc et cb. Les éléments bd' et d"b sont
deux demi-tours D' et D", respectivement. De plus:

T cb.bd' DD', T d"b.bc D"D C.Q.F.D.

Corollaire. Le produit de trois demi-tours est un demi-tour.

Soulignons le fait que si D et D' sont les demi-tours opérant
autour des faisceaux de première classe distincts $1 et

DD' est une translation dont la direction est donnée par l'élément
s commun à et ou par toute autre réflexion parallèle à s.

Proposition 14. Dans G, l'ensemble des translations constitue

un sous-groupe distingué abélien ZT.

Soit T1 et T2 deux translations. Donnons-nous un demi-tour
D. En vertu de la proposition 13, il existe deux demi-tours DL
et D 2 tels que :

Ti Di D T2 D2 D
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D'où:

TX7V1 (DlD)(D2D)-t

ce qui montre que l'ensemble 3destranslations est un sous-

groupe de G. De plus, comme:

DTXD D (D1 D)D DD1 T

l'automorphisme intérieur de G associé à un demi-tour D envoie

toute translation sur son inverse. Il en découle que T est abélien,

car:

T2 Tt T2_1 D2D(Dt D) DD2 D2DD1D2 DXD Tx

Enfin le fait que ZT est distingué dans G résulte de la conservation
du parallélisme par les automorphismes intérieurs de G.

C.Q.F.D.

Proposition 15. Le groupe 3T des translations est isomorphe

au produit x(a) X i(a), où a est une réflexion quelconque.

Quelles que soient les réflexions a et b, les groupes r(a) et

t(b) sont isomorphes. En effet, si a et b sont distinctes, prenons
un élément bissecteur u de a et b; Inapplication T -» uTu définit
un isomorphisme entre z(a) et t(b). Dès lors, il nous suffit d'établir

que £T est isomorphe au produit direct x(r) X tQ), où r et s sont
deux réflexions sécantes.

Considérons l'ensemble t(r).x(s) des produits de la forme
TrTs, où Tre x(r) et Tse t(s). Comme ZT est abélien, z(r).z(s) est

un sous-groupe de Jr. Les réflexions r et s étant sécantes, l'intersection

de z(r) et z(s) se réduit à l'élément neutre et z(r).z(s) est

isomorphe au produit direct z(r) X z(s).
Il reste à montrer que XT z(r). z(s). Prenons une translation

quelconque; elle peut se mettre sous la forme DD", où D est le
demi-tour autour de <P(r, s) et D" est le demi-tour autour d'un
faisceau de première classe convenable Prenons dans
l'élément s' parallèle à s et soit D'le demi-tour autour de <P(r, s').
On peut écrire: DD" DD'.D'D" où DD' e z(r) et D'D" e z(s).

C.Q.F.D.

L'Enseignement mathém., t. X5 fasc. 1 3
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Etant données deux réflexions sécantes r et s1 nous appellerons

isomorphisme canonique de 3T sur r(r) X z(s) l'application
T -> (Tr\ Ts) dans laquelle T TrTs, Tre z(r) et Tse t(s).

2.3. On dit qu'un groupe jF est le produit semi-direct de deux

sous-groupes Fx et T2 pris dans cet ordre lorsque tout élément
X de r possède exactement deux décompositions

x x± x2 x2 x\,
où Xi et Xt sont dans T1 et X2 est dans r2. Cela entraîne, en

particulier, que est distingué dans T et que rjr1 est

isomorphe à r2. La définition précédente nous permet d'énoncer un
théorème important sur la structure algébrique de G.

Theoreme 1. Le sous-groupe G0 des éléments propres de G est

le produit semi-direct du groupe 3~ des translations et du groupe
p($f) des rotations autour d'un faisceau de première classe $v
Prenons un faisceau de première classe d^etun élément

quelconque A dans G0. Si A est une translation non banale, désignons

par a l'élément de perpendiculaire à la direction de A. Si A
est une rotation autour d'un faisceau de première classe

désignons par a un élément commun à et ^>1. Dans tous les

casy il existe une réflexion b telle que A ab. Soit b' l'élément de

parallèle à b. On peut écrire:

A ab ab'.b'b (a.bb'.a) ab'

Il est clair que Tx bb' et T2 — abb'a sont des translations et

que R ab' est une rotation autour de $v D'où:

A RT± T2R.

Ces deux décompositions sont univoquement déterminées par le
choix de A et de car l'intersection de ZT et de se réduit
à l'élément neutre I. C.Q.F.D.

Corollaire. Tout élément impropre de G peut être considéré

comme le produit d'une réflexion et d'une translation.

En effet, soit X un élément impropre de G, $1 un faisceau de

première classe et a un élément de L'élément aX est propre.
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On peut donc le mettre sous la forme i?T, où R est une rotation
autour de et T une translation. On peut poser R ab où b

est dans D'où X bT. On peut encore écrire X Tb, où

T' est la translation bTb.

La réflexion b est entièrement déterminée par le choix de

X et de comme on le voit sans peine. Signalons enfin que,
quel que soit l'élément impropre X, on peut trouver une réflexion
s et une translation U de direction s telles que X sU Us.

2.4. Nous allons examiner quelques faits relatifs aux auto-

morphismes intérieurs de G. Pour simplifier, nous appellerons
transformation par l'élément A de G l'automorphisme intérieur
de G défini par X -> A~xXA.

Proposition 1.6. Pour que la transformation par un élément A
de G envoie toute réflexion sur une réflexion parallèle, il faut
et il suffit que A soit un demi-tour ou une translation.

Soit D le demi-tour autour d'un faisceau de première classe

Prenons une réflexion quelconque ,9. Soit a et b les éléments
de respectivement parallèle et perpendiculaire à s. Il est

clair que D ab. Par suite, DaD a. Donc la transformation
par D laisse a fixe; comme elle conserve le parallélisme, elle
envoie s sur une réflexion parallèle à 5. Il résulte de la proposition
13 qu'il en est de même pour toute translation.

Passons à la réciproque. Considérons d'abord deux réflexions
sécantes non perpendiculaires a et b. L'élément aba coupe b.

Par suite, la transformation par une réflexion n'envoie pas
chaque élément de 1 sur un élément parallèle. Examinons
ensuite le cas d'une rotation R autour d'un faisceau de première
classe Il existe dans 01 deux éléments c et d tels que R cd.

L'élément

c' — R"1 cR dcd,

appartient à <PV Pour que c et c' soient parallèles — c'est-à-dire
confondus, dans ce cas— il faut que c et d soient confondus ou
perpendiculaires; R est alors la rotation banale ou le demi-tour
autour de Prenons enfin un élément impropre X de G. En
vertu du corollaire du théorème 1, X peut se mettre sous la
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forme Ts où s est une réflexion et T une translation. La
transformation par X est donc le produit de la transformation par T
qui envoie toute réflexion sur une réflexion parallèle, et de la
transformation par la réflexion s qui ne possède pas cette
propriété. Il s'ensuit que la transformation par X ne la possède

pas non plus. C.Q.F.D.
Le groupe de stabilité d'une partie E de G est le sous-groupe

de G formé des éléments X tels que X~xEX E.

Proposition 17. Le groupe de stabilité d'un faisceau de pre¬
mière classe est le sous-groupe g(^x) de G engendré par les

éléments de <PV

Comme (P1 n'est pas un système polaire, les seules réflexions
appartenant au groupe de stabilité de sont les éléments de

Recherchons maintenant les éléments propres du groupe
étudié. Ils peuvent se mettre sous la forme rs, où r, sel. Il résulte
de ce qui précède que si r est dans il en est de même de s.

Plaçons-nous dans le cas où r n'appartient pas à <PV II existe un
faisceau $ contenant r et s. Soit v la seule réflexion appartenant
à la fois à <P et à On peut poser rs av, où u — rsv e <P. Il
est clair que u appartient au groupe de stabilité de <PV Par conséquent

u est dans <Pt3 et u v. Donc rs est l'élément neutre / de G.

Il reste à considérer les éléments du groupe de stabilité de

qui sont de dimension 2 dans G. Un tel élément peut toujours
se mettre sous la forme axy, où a est arbitrairement choisi dans

<$1 et où x et y sont des réflexions distinctes convenables. Il est

clair que xy appartient au groupe de stabilité de <PV II résulte
alors de ce qui précède que x et y sont dans <P± et qu'il n'existe

pas d'élément de dimension 2 dans le groupe étudié.
En résumé, le groupe de stabilité de d>1 est le iî-groupe de

dimension 1 engendré par C.Q.F.D.

Corollaire 1. Le groupe G est le produit semi-direct du groupe
des translations et du groupe de stabilité d'un faisceau de

première classe.

Cela découle immédiatement de ce qui précède et des

considérations accompagnant le corollaire du théorème 1.
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Corollaire 2. Lorsqu'une réflexion commute avec un demi-

tour D elle appartient au faisceau de première classe associé à

D, et réciproquement.

En effet, comme le demi-tour D détermine univoquement le

faisceau autour duquel il opère, toute réflexion commutant
avec D appartient au groupe de stabilité de et réciproquement.

Corollaire 3. Soit trois faisceaux de première classe sans
élément commun. L'ensemble des éléments de G qui déterminent

une transformation laissant invariant chacun de ces faisceaux
se réduit à {/}.
En effet, soit et deux de ces faisceaux. Ils n'ont en

commun qu'une seule réflexion a. Tout élément propre du

groupe de stabilité de ^>1 peut se mettre sous la forme ab, où

beéb^ Cet élément ab ne peut appartenir au groupe de stabilité
de <P\ que si b a. Soit $" 1 le troisième faisceau considéré. Il
ne contient pas a. L'intersection des groupes de stabilité des

faisceaux et se réduit donc à {/}.
Deux éléments A et B de G sont dits congrus, ce que l'on

note A ~ B, quand il existe un élément propre X dans G te] que
la transformation par X envoie A sur B. On définit ainsi une
relation d'équivalence dans G. L'ensemble Z consitue une classe

d'équivalence vis-à-vis de cette relation. Les éléments de G

congrus à une rotation sont des rotations; les éléments congrus
à une translation sont des translations. Il résulte immédiatement
de la définition que AB ~ BA dès que l'un au moins des
éléments A et B est propre.

Soit a, b et c trois réflexions quelconques. On peut écrire
ab ~ c(ba)c, car cbac ca(ab)ac. Donnons-nous une rotation B
et un faisceau de première classe Le groupe des rotations

autour de <P1 contient une rotation B' congrue à B. C'est
évident quand B est banale; ça l'est aussi quand R est dans p{^f).
Sinon soit <P le faisceau de première classe autour duquel opère
R, avec ^ ^ et soit s l'élément commun à $ et
Considérons les réflexions a et b perpendiculaires à s dans $ et
respectivement, et soit m l'élément bissecteur de a et b. Le demi-
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tour sm transforme a en b et s en lui-même. Il transforme donc
0 en 0± et R en une rotation congrue Rx opérant autour de

0±. Nous verrons que R1 est entièrement déterminée par R et
Si-

Proposition 18. La condition nécessaire et suffisante pour que
deux rotations R1 et R2 soient congrues est qu'il existe une
translation T telle que R2 TRX.

Soit Rx et R2 deux rotations congrues. Quand Tune d'elles
est banale, il en est de même de l'autre et la proposition est
vraie dans ce cas. Dès maintenant, plaçons-nous dans le cas où

R± et R2 ne sont pas banales. Par hypothèse, il existe dans G0

un élément A tel que:

r2 A'1 Rx A

Désignons par 0 le faisceau de première classe autour duquel
opère i?x. En vertu du théorème 1, il existe une rotation R
autour de 0 et une translation T x telles que A «s RTV D'où:

R2 T~iR~1R1RTl T~1RlTl,

car le groupe des rotations autour de 0 est abélien. On peut
alors trouver une translation T 2 telle queiî17'1= T2RX. En
introduisant la translation T — Tf1T 2, on obtient R2 — TRV

Réciproquement, soit R2 une rotation non banale autour d'un
faisceau de première classe 0 et soit une translation T que l'on
peut aussi supposer non banale, sans restriction. Soit a l'élément
de 0 perpendiculaire à la direction de T. Il existe dans 1 un
élément b parallèle à a et dans 0 un élément c tels que T — ba

et Rx — ac. Considérons alors la rotation R2 TR± bc.

Nous devons montrer que Rx et R2 sont congrues. Comme Rx
n'est pas banale, b et c se coupent. Prenons les éléments r et s

perpendiculaires à c dans 0 et 0(b, c) respectivement. La translation

T n'étant pas banale, r et s sont distincts; soit u leur
élément bissecteur. Il est clair que u0u 0(b, c), car u est

perpendiculaire à c. Par suite, la transformation par le demi-
tour D uc envoie tout élément de 0 sur un élément parallèle
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de #(&, c)j et en particulier a sur b et c sur lui-même. Il en

découle que:

DRX D DacD DaD.DcD bc R2 C.Q.F.D.

Corollaire 1. Quels que soient les faisceaux de première classe

cP et il existe au moins une réflexion u telle que <P' u#u.

Corollaire 2. Tout élément congru à une rotation R peut
être obtenu en transformant R par une translation convenable.

Corollaire 3. La condition nécessaire et suffisante pour que
deux rotations Rx et R2 soient congrues est qu'il existe une
translation T' telle que R2 — R^'.
Cela résulte de la proposition 18 et du fait que deux éléments

de G sont congrus en même temps que leurs inverses.

Corollaire 4. Quels que soient la rotation R et le faisceau de

première classe #, il existe une rotation congrue à R opérant
autour de et une seule.

C'est une conséquence de la proposition 18 et du théorème
1. En particulier, on peut affirmer que deux rotations congrues
opérant autour d'un même faisceau de première classe sont
confondues.

Proposition 19. Soit a, a', b et b' quatre réflexions telles que
a coupe b et que a et a' soient parallèles. Si b et b' sont parallèles,
ab et a'b' sont congrus. Réciproquement, si ab et a'b' sont
congrus, b et b' sont parallèles.

Prenons d'abord le cas où a et b sont deux réflexions sécantes
et où a' et b' sont deux réflexions respectivement parallèles à
a et b. Les éléments ab, a'b et a'b' sont des rotations, tandis que
aa' et bb' sont des translations. En vertu de la proposition 18,
ab est congru à a'b, car ab aa'.a'b. En vertu du corollaire 3
de la proposition 18, a'b est congru à a'b', car a'b a'b'.b'b. Par
suite ab ~ a'b'.
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Réciproquement, considérons quatre réflexions a, è, a' et V
telles que a coupe è, que a et a' soient parallèles et que ab ~ a'b'.
Les rotations ab et a'b' ne sont pas banales. Prenons dans
<P(a\ b') l'élément b" parallèle à b. Il résulte de la première partie
de la démonstration que ab et a'b" sont congrus. Mais en vertu
du corollaire 4 de la proposition 18, a'b' a'b". Par conséquent
b" est confondu avec b\ et b' est parallèle à b. C.Q.F.D.

Proposition 20. Soit A, B et C trois éléments propres de G.

Si A et B sont congrus et si AC est une rotation non banale,
AC et BC sont congrus.

Il résulte des hypothèses que lorsque A est une translation,
B en est une également et que C est une rotation non banale.

Fig. 4.

Dans ce cas, la conclusion découle immédiatement de la proposition

18. Plaçons-nous donc dans le cas où A est une rotation non
banale autour d'un faisceau de première classe #. En vertu du
théorème 1 et de la proposition 18, il existe trois translations
T, T' et T" ainsi qu'une rotation R autour de $ telles que:

B TA; C T' R ; AC AT'R T" AR;
BC TAT' R TT" AR.
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Il résulte du fait que AC n'est pas une rotation banale qu'il en

est de même de AR et, par suite, de BC. En vertu de la proposition

18, AC et BC sont congrues à AR, donc congrues entre
elles. C.Q.F.D.

2.5. Il nous faut encore établir deux propositions dont les

conséquences algébriques se révèlent importantes. La première a

trait à une propriété élémentaire des angles du quadrilatère
inscriptible. La deuxième est connue sons le nom de «théorème
de Pappus ».

Considérons quatre faisceaux de première classe tels que trois
quelconques d'entre eux n'aient pas d'élément commun. Les

intersections de ces faisceaux pris par paires déterminent six
réflexions distinctes qui sont les côtés d'un quadrangle complet.
Désignons par a, b et c les trois côtés appartenant à l'un des

quatre faisceaux. Soit a' l'élément commun aux deux faisceaux
ne contenant pas a. Nous dirons que a et a' sont opposés.
Introduisons de même les côtés b' et c' respectivement opposés à
b et c. Nous désignerons le quadrangle complet considéré par
(a, a' ; b, b'; c, c').

Proposition 21. Dans un quadrangle complet donné, on con¬
sidère toutes les congruences de la forme ab ~ b'a' où a, b,
a' et b' sont quatre côtés distincts du quadrangle complet, a' et

b' étant respectivement opposés à a et b. La validité de Vune
de ces congruences entraîne celle de toutes les autres.

Soit a, b et c trois côtés incidents du quadrangle complet et
soit a\ b' et c' les côtés respectivement opposés. On peut écrire
les incidences suivantes: t{a, b, c), i(bf, a, c'), i{c\ b, a') et
i(ci\ c, b'). Introduisons les réflexions:

r b' ac' s c' ba' t a' cb'

Elles sont incidentes, car:

rst — b'.abc.b'

Remarquons que t coupe b' car sinon a et c' seraient confondus,
ce qui est impossible dans un quadrangle complet. Comme a,
b et a' ne sont pas incidents, t est distinct de rst.
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Admettons maintenant que ab et b'a' soient congrus. Alors:

b'.rst.b' c ab ~ b' af (1)

Comme b'a'xV — b't est une rotation non banale, la proposition
20 permet de déduire de (1) que b'rst est congru à b't. Il découle
alors de la proposition 19 que rst est parallèle à t. Puisque rst
et t sont distincts, r, s et t sont parallèles. On tire de là:

ac' — ar.rc' a.rb'.a ~ b' r ~ b' t =' b'.a' c.b' ~ ca'

On peut établir de la sorte toutes les congruences annoncées.

C.Q.F.D.
On remarque que la démonstration précédente revient

essentiellement à établir un fait bien connu concernant l'image du
cercle circonscrit au triangle de base dans une transformation
isogonale.

Soit r et s deux réflexions distinctes. Soit un cycle de six
faisceaux de première classe distincts, différents de #(r, s),
numérotés de 1 à 6, et tels que les faisceaux portant un numéro
impair contiennent r, les autres contenant s. Introduisons les

réflexions a, è, c, a', b' et c' représentant les intersections respectives

des faisceaux 1 et 2, 2 et 3, 3 et 4, 4 et 5, 5 et 6, 6 et 1 ; elles

constituent un hexagone inscrit dans la paire (r, s) dont elles sont
les côtés ; a', b' et c' sont les côtés respectivement opposés à a, b

et c (voir fig. 5).

Proposition 22. (Théorème de Pappus). Lorsque, dans un
hexagone inscrit dans une paire de réflexions, deux paires de

côtés opposés sont formées d'éléments parallèles, il en est de

même de la troisième paire.

Reprenons les éléments de la figure 5. Il existe dans le faisceau
3 un élément ax tel que:

ra1 ~ as (2)

Comme a coupe r, ax coupe s en vertu de la proposition 19.

Appelons bx l'intersection du faisceau 1 et de 3>(ax, s). Lorsque
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a1 est différent de b, on voit apparaître le quadrangle complet

(r, 5; a, ax; 6, &i); à cause de (2):

bs^rbi (3) ar~sal (4)

Lorsque ax se confond avec b,b1 se confond avec a. En faisant

usage de la proposition 20, on tire de (2) :

bs ax s ~a.sax.a ^ra1.al a ra — rbt
puis:

ar b±r ~sb sa1

ce qui redonne encore (3) et (4).
Admettons maintenant que a et a' sont parallèles. On

déduit alors de (4) et (2) que:

a' r ~ar ~sat (5) afs^as^rai (6)

Désignons par c1 l'intersection du faisceau 5 et de #(al7 5). Lorsque

est différent de c, on considère le quadrangle complet
(r, 5; a', ax; c, cx), et (5) permet d'écrire:

rc~ct s (7)

Quand a1 se confond avec c, se confond avec a'. Dans ce cas,
la relation (7) se déduit immédiatement de (6).
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Introduisons alors l'hypothèse selon laquelle b et V sont
parallèles. On tire de (3):

b' s ~bs ^rbl (8)

Lorsque bx est distinct de c', on voit apparaître le quadrangle
complet (r, s; b', b±\ c', cQ. La relation (8) entraîne alors:

rc' ~c1 s (9)

Lorsque b1 est confondu avec c\ ct se confond avec b' et la
relation (9) se déduit immédiatement de (8). Comparons alors
les relations (7) et (9); la proposition 19 permet d'affirmer que
c et c' sont parallèles. C.Q.F.D.

Les démonstrations des propositions 21 et 22 peuvent être
considérées comme classiques (voir par exemple [3], pp. 17-19).

2.6. Nous nous disposons à construire une famille de
transformations agissant dans le groupe 2T des translations: les

homothéties. Nous montrerons que ces homothéties constituent
un corps K et que 2T peut être regardé comme un espace vectoriel
sur K. Pour notre construction, nous nous appuierons sur les

propriétés de la projection dans une direction donnée, que nous
allons définir maintenant.

Soit u et v deux réflexions quelconques et soit d une réflexion
coupant v. Nous appellerons projection de II (u) dans II(v) suivant
la direction d l'application P définie ainsi: soit xell(u) ; l'élément

p parallèle à d dans #(&, x) coupe v; soit x' l'élément de 17(v)

contenu dans <$( v, p) ; alors P(x) x'. Lorsque d coupe également
u1 la projection P est bijective et nous la qualifierons de régulière.
En revanche, quand d est parallèle à w, la projection P envoie

tout élément de II(u) sur l'élément de i7(v) incident avec u et v;
P est alors dite singulière. Nous n'aurons pas d'autres projections
à considérer par la suite que les deux espèces que nous venons de

décrire.

Proposition 23 (Théorème de Thalès). Soit u et y deux ré¬

flexions quelconques. Soit P une projection régulière de 77(u)

sur Il(v). Uapplication :

zy ->P (z) P (y) Yy ze77 (m)

est un isomorphisme de t(u) sur t(v).
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Commençons par deux remarques. Choisissons une réflexion

p dans n(u). Toute translation prise dans t(u) peut se mettre

sous la forme xp, où xell(u). Il suffira de démontrer que h

application:

P' : xp ->P (x) P (p) VxeYÎ (u),

est un isomorphisms de t (u) sur t(v). En effet, dans ce cas, si

y et z sont deux éléments de TI{u) tels que xp zy, l'application

P' envoie xp pyzp sur P(p)P(y)P(z)P(p) P{z)P{y).

Prenons ensuite la réflexion t perpendiculaire à la direction
d de P dans $(u, p) et la réflexion f perpendiculaire à d dans

$(p', v), où pf P{p). La projection P est le produit de trois
projections régulières de direction d: la première de TJ{u) sur
i7(£), la deuxième de Tl(t) sur II{t') et qui est d'ailleurs l'application

identique de II(t) sur lui-même, et la troisième de 11(f) sur
II(v). On voit par là que la proposition sera démontrée dès que
l'on aura établi sa validité dans le cas particulier suivant: les

réflexions u et v se coupent; la projection de II(u) sur U(v) se fait
suivant une direction perpendiculaire k v et p est l'élément de

<P(u, v) perpendiculaire à u.
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La projection P étant régulière, l'application Pr est bijective.
Elle envoie l'élément neutre de t(u) sur celui de t(v). Prenons
deux éléments a et b dans Tl(u) et posons c bpa. On a évidemment:

CP bp.ap

Soit alors a', b' et p' les images de a, b et p par P, et posons
ci ~ b'p'a'. Comme la direction de P est perpendiculaire à v,

quelle que soit x dans II(u), les réflexions %, u et P(x) sont
incidentes. Pour prouver que P' est un isomorphisme, il suffit de

montrer que c1 est l'image de c par P, autrement dit que c, u et

ct sont incidentes. Or on peut écrire:

cuc1 apb.u.b' p' a'

Le lemme de la proposition 11 permet d'affirmer que la réflexion
bub' est perpendiculaire à p'. Elle commute donc avec p' et a'.
Par suite:

cuc1 ap.p' a'.bub'

Mais on peut remplacer p par upu et pup' par v. D'où:

eue1 — auva'.bub' auar.v.bub',

si l'on tient compte du fait que a' est perpendiculaire à v.

Comme auar et bub' sont des réflexions parallèles à v, cuc1 est

une réflexion. C.Q.F.D.
Il est clair que la proposition précédente doit être mise en

relation avec le « petit » théorème de Thalès, celui qui exprime
la conservation du rapport des segments collinéaires commen-
surables dans la projection parallèle.

2.7. Nous avons déjà rencontré un isomorphisme « naturel »

Po entre x(u) et t(v) dans le cas où u et v sont distincts; on peut
l'obtenir en posant:

P0:T-+mTm VTet(u),

où m est un élément bissecteur de u et v. Il est facile de voir que
Pr0 coïncide avec l'isomorphisme associé à la projection de II(u)
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sur J7(v) suivant la direction perpendiculaire à m. Quand u et v

se coupent, il existe un second isomorphisme naturel de t(u) sur

t(v); il est associé à la projection de TI{u) sur J7(v) suivant la

direction m. On l'obtient aussi en considérant l'application qui
à T fait correspondre l'inverse de P0 (T).

Il résulte de ce qui précède que, lorsqu'on compose l'isomor-
phisme naturel P0 avec l'inverse d'un des isomorphismes considérés

sous 2.6, on obtient un automorphisme de t(u). Nous
allons étudier la famille d'automorphismes ainsi déterminée.
Pour plus de commodité, nous substituerons à u et v des réflexions
perpendiculaires v' et v. Nous verrons que cette restriction n'est

pas essentielle; elle permet toutefois d'adopter des notations plus
simples. D'autre part, nous ne nous servirons pas directement des

isomorphismes P' considérés plus haut, mais des projections P
qui servent à les construire.

Choisissons donc deux réflexions perpendiculaires v' et v,
ainsi que l'un de leurs éléments bissecteurs m. D'une façon
générale, les éléments pris dans TI(V) seront désignés par des

lettres minuscules ordinaires, tandis que les éléments de 77(v)
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qui leur correspondent par la projection de direction perpendiculaire

à m seront désignés par les mêmes minuscules accentuées.
Soit a et b deux éléments de il(v'), a étant distinct de v. La

projection de IT(v') dans TI(v) qui applique a sur b' mbm sera
notée P(a, V). De même, P(a', b) est la projection de I7(v) dans

n(v') qui envoie a' mam sur b. Lorsque b ^ v, on a:

P(a,b') - [P(b'9a)y1.

Choisissons une fois pour toutes un élément e différent de v dans

ii(v')- La projection P(e, e/) n'est autre que l'application
x -> x' — mxm de II(v') sur 17(v). D'une façon générale, on peut
écrire, pour tout s dans II(v'):

P(e,s')(v) v' ; P(e',s)(v') v,
P (e\ e) o P (e s') P (ef, s) o P (e e').

En vertu de cette dernière relation, associons à tout élément s
de IJ(v') une application de II(v') dans lui-même définie par:

u* P(e', s)oP(e,e') P (e', e) o P (e sf) (1)

appelée dilatation de I7(v;) associée à s. Elle est dite régulière
lorsqu'elle est biunivoque, c'est-à-dire lorsque s ^ v. C'est le

cas, en particulier, quand s e, où elle se confond avec l'application

identique de iT(v/) sur lui-même; cette dilatation est notée
1*. Lorsque s v, la dilatation est singulière; elle envoie chaque
élément de il(v/) sur v. Elle se note 0*. L'ensemble de toutes
les dilatations de 77(v') définies par (1) sera désigné par if*; il
dépend du choix de v et de e dans II(v'). Si a* et ß* sont deux
éléments de if*, nous désignons par ß*.a* l'application obtenue
en effectuant successivement a* puis /?*. C'est à cette loi de

composition qu'il est fait allusion dans l'énoncé suivant.

Proposition 24. Le produit des dilatations détermine une

structure de groupe abélien dans Vensemble des éléments

réguliers de K*.

Prenons dans ii(v/) deux éléments a et b distincts de v, et
soit a* et ß* les dilatations qui leur sont associées dans if*.
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Montrons d'abord que ß*.a* ot*.ß*. Prenons dans Il(v') un
élément quelconque x. Nous pouvons écrire:

ß*.a* (x) P (e', e) o P (e b') o P (e\ a)oP(e e')(x)

cc*.ß*(x) P (V, a) o P (e b') (x)

en tenant compte des relations (1). Lorsque x est confondu avec

v, les seconds membres des égalités ci-dessus sont tous deux
égaux à v. Prenons donc x # vt et posons y ß*(x). Les faisceaux
de première classe <P(vx), x'), <P(v', a*(x)v), <P(, m.oc*(y).m),
<P(v', ot*(y) et 0(v1 y') pris dans cet ordre déterminent un hexagone

inscrit dans la paire ('v, v), (voir fig. 7). L'intersection du

premier et du deuxième faisceau est perpendiculaire à m, comme
celle du quatrième et du cinquième. L'intersection du deuxième
et du troisième faisceau est parallèle à la direction de P(e', a),
comme celle du cinquième et du sixième. Le théorème de Pappus
permet donc d'affirmer que les deux côtés restants, soit p et px
sur la figure 7, sont aussi parallèles. Nous pouvons donc écrire:

P (e, b') [a* (x)] P e') [a* (y)]
D'où:

ß*.a*(x) oc*.ß*(x)Vxellfy'). (2)

Donc ß*.a.* a*.ß*. Remarquons encore qu'en posant x e,
on tire de (2) la relation:

ß* (a) a* (3)

qui reste vraie lorsque a* et ß* sont singulières.
Montrons maintenant qu'il existe dans 17(»') un élément c^v

tel que la dilatation y* associée à c dans K* soit confondue avec
l'application a*.ß*. Prenons en effet c oc*(b). Soit x un élément
quelconque de 77(w'); désignons par la dilatation associée à
x dans K*. En vertu de (3), on peut écrire:

a*./?* (x) a*.£*(ù) £*.«*(&) £*(c) y*(x).

Comme cette relation reste vraie quel que soit x dans 77(w'),
a*.ß* est une dilatation régulière prise dans K*.

L'Enseignement matliém., t. X, fasc. 1. 4
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Le produit introduit dans if* est associatif puisqu'il est défini
par la composition des dilatations. La dilatation 1* joue
manifestement le rôle d'élément neutre. Enfin l'inverse de la dilatation

a* P(e', e) o P(e, a'), où a^v dans est la dilatation
P{ar, e) o P(e: e'). Les éléments réguliers de if* constituent donc

un groupe abélien pour le produit considéré. C.Q.F.D.
Remarquons que si l'on se donne un élément quelconque d

dans II(v'), il existe une dilatation et une seule dans if* qui
envoie e sur d. Cette dilatation est régulière quand d est distinct
de v. Par suite, si l'on se donne arbitrairement deux éléments

/ et g dans ii(^')> / étant différent de v, il existe dans if* une
dilatation et une seule qui applique / sur g.

2.8. Adoptons les mêmes notations qu'au numéro précédent.
Soit S une translation de direction v'. Il existe dans TI{vf) un
élément s bien déterminé tel que S sv. Soit cr* la dilatation
associée à s dans if*. Nous appellerons homothétie de t(v')
associée à S l'application a de %(vr) dans lui-même définie par:

a : xv [cr* (x)] v Vxell {v') (4)

Comme u* est un produit de projections et que a*(v) v, la
proposition 23 permet d'affirmer que o est un endomorphisme
de Lorsque S /, l'homothétie a est un automorphisme
de t(v') et elle est dite régulière. En particulier, l'homothétie
correspondant à la translation E ev est l'automorphisme
identique de t(?/), que nous désignerons par le symbole 1. Lorsque S

est la translation banale, l'homothétie correspondante applique
tout élément de t(v') sur /; elle est dite singulière et elle est notée
0. L'ensemble des homothéties de t(v)' définies par (4), où cr*

parcourt if*, sera désigné par if.
On introduit une loi de composition interne dans if appelée

multiplication en faisant correspondre à tout élément (a, ß) de

if X if l'application de t(v') dans lui-même définie par:

ß.a(X) ß (a (A)) VXet (v'). (5)

Cela découle de la proposition 24 et de la définition (4). Il résulte
également de là que les éléments réguliers de if forment un
groupe abélien vis-à-vis de la multiplication, l'élément neutre



— 51 —

étant évidemment 1. De pins, quel que soit g dans if, on peut
écrire: cr.O 0.g 0.

Les homothéties que nous venons de définir étant des endo-

morphismes de t(ï/), on peut associer à toute paire d éléments

a et ß de if un endomorphisme de z(vf) noté cc-\-ß et défini par:

a+ß: X->ot(X)ß(X) VXer(v'). (6)

Montrons que Ton introduit par là une loi de composition interne
dans K. En effet, soit A et B les éléments de t(v') auxquels sont

associées les homothéties a et ß. Il existe dans II(vf) deux

réflexions a et b telles que A av et B bv. Prenons dans

z(v') une translation quelconque X xv, avec xell(v') ; désignons

par £* la dilatation associée à x dans if* et par £ 1'homothétie
associée à X dans K. On peut écrire:

(a + ß) (X) [a* (x)] v[ß* (x)] v

puis, en tenant compte de (3):

[a*(x)]v[j8*(x)]v [É*(a)MÉ*(&)]v Z(A)Z(B) cÏ(AB)
[<^*(avb)~\v

Posons c avb et C avbv AB. Soit 7* la dilatation
associée à c dans if* et y fhomothétie associée à C dans if. Il
vient :

\_Ç*(avb)~\v [^*(c)]f y(I).
En bref:

(a+ß)(X) y (X).

Cette relation étant vraie quel que soit X dans t(ï/), on voit que
a+/? appartient à if. Nous venons de définir une addition dans

if. Plus précisément, nous voyons que oc-\-ß est l'élément de if
associé à la translation AB; comme il résulte de (1) et de (4) que
l'application S g de x{v') dans if est bijective, on peut affirmer
que if est un groupe additif isomorphe à

Montrons que if est un corps relativement aux opérations qui
y ont été définies. Pour cela il reste à établir que la multiplication
y est distributive par rapport à l'addition. Prenons trois éléments

a, ß et y dans if et une translation X dans t(^/). On peut écrire:
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[cc.(ß+y)](X)a[ß(X)y(X)] {« [/? (X)]} {« [y (X)]}
[(a-ÄW][(a-V)W] ,y)(X)

Donc a.(/?+y) a.ß + a.y. Nous pouvons énoncer le théorème
suivant :

Théorème 2. L'ensemble K des homothéties de z(vf) est un

corps commutatif.

Remarquons que le corps K ne dépend pas du choix de v et
de e dans II{v'), pourvu que e # f. En effet, si Ton substituait
à v et e deux éléments et de n(v') tels que e1v1 ev, on
pourrait recommencer à partir de vx et ex la construction d'un

corps K± comme on l'a fait pour K à partir de v et e. Désignons

par w l'élément de II(vf) déterminé par wvw vL. Le passage de

la première construction à la deuxième se ferait en remplaçant
toute réflexion r apparaissant dans la construction de K par
T~1rT, où T est la translation vw. Or la transformation
X-^T'1 XT induit dans z(v') l'automorphisme identique. D'où
l'on déduit que les corps obtenus K et K1 sont isomorphes. D'autre
part, on vérifie sans peine que le choix de e n'intervient pas
essentiellement dans la définition d'une homothétie, celle-ci
étant entièrement déterminée par son effet sur une translation
différente de / dans On pourrait donc, en conservant v,

remplacer e par n'importe quelle réflexion / ^ v dans 77(^/).

Il apparaît clairement que les définitions (5) et (6) font
de %(v') un espace vectoriel sur le corps K. Nous désignerons donc
dès maintenant K comme le corps de base. Par ailleurs, il découle
des remarques faites à la fin de 2.7 que si l'on se donne deux
translations T et S dans t(a'), avec S ^ /, il existe dans K une
homothétie unique a telle que a(S) T. Ainsi t(v') est un espace
vectoriel de dimension 1 sur K.

Donnons une propriété importante de K.

Proposition 25. L'élément —1 n'est pas un carré dans le corps
de base K.

Il est évident que 02 # — 1. Prenons donc dans K un élément

non nul <5 et montrons que ô2 i=- — 1. Reprenons les éléments de la
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figure 7 et les définitions qui s'y rapportent. Il existe dans n(v')
une réflexion d # v telle que 5 soit rhomothétie associée à la

translation dv. Soit <5* la dilatation attachée à d dans K*.

Désignons comme d'habitude par d' l'élément mdm et posons:

{r} 0 (v% é)n$(v9d')i { 5 } 0 (v e') n 0 (V, d).

On voit immédiatement que s mrm. Désignons par t l'élément
de 0(v, d') parallèle à s, par r1 l'élément de 0(vf, v) parallèle à

r et par u l'élément vtv. Il est clair que u est parallèle à vsv

vmrmv qui est lui-même parallèle à vmr^mv. D'autre part:

virile mv vmvmrx vv' rq

En vertu du lemme de la proposition 11, vvfr± est perpendiculaire

à r±, donc à r. Par suite u est perpendiculaire à r.
Désignons alors par / l'élément de 0(v\ t) perpendiculaire

à v' et posons g vfv. Par construction:

/ (ô*)2(ë).
Donc:

32 (ev) fa ; - S2) (ev) vf gv



— 54 —

Supposons par absurde que -ô2 1. Cela entraînerait g e.

Comme les faisceaux e) et d') sont distincts, r serait
confondu avec ut contrairement à ce qui a été montré plus haut.

C.Q.F.D.
Il convient de retenir au passage le procédé permettant de

construire une réflexion perpendiculaire à n'importe quel
élément de $(v\ e) distinct de v' et de e.

2.9. Nous sommes maintenant en mesure d'introduire dans le

groupe 2T de toutes les translations une structure d'espace
vectoriel sur if. Cela se fait en prolongeant à ST les homothéties
définies dans un sous-groupe x(vf) de ZT.

Reprenons les éléments de la figure 7. Soit a* une dilatation
de TI(v') prise dans if*. L'application:

y' - m (a* (my' m)) m Vy'eTliv),

peut être considérée comme une dilatation de II(v) obtenue

«par réflexion» à partir de celle de i7(tf); nous la désignerons
encore par a*. Nous allons examiner un procédé permettant de

passer de l'une à l'autre de ces dilatations par certaines projections

de n(v') dans II(v).
Plaçons-nous dans le cas où a* est régulière et où y' / v'.

Posons y my'm et choisissons un élément x # v dans n(v'). Il
existe une dilatation régulière ß* de TI(vr) prise dans if* qui
applique x sur y. Nous retrouvons exactement la disposition de

la figure 7, et si nous posons:

{p} &(v',x) n$(v, y')

et { pi } 0 (v\ a* (x)) n m <P (v a* (_/)),

nous pouvons affirmer que p et p1 sont deux réflexions parallèles.
Ainsi la projection de II(vf) dans TI{v) qui applique x sur y'
envoie ot*(x) sur a*(y/). Cette affirmation est banale quand a* est

singulière et quand y' v'.

Il est clair qu'on obtient une homothétie de t(^) lorsqu'on
forme l'application:

y' v' -> a* (y') v' Vy' ell (v)

Nous la désignerons encore par a.
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Considérons alors une translation T. On peut la décomposer

canoniquement en un produit Tv>Tn où Tv e t(v') et Tve t(v).
Introduisons l'application:

T -> <x(Tv>) a (Tv) VTeZT

En vertu de la proposition 15, cette application est un endo-

morphisme de dT. Ses restrictions à t{v') et t(v) se confondent

avec ce que nous avons désigné par a. Nous pouvons donc la

désigner par la même lettre et dire que c'est une homothétie de

C'est un automorphisme de ?T et elle est dite régulière quand sa

restriction à ?(vf) est régulière. Sinon elle est dite singulière et
elle applique tout élément de ZT sur /.

Examinons l'effet d'une homothétie régulière a de ZT sur une
translation T n'appartenant ni à z{v'), ni à z(v). Si T Tv Tv
est la décomposition canonique de T suivant z(v') et t(a), posons:

Tv< y' v y en (y) ; Tv yv yeTI (y')
Alors :

a (T) a* (j/) a* (x)v'v
Posons:

{ 5 } $(v ,v') n $(x ,/) ; { sx } n 0 (a*(x) a* (/)).
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Les réflexions s et s± sont les directions respectives de T et de

a(T). Considérons les quadrangles complets (v'7 y'\v, x; p1 s) et
(v\ a*(y'); v, a*(;r); p1? sj. Dans le premier, v'v et xy' sont
congrus et v' est parallèle à y'\ il résulte alors des propositions 21

et 19 que:
v' s ~ pvf.

Dans le second, v'v est congru à oc*(x) a*{y') et a* (y') est

parallèle par suite:

v' s1 ~ p1 vr.

Mais comme p et p± sont parallèles, il résulte de la proposition 19

que v's est congru à v'su puis que s et st sont parallèles (autrement

dit confondus, dans ce cas). Par conséquent, T et oc(T) ont
la même direction. Cette affirmation est banale quand oc est

singulière et quand T appartient à x{vf) ou à t(v).
Ainsi, quelle que soit la réflexion s, le sous-groupe r(s) de ZT

est stable pour P ensemble des homothéties de D'autre part,
si Y on se donne deux translations T1 et T2, avec T ± ^ /, ainsi

que l'image a(TJ de Tx par une homothétie oc de on peut
construire oc(T2) par des projections. Donc si l'on se donne une
paire ordonnée de translations de même direction, la première
n'étant pas banale, il existe une homothétie de 2T et une seule qui
applique la première translation sur la seconde.

De tout ce qui précède, nous déduisons que l'ensemble des

homothéties de F consitue un corps isomorphe à A, que nous
identifierons immédiatement à K. On peut écrire:

(a+ß)(X) (x(X)ß(X); 0(A) I VXeT,

(ß.a)(X) ß(a(X)); 1 (X)

où oc et ß sont deux éléments quelconques de K. Ainsi 6T est nauni
d'une structure d'espace vectoriel de dimension 2 sur K. Nous

désignerons cet espace vectoriel par ZTK pour le distinguer du

sous-groupe 2T de G. Les sous-espaces de dimension 1 de sont
donnés par les sous-groupes t(s) de où sel.

Soit E et F deux translations linéairement indépendantes
dans &~K. Toute translation T peut se mettre sous la forme:

T= Ç (E) rj (F) 9
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où Ç et rj sont denx éléments de K univoquement déterminés

par T. L'application T (£, rj) est un isomorphisme de ZTK sur
l'ensemble KxK muni de sa structure d'espace vectoriel sur K.
Nous dirons que (£, rj) est la paire de coordonnées de T relativement

à la base (E, F). Le système de coordonnées ainsi introduit
dans XTK est dit orthonormal quand E et F sont deux translations

congrues de directions perpendiculaires.
Les propriétés des homothéties de 3T nous permettent

d'affirmer que, lors de la construction des homothéties du groupe
t(ï/), le choix d'un élément v perpendiculaire à v' n'avait rien
d'essentiel (voir fig. 7); nous aurions pu y remplacer v par n'importe

quelle autre réflexion coupant v'.

2.10. Nous disposons d'assez de renseignements sur le groupe G

pour en tirer les éléments d'une géométrie plane. Choisissons à

nouveau deux réflexions perpendiculaires v' et v, l'un de leurs
éléments bissecteurs m% et un élément e ^ v dans FI(v').
Désignons par g le groupe de stabilité de <P(v1 vr). Soit F un faisceau
de première classe quelconque. Il existe au moins une réflexion
5 telle que $ — s<P(v, v')s, (coroll. 1, prop. 18). Le groupe de

stabilité de F est sgs. L'intersection des sous-groupes sgs de G,

où s parcourt £, se réduit à {/} (coroll. 3, prop. 17). On peut
donc définir la géométrie de G relativement à g (voir introduction).

L'espace homogène G/g sera appelé le plan; ses éléments
seront les points. Il existe entre le plan, le groupe l'espace
vectoriel ZTl'ensemble des demi-tours et celui des faisceaux de

première classe des correspondances biunivoques « naturelles »

que nous allons mettre en évidence.

Il résulte du corollaire 1 de la proposition 17 que l'on obtient
toutes les classes (à gauche) de G suivant g en formant les classes

Tg, oxx'T parcourt XT. On détermine ainsi des correspondances
biunivoques entre le plan, le groupe ZT et l'espace vectoriel 3TK.
La classe Tg est celle qui contient le demi-tour D tel que T
Dv'v; elle n'en contient pas d'autre car g ne contient pas de
translation non banale. On obtient de la sorte une correspondance

parfaite entre les points du plan et les demi-tours. D'autre
part, nous avons déjà relevé l'existence d'une correspondance
biunivoque naturelle entre les demi-tours et les faisceaux de
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première classe (voir 2.2). Pour alléger le texte, convenons
d'appeler homologues les éléments du plan, de Y, de de

l'ensemble des demi-tours et de celui des faisceaux de première
classe qui se correspondent naturellement.

Posons E ev et F mv'Ev'm mEm. Comme v et v' sont
perpendiculaires et que E et F sont congrues, le système de

coordonnées associé à la base (E, F) de ZTK est orthonormal.
Nous appellerons coordonnées d'un point P (relativement au
système (v\ v, ?n, e) les coordonnées (£, rj) de la translation
homologue à P, relativement à la base (E1 F). Nous désignerons
parfois ce point par P(£, rj).

Nous appellerons droite homologue à la réflexion s, et nous
noterons s l'ensemble des points homologues aux faisceaux de

première classe contenant s. Si T±g est un point de s, on obtient
la droite s en formant l'ensemble des points TToù T
parcourt le groupe z(s). On peut alors représenter paramétrique-
ment une droite par (/*+7E.Ç; //+7e'.Ç), où est un élément
parcourant K, où /g 7c, \x et n' sont des éléments déterminés de K:
et où n et 7ir ne sont pas nuls en même temps. Convenons d'écrire
dorénavant aß le produit de deux éléments a et ß de K que nous
notions jusqu'ici a.ß, aucune ambiguïté n'étant plus à craindre.
Il résulte de ce qui précède qu'une droite s est l'ensemble des

points dont les coordonnées (£, rj) satisfont une équation de la
forme :

(s) xt+ßri+y 0; a,ß,yeK; (a ß) * (0 0). (1)

Réciproquement, l'ensemble des points dont les coordonnées

(£, rj) satisfont une équation de la forme (1) est une droite.
Deux droites s et s' sont dites sécantes, parallèles ou perpendiculaires

en même temps que leurs réflexions homologues respectives

s et sf. Soit:

(Y) a' £ +ß' rj +yf 0 (2)

l'équation de sf. La condition de parallélisme de s et s' est donnée

par:
aß' —a'ß 0 (3)
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Montrons que la condition de perpendicularité de ces mêmes

droites s'exprime par:
aa' + ßß' 0 (4)

v

C'est le cas manifestement lorsque s et s' sont confondues avec
v et v' respectivement, car alors ß a 0. Pour examiner les

autres cas, reportons-nous à la figure 8. La réflexion r est
arbitrairement choisie parmi les éléments de e) différents de v'
et de e. Elle appartient au faisceau <P(v, d'), où d' # v' \ donc la
droite homologue r contient les points de coordonnées (1, 0) et
(0, d), où ô 0. La réflexion w, qui est perpendiculaire à r,
appartient aux faisceaux <P(v, d') et <P(v\ g); donc la droite
homologue ü contient les points de coordonnées (0, ô) et — d2, 0).
Les équations respectives de r et ü peuvent s'écrire:

(r) ôÇ -f rj — ô 0 ; (u) £ — ôr] + ô2 0

Ces équations vérifient la condition (4). Réciproquement, toute
droite dont l'équation jointe à celle de r satisfait la condition (4)
est parallèle à ù; elle est donc perpendiculaire à r. Comme la
perpendicularité des droites s et sf et la condition (4) restent
inaltérées lorsqu'on substitue à s et à s' des droites respectivement

parallèles, (4) est bien la condition nécessaire et suffisante

pour que les droites s et s' soient perpendiculaires.
Nous pouvons apporter une précision nouvelle sur le corps K.
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Théorème 3. Le corps de base est formellement réel et pytha¬
goricien.

Un corps commutatif est dit formellement réel quand - 1

ne peut s'y mettre sous forme d'une somme de carrés. Il est

pythagoricien quand la somme des carrés de deux quelconques
de ses éléments est un carré. En vertu de la proposition 25, il
suffit de montrer que K est pythagoricien, ce qui s'énonce
encore ainsi: quel que soit a dans A, 1 -fa2 est un carré dans K.

Reprenons deux réflexions perpendiculaires v' et y, l'un de

leurs éléments bissecteurs m et un élément e ^ v dans II(v').
Soit a un élément de $(v, v') différent de v'. Soit r et s les éléments
bissecteurs de v' et a. Posons:

{ b } 0 (V, e) n <P(a rer)

{ c } $ (v'9vev) n <P (a rer)

Les réflexions b et c sont respectivement perpendiculaires à

r et s; elles sont donc perpendiculaires entre elles. Ainsi quel que
soit a dans <P(v, U), il existe deux réflexions perpendiculaires
b et c, incidentes avec a, la première dans #(?/, e), la deuxième
dans &(v': vev). Quand a et v' sont distincts, il en est de même
de b et e.

Prenons alors un élément a dans K. Soit a la droite d'équation:

(a) £ + arj 0 (5)

relativement au système (U, v, m, e). La réflexion homologue a

appartient au faisceau &(v, v') et elle est distincte de v'. Soit b une
droite contenant le point de coordonnées (1,0) et non perpendiculaire

à v'. Son équation peut s'écrire:

(b) ß^ — y—ß 0
5 ßeK. (6)

Soit c la droite perpendiculaire à b et contenant le point de

coordonnées (—1, 0). Son équation peut s'écrire:

(c) g+ßy + 1 0. (7)
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En vertu de ce qui précède, il existe dans K un élément ß tel

que les équations (5), (6) et (7) en £ et rj soient compatibles.
Cet élément satisfait la relation:

ß2-2aß-l 0.

Ce qui implique que 1 + a2 est un carré dans K. C.Q.F.D.

Ce théorème implique, en particulier, que la caractéristique
du corps K est nulle, autrement dit que le groupe G ne contient

pas de translation non banale d'ordre fini. Nous assimilerons le

corps premier de K au corps Q des nombres rationnels.

2.11. Reprenons les coordonnées. orthonormales introduites
dans le plan relativement au système (v\ v, m, e). Le plan étant
l'espace homogène G/g, où g est le groupe de stabilité de n(v, </),

on peut associer à tout élément X de G une transformation X du

plan donnée par:

X: Tg -> XTg VT e (1)

On définit de la sorte un groupe de transformations isomorphe à

G, agissant effectivement et transitivement dans le plan. La
transformation X peut encore se formuler ainsi:

_ _ fa2—ß2 2ocß 2ocß a2—ß2 \X:<1-" "+y; ,+T (2)

a, ß ,y,ôeK; (a ß)#(0 0) ; ± 1

L'élément s égale 1 ou —1 suivant que X est un élément propre
de G ou non. La condition nécessaire et suffisante pour que X
soit une réflexion est donnée par:

g - 1 ; yßcp;§ - a(p ^ (3)

où cp est un élément quelconque de K. Les translations de G sont
caractérisées par e 1 et ß 0. Les éléments de g s'obtiennent
en posant y<5 0.

Réciproquement, soit K' un corps formellement réel et
pythagoricien. L'ensemble des transformations de dis-
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tinctes données par les expressions de la forme (2), où a, /?, y et ö

sont dans K\ constitue nn fGgroupe G' engendré par celles de

ces transformations qui vérifient (3), avec cpeK'. On montre de

plus que G' satisfait les cinq axiomes posés jusqu'ici et que K'
est le corps de base relatif à G

Tous les résultats que nous venons de citer s'obtiennent par
des calculs bien connus en géométrie analytique élémentaire, à

ceci près que, dans le cas élémentaire, K est généralement le

corps des nombres réels. Nous n'avons pas repris ici ces

développements classiques que l'on trouvera, par exemple, dans [3],pp.
210-215.

En revanche, nous retiendrons ceci: d'une certaine manière,
on peut considérer que les cinq premiers axiomes que nous avons
posés caractérisent les corps formellement réels et pythagoriciens.

On peut encore caractériser le groupe G d'une autre manière.
A toute paire de points Pi(^1, rj^) et P2{Ç>n Vi) attachons
l'élément:

qui est un carré dans K. Il est clair que D(PU P2) D(P2> Pi)-
D'autre part, D(P±, P2) est nul lorsque Px et P2 coïncident, et
dans ce cas seulement, en vertu de la proposition 25. On vérifie
sans peine que, quelle que soit la transformation X donnée par
(2), on a:

On peut montrer que cette propriété caractérise le groupe des

transformations A, qui est isomorphe à G et que nous assimilerons

à G dans ce qui suit. Etablissons d'abord un lemme.

Lemme. Le groupe G est constitué par Vensemble des transforma¬
tions du plan de la forme :

D(P19P2) (£2-^)2+012-Vi)2, (4)

D(X(Pi),X(P2)) D (P, P2).

H v 7i, p o t teK (5)

qui admettent D comme invariant.
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Désignons par G± rensemble des transformations considérées.

Comme D(PU P2) n'est nul que lorsque Pt et P2 coïncident, les

substitutions linéaires (5) admettant D comme invariant sont

régulières et G1 est un groupe. De plus G est un sous-groupe de

G1. Nous pouvons donc nous borner à déterminer les coefficients

p, e, p et o quand n et t sont nuls. Dans ce cas le point 0 de

coordonnées (0,0) est fixe; soit alors P'{£,n') l'image du point
P(Ç, fj). En exprimant que D(0, P) égale D(0, P'), on trouve les

conditions nécessaires suivantes:

p2+p2 1; V2 + (T2 1 ; pv+p<r 0, (6)

qui sont équivalentes à:

p2 + p2 1 ; v —sp ; a sp; s ±1

On obtient tous les éléments p de if tels que 1 — p2 soit un carré
de K en posant:

2cp
*=—î—2 cpeK,

1 +<p

ar l'équation pç2 — 2 <p + p 0 a des solutions dans K. Par suite,
on peut poser:

i
r+v'

Ainsi la solution généraie du système (6) peut s'écrire:

cP—ß2 laß
V 2 02 ' P 2 d2 ' v -8p; (7 ep; s ± 1

a +ßz or + ßl

où a et ß sont deux éléments arbitraires de K non nuls simultanément.

Il s'ensuit immédiatement que Gl G. C.Q.F.D.
Remarquons que les conditions (6) sont également suffisantes

pour que la transformation (5) appartienne à G, comme le montre
notre démonstration.

Proposition 26. Le groupe G est constitué par l'ensemble des

transformations du plan qui admettent D comme invariant.

Désignons par G' l'ensemble des transformations étendues
à tout le plan et admettant D comme invariant. Il est évident



— 64 —

que G est contenu dans G'. De plus, chaque élément de G' est

une injection du plan dans lui-même.
Soit Pitft, tji), avec i 1, 2, 3, trois points quelconques du

plan. Posons:

Dt D (Pj, Pk) i ^ j ^ k i, i 1 2 3

puis :

S(P1,P2,P3) 2 (D1D2+D2D3+D3D1)-((7)

Par des calculs élémentaires, on montre que:

S(P1?P2,P3) 4
£i ni i
^2 r\2 1

^3 rj3 1

(8)

Il résulte de la définition (7) que S est un invariant relativement
à G'. Le second membre de (8) est nul quand Pu P2 et P3

appartiennent à une même droite, et dans ce cas seulement. Il
s'ensuit que tout élément de G' transforme trois points d'une
droite en trois points d'une droite.

Prenons un élément quelconque Z dans G'. Soit A' (a', ß')
l'image par Z d'un point A (a, ß). Désignons par Tt et T2 les

translations envoyant le point 0(0,0) sur A et sur A', respectivement.

La transformation Zt T2~1ZT1 appartient à G' et elle
laisse 0 fixe. Soit B' (y', d') l'image par Z± d'un point B (y, ô)

distinct de 0. Les éléments y2+ <52 et y'2 + à'2 égalent le carré
d'un même élément non nul cp de K. Les transformations:

(y ö S y

\cp cp cp cp

(y' (L Ö' y'
Ri ' (£ j rç). ~~m £ — r\; — £ + y

\<P cp cp cp

appartiennent à G, car elles vérifient les relations (6). Elles
envoient le point C(cp, 0) sur B et 5', respectivement. La
transformation Z2 B21Z1B1 appartient à G' et laisse fixes les points
0 et G. L'image d'un point M(ji1 0) par Z2 est un point 0)

tel que:
m2 m'2; (ß-<p)2 O'
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Comme (pA0, ji p ; ainsi Z2 laisse fixes tous les points de la

droite OC. On en déduit que Z applique une droite sur une

droite et, par suite, le plan sur le plan. De plus, comme elle

conserve le parallélisme, elle est de la forme (5). Donc G' est confondu

avec G. C.Q.F.D.

3. Les deux derniers axiomes de la géométrie
euclidienne plane

Il convient d'introduire de nouveaux axiomes afin de

parachever la construction de ce que nous avons appelé la géométrie
euclidienne plane. Ces axiomes nous permettront d'affirmer que
le corps de base K appartient à une certaine famille de corps
réels. Alors que les axiomes précédents ont essentiellement un
contenu algébrique, les prochains — l'un d'eux, tout au moins —
précisent la structure topologique de K.

3.1. Soit un corps L. A et B étant deux parties non vides de

L, on désigne par A-\-B l'ensemble des éléments a-j-b, où

a e A et b e B. De même, on note AB l'ensemble des éléments
ab, où a e A et b e B] l'ensemble { —1 }A s'écrit —A. Rappelons
qu'on ordonne le corps L en y déterminant une partie P, appelée
partie positive de L pour l'ordre considéré, satisfaisant les
conditions suivantes:

1) P u — P) L,
2) Pn(-P) {0},
3) P+P P,
4) P.P P

Les points (1), (2) et (3) introduisent une structure de groupe
abélien ordonné dans le groupe additif sous-jacent à L. Alors
si a, b e L, on écrit a ^ b quand b-a appartient à P. On écrit
a<b quand, de plus, a et b sont distincts. Comme a2 (— a)2

quel que soit a dans L, P contient tous les carrés de L et, en
particulier, l'élément unité 1 de L. Il en résulte immédiatement
qu'un corps dans lequel -1) est un carré n'est pas ordonnable.
En revanche, il existe un critère important concernant les corps
commutatifs ordonnables. C'est le théorème de Artin-Schreier
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