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1. Les quatre premiers axiomes de la géométrie plane

1.1 On dit qu'une partie I d'un groupe G engendre G (au sens

étroit) lorsque tout élément de G peut s'écrire d'une manière au
moins sous forme du produit d'un nombre fini d'éléments de 1.
On peut ainsi remplacer chaque élément de G par un mot dont
les lettres sont des éléments de I. Comme G est un groupe,
chacun de ses éléments peut être représenté par plusieurs mots
différents. On appelle relations de structure de G relativement
à I l'ensemble des égalités par lesquelles on donne les mots
représentant l'élément neutre I de G. Le groupe G est déterminé
quand on se donne l'ensemble I et les relations de structure de
G relativement à I.

Considérons un groupe G, d'élément neutre /, possédant les

propriétés suivantes:

1) G est engendré par un ensemble I formé d'éléments in¬

volutes de G. Nous désignerons les éléments de I par des

lettres minuscules: a, 6,

2) Les relations de structure de G relativement à I expri¬
ment toutes / par des mots d'un nombre pair de lettres.

Nous appellerons réflexions les éléments de 1 et nous dirons que
G est un « groupe engendré par des réflexions » ou plus simplement

un R-groupe. Nous utiliserons la notation (G, I) pour
préciser que G est un jR-groupe engendré par l'ensemble de
réflexions I.

Les relations de structure du f?-groupe G relativement à I
peuvent prendre deux formes:

a) x2 I xel,
a:El ; i — 1 2 2n

b) at a2 a2n I ; n > 1

dj ^ cij+1 ; j 1 2 2n — 1

A titre d'exemple, on peut se donner arbitrairement un ensemble
1 non vide et se borner aux relations de structure de la forme a).
On obtient ainsi le R-groupe libre engendré par I.
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En vertu de la propriété 2), les longueurs des mots
représentant un même élément du TPgroupe (G, I) ont toutes la même

parité. On appellera propres les éléments de G représentables par
des produits d'un nombre pair de réflexions et impropres les

autres. Les éléments propres de (G, 1) forment un sous-groupe
(distingué) G0 d'indice 2 dans G, que nous appellerons la
composante propre de (G, 1). On obtient tous les éléments impropres
de (G, I) en prenant la classe aG0, où a est un élément arbitrairement

choisi dans I.
Considérons un groupe H d'élément neutre I, engendré par

un ensemble non vide E d'éléments involutifs. Introduisons le

groupe multiplicatif C d'ordre 2, formé des éléments +1 et —1.
Soit E' l'ensemble des couples (a, —1), avec a eE. Considérons
la loi de formation suivante:

(a1 -1) (a2 -1)... (an, - 1) (ax a2 an,(- 1)") ; ateE

Les éléments ainsi construits constituent manifestement un
iî-groupe TP, d'élément neutre (7,4-1), engendré par E'. Lorsque
H est lui-même un iPgroupe engendré par E, H' est isomorphe
à H. Dans le cas contraire, H' est isomorphe au produit direct
de H et G; H est isomorphe à la composante propre de (TP, E').
Nous dirons que (TP, E') est le R-groupe naturellement associé
à H.

Dans le même ordre d'idées, bornons-nous à signaler un fait
intéressant: quel que soit le groupe g, il existe au moins un R-
groupe (Cr, Z) dont la composante propre est isomorphe à g.

A tout élément T d'un iPgroupe (G, 1) on peut associer un
automorphisme intérieur de G défini par:

X-+T'1 XT.

Cet automorphisme est banal lorsque T appartient au centre
de G. Il est involutif chaque fois que l'on prend pour T un
élément non central de I; on dit dans ce cas que l'on a affaire à un
automorphisme intérieur spécial de G. Tout automorphisme
intérieur de G peut être considéré comme le produit d'un nombre
fini d'automorphismes intérieurs spéciaux de G. Une partie de G
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est dite distinguée quand elle est stable pour les automorphism es

intérieurs de G. Pour qu'il en soit ainsi, il faut et il suffît qu'elle
soit stable pour les automorphismes intérieurs spéciaux de G.

Considérons un R-groupe (G, Z). La plus petite partie
distinguée Z' de G contenant Z s'obtient en formant la réunion des

images de Z par les automorphismes intérieurs de G. Il en résulte

que Z' est formée d'éléments involutifs impropres de (G, Z).
Par suite, G peut être considéré comme un R-groupe engendré par
Z'. Les propriétés de (G, Z) auxquelles nous nous attacherons
surtout concernent en fait (G, Z'). C'est pourquoi nous
substituerons systématiquement l'étude de (G, Z') à celle de (G, Z)

lorsque Z ^ Z'. Nous n'introduisons pas de restriction essentielle

en admettant que, par la suite, nous ne considérerons que
des R-groupes engendrés par des ensembles distingués de réflexions.

Dans un R-groupe fG, Z), nous appellerons dimension d'un
élément X différent de l'élément neutre / le plus petit entier
rationnel r tel que l'on puisse représenter X par un produit de

r+1 éléments de Z. Nous attribuerons à I la dimension —1. La
dimension du R-groupe (G, Z) est le maximum de la dimension
de X lorsque X parcourt G. Par exemple, le groupe des permutations

finies d'un ensemble infini E (chacune d'elles laissant fixes
tous les éléments de E sauf un nombre fini d'entre eux) est
engendré par les transpositions (permutations effectives portant
sur deux éléments) de E; comme tel, c'est un R-groupe de dimension

infinie. Les groupes finis d'ordres 1 et 2 peuvent être regardés
comme des R-groupes de dimensions respectives —1 et 0; par la
suite, nous qualifierons ces .R-groupes de «banals».

Nous sommes maintenant en mesure d'énoncer le premier
axiome concernant le groupe fondamental G d'une géométrie
euclidienne plane.

Axiome P I. Le groupe G est un R-groupe non banal engendré

par un ensemble distingué Z de réflexions

Le R-groupe G n'étant pas banal, nous savons que Z contient
au moins deux éléments distincts.
1.2. Soit un ensemble E et une relation ternaire i définie dans E.
Le fait que trois éléments a, b et c de R, pris dans cet ordre,
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vérifient la relation / se note i(a, br c). On dit que i est une relation

d'incidence (ternaire) lorsqu'elle satisfait les conditions suivantes:

1) Elle est symétrique : /(a, b9 c) implique /(c, è, a) et i(b, a, c).

2) Elle est réflexive: /(a, a, &) quels que soient a, b e E.

3) Elle est transitive: quand a et b sont deux éléments

distincts de E, /(a, 6, c) et /(a, 6, d) impliquent /(a, c, d).

Les relations d'incidence se rencontrent en géométrie élémentaire;

c'est, par exemple, dans l'ensemble des points du plan, le

fait pour trois points d'appartenir à une même droite; ou dans

l'ensemble des droites du plan le fait pour trois droites d'avoir
un point commun ou une direction commune.

Revenons au ß-groupe G. Le fait que le produit de trois
réflexions est une réflexion définit une relation ternaire dans I.
Soit a, 6, c, trois éléments de I tels que abc e I. Alors:

cba (abc)_1 abc el,
bac c(cba)c c(abc)ceZ

où l'on fait usage du fait que I est une partie distinguée de G.

D'autre part, il est évident que aab est dans I quelles que soient
les réflexions a et b. La relation ternaire considérée est donc

symétrique et réflexive. Il n'est pas possible de prouver que la
condition de transitivité est aussi satisfaite. C'est l'objet de

l'axiome suivant.

Axiome P II (Axiome d'incidence). Le fait que le produit de

trois réflexions est une réflexion définit dans I une relation
dé incidence.

Nous appellerons Rl-groupe tout groupe satisfaisant les
axiomes P l et P II. Nous adopterons les notations ci-dessus:
si a, &, c e Z, /(a, &, c) signifie que abc e I et l'on dit que a, b et c

sont incidents.
La relation d'incidence i dans L est conservée par les

transformations induites dans 1 parles automorphismes intérieurs de
G. Il suffit évidemment de le vérifier pour les automorphismes
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intérieurs spéciaux de G. Soit alors a, b, c tels que /(a, 6, c) et so.it

5 une réflexion quelconque :

(sas) (sbs) (ses) s (abc) sel,
où l'on utilise le fait que E est une partie distinguée de G. Par
suite i(sas, sbs, ses).

Plaçons ici une remarque. On peut considérer une notion
d'incidence plus générale. Admettons que, dans un ensemble E,
pour tout entier naturel n, on a défini une relation Rn en choisissant

dans En une partie Pn; on note Rn{aXl a2, an) lorsque
l'élément (al5 a2, de En appartient à Pn, et Rn(a1,a2l
dans le cas contraire. Nous disons que les relations R^ f?2,

Rm déterminent une incidence (générale) dans E quand les

conditions suivantes sont satisfaites:

1) R^a), V a e E.

2) Symétrie : pour tout entier naturel n et si at e E,
a2, a„)implique Rn(ah, aln), où {iu est une
permutation quelconque des indices (1, 2, n).

3) Réflexivité: pour tout entier naturel n et quels que soient
les at dans E, Rn{au al5 a2, 1).

4) Transitivité : pour tout entier naturel n supérieur à 1, les

conditions a2, an-t) et R^a^ a2, an-u bk),

où k — 1, 2, n et ah bk e E, impliquent Rn(bl5 &2, bn).

Ainsi, une relation d'équivalence dans E peut être assimilée
à une incidence pour laquelle Rn(a^ a2, an) quels que soient

at e E, dès que n > 2. Dans l'ensemble des éléments non nuls
d'un espace vectoriel, la dépendance linéaire est une incidence.

Soit un iî-groupe (G, E); nous disons qu'il satisfait la condition

/, ou encore qu'il est un RJ-groupe, si l'on définit une
incidence générale dans E en posant, pour tout n naturel, Rn(a1?

a2, an) dès que dim (a1a2 a„) < ft-t, avec a{eE. On voit
qu'un i?/-groupe de dimension 2 est un RJ-groupe. On peut
aussi dire qu'un i?/-groupe est un i?-groupe (G, E) tel que l'on
introduit une incidence générale dans E en posant:

1) Si n 1, 2, 3 : an) quand dim(a1 a„)<n-1,

2) Si ra>3 : Rn(au an)
a,e2'-
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1.3. Soit a et b deux réflexions distinctes. Nous appellerons
faisceau déterminé par a et b et nous noterons <P(a, b) l'ensemble
des éléments de I incidents avec a et b. Il est clair que #(a, b)

contient a et b et qu'il est identique à #(&, a).

Proposition 1. Un faisceau est entièrement déterminé par deux

quelconques de ses éléments, pourvu qu'ils soient distincts.

Prenons deux éléments distincts x et y dans un faisceau

#(a, b), a et b étant deux réflexions distinctes. On peut supposer
sans restriction que a et y sont distincts. Nous voulons prouver
que les faisceaux <P(a, b) et $(x, y) coïncident. Soit s un élément
arbitraire de $(a, b). On peut écrire:

(1) i(a, b, x)(2) i(a, y)(3) i(a, b, s)

En vertu de l'axiome P II, on peut tirer de (1) et (2):

(4) i(a,x,y) (5) i(b, x, y)

ce qui montre que chacun des deux faisceaux contient les
éléments déterminant l'autre. Par suite, il suffit de prouver que l'un
de ces faisceaux contient l'autre. De (2) et (3), on tire i{a, y, s);
en associant ce fait à (4), on voit que i(x, y, s), où l'on tient
compte du fait que a -fi y. Par conséquent $(a, b) c= <p(x, y).
C.Q.F.D.

Corollaire. Soit a, b et c trois réflexions distinctes telles que
a cbc. Chacune d'elles appartient au faisceau déterminé par
les deux autres.

En effet, acb c; donc ce^(a, b). Le reste se déduit de la
proposition 1.

Lorsque l'on ne désirera pas mettre en évidence un couple
particulier d'éléments déterminant un faisceau, on désignera
celui-ci par la seule lettre $.
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Proposition 2. Soit G un RI-groupe non banal engendré par
un ensemble distingué I de réflexions et soit un faisceau
dans I. Le groupe engendré par est un RI -groupe g(0) de

dimension 1. Les éléments propres de g(0) forment un sous-

groupe abélien go(0).

Désignons par a et b deux réflexions déterminant <P:

0 <P(a, b). Montrons d'abord que, quels que soient x, y, et z dans

$, le produit xyz est également dans 0. Quand x ^ y, xyz ze0.
Quand x ^ y, les faisceaux 0 et <P(x, y) sont confondus en vertu
de la proposition 1. Par suite xyz est une réflexion. Comme

yx.xyz zel, xyz appartient à 0(x1 y), donc à 0.
Désignons alors par g(<P) l'ensemble des mots formés avec des

éléments de 0. Il résulte de ce qui précède que l'on peut obtenir
g(0) en prenant tous les mots d'une ou deux «lettres» prises
dans <P. Quels que soient x, y0, x~x — x et (xy)_1 yx. Donc

g(0) est un groupe engendré par 0. Il résulte de la première
partie de la démonstration que 0 est une partie distinguée de

g(0). Comme l'élément neutre / de G ne peut être représenté par
le produit d'un nombre impair d'éléments de £, g{0) est un R-

groupe. De plus, quels que soient x, y et z dans $, t(x, y, z).
Donc g(0) est un RI-groupe de dimension 1.

L'ensemble go{0) des éléments propres de g(0) forment un
sous-groupe d'indice 2 dans g(0). Prenons arbitrairement A
dans go{0) et u dans <P. On peut affirmer que Au v et uA w

sont des éléments de 0. Ainsi tout élément A de go(0) peut se

mettre sous les deux formes m et uw, avec w, c, we<P, u étant
arbitrairement choisi. On en déduit que l'automorphisme
intérieur de g(0) associé à u envoie tout élément de go{0) sur son
inverse:

uAu u (vu) u uv A"1

Il résulte immédiatement de là que g0(&) est abélien. On peut le

voir en prenant quatre éléments c, d, e et / dans 0 et en observant

que:

(cd) (ef) (cd)~~1 c(d.ef.d)c c.fe.c ef,
C.Q.F.D.
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Rappelons le fait suivant que nous avons démontré en

passant:

Corollaire. Quand x, y et z sont trois éléments d'un faisceau $,
le produit xyz appartient à $.

Les faits que nous venons de voir ont une illustration très

simple en géométrie élémentaire. Lorsque a et b sont deux
réflexions d'axes concourants, $(a, b) est l'ensemble des réflexions
dont les axes passent par l'intersection de ceux de a et b. Lorsque
les axes de a et b sont parallèles, $(a, b) est l'ensemble des

réflexions dont les axes ont la même direction que ceux de a et b.

Soit x, y et z trois réflexions dont les axes respectifs 5c, y, et z

sont concourants. Le produit t xyz est une réflexion dont l'axe
t est la conjuguée isogonale de y par rapport à 5c et z.

La géométrie élémentaire étudie la transformation ou
inversion isogonale par rapport à un triangle ABC. Son existence

repose sur le théorème suivant: soit #, y et z trois droites passant
respectivement par C, A et B; soit x' la conjuguée isogonale de

x par rapport à CA et CB, y' celle de y par rapport à AB etAC,
et z' celle de z par rapport à BC et BA. Si x, y et z sont incidentes
(concourantes ou de même direction), il en est de même de x',
y' et z'. La transformation isogonale considérée associe au point
d'intersection de x, y et z celui de x\ y' et z', quand ils existent.
Il est facile de voir que le théorème cité est un cas particulier
de la proposition suivante qui concerne les iî-groupes en général:

Soit G un iî-groupe engendré par un ensemble distingué I
de réflexions. Soit a, 6, c, x,yet 'z six réflexions telles que : x' axb,
y' byc, z' — cza et t xyz soient dans I; alors t' x'y'z' est
aussi dans I.

En effet: x'y'z' axb.byc.cza — a.xyz.a ea la —I
1.4. Nous appellerons élément bissecteur de deux réflexions
distinctes a et b tout élément u de 1 tel que a ubu. Il est clair
que b uau et que u est distinct de a et de b. Nous sommes
maintenant en mesure de poser le troisième axiome concernant
le groupe G, axiome qui est assez restrictif.

L'Enseignement mathém., t. X, fasc. 1.
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Axiome P III (axiome de bissection). Toute paire de réflexions
distinctes admet au moins un élément bissecteur.

L'axiome P III implique d'abord que $ ne contient aucun
élément central de G. De plus, l'ensemble des automorphismes
intérieurs de G agit transitivement dans I. On aurait pu tenter
de remplacer l'axiome P III par l'hypothèse suivante, apparemment

moins restrictive:

(1) Il existe dans 1 un élément a tel que, quel que soit s

différent de a dans T, a et s admettent au moins un
élément bissecteur.

Mais il est facile de voir que, moyennant ce qui précède, (1)
entraîne la validité de l'axiome P III dans G. En effet, soit b et c

deux réflexions distinctes et différentes l'une et l'autre de a.

Soit u un élément bissecteur de a et b et posons c' ucu. Si c'

a, posons c a; si c' =£ a, soit c un élément bissecteur de a

et c'. Alors
c — ne'u — u.vav.u uvu.b.uvu

et uçu est un élément bissecteur de b et c.

Tout faisceau contient les éléments bissecteurs de chacune
de ses paires d'éléments distincts, d'après le corollaire de la
proposition 1. Par suite, tout faisceau contient trois éléments

distincts, au moins.
1.5. Remarquons que la notion de faisceau ne se présente dans

1 que lorsque G est de dimension supérieure à zéro. Lorsque G

est de dimension 1, I ne contient qu'un seul faisceau, et
réciproquement. Par la suite nous ne nous intéresserons qu'aux cas où

I contient plusieurs faisceaux, et nous poserons un axiome à ce

sujet. Mais auparavant, il convient de poser quelques définitions.
Lorsque G est au moins de dimension 2, on peut trouver dans

I trois éléments non incidents a, b et c. Cela implique qu'il
existe dans I au moins trois faisceaux distincts $(a, è), <P(ô, c)

et $(c, a). L'intersection de deux faisceaux distincts comporte au
plus un élément; elle peut être vide. Prenons un faisceau S'il
possède un élément commun avec chacun des autres faisceaux
de £, on dit qu'il est de première classe et on le note Dans le

cas contraire, il existe au moins un faisceau de 1 disjoint de
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on dit alors que <P est de seconde classe et on le note <P2- ^ résulte

immédiatement de la définition que s'il existe un faisceau de

seconde classe dans I, il en existe au moins deux.

Proposition 3. Tout automorphisme intérieur de G transforme

un faisceau de I en un faisceau de même classe.

Il suffit d'établir la proposition dans le cas des automor-
phismes intérieurs spéciaux. Désignons par a 1'automorphisme
intérieur de G associé à une réflexion «9 et soit un faisceau

quelconque çp(a, b) de 1. Quel que soit x dans #(<2, b), sxs appartient
au faisceau <P(sas, sbs). Donc a envoie $(a, b) dans <P(sas, sbs).

Prenons y dans <P(sas, sbs). Comme sas, sbs et y sont incidents,
sys appartient au faisceau b). Mais (renvoie sys sur y. Donc
<7<P(a, b) contient <J>(sas, sbs). Ce qui prouve que o transforme le

faisceau $(a, b) en le faisceau <P(sas, sbs).

Montrons encore que a transforme tout faisceau $ en un
faisceau de même classe. Lorsque $ est de seconde classe, il
existe un faisceau <P' disjoint de $. Comme a est un automorphisme,

g$ et <7<P' sont disjoints. Donc est de seconde classe.

Quand $ est de première classe, cr$ n'est pas de seconde classe

car a est une transformation involutive. C.Q.F.D.
En géométrie élémentaire plane, un faisceau de première

classe est l'ensemble des réflexions dont les axes passent par un
point donné; un faisceau de seconde classe est l'ensemble des

réflexions dont les axes ont une direction donnée. Pour l'instant,
nous ne sommes pas renseignés sur l'existence dans 1 de
faisceaux appartenant à l'une ou l'autre des deux classes. Pour
nous assurer l'existence de « points », nous allons poser l'axiome
suivant :

Axiome P IV. (Axiome des faisceaux de première classe)
Dans I, il existe au moins deux faisceaux dont un de première
classe.

Nous dirons de deux réflexions distinctes qu'elles se coupent
ou qu'elles sont sécantes lorsqu'elles déterminent un faisceau de
première classe.

L'axiome P IV entraîne immédiatement un fait important.
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Proposition 4. Le R-groupe G est de dimension 2.

Nous avons déjà observé que F existence de deux faisceaux
distincts implique que la dimension de G égale au moins 2. Pour
établir qu'elle est exactement 2, il suffit de montrer que, quelles

que soient les réflexions a, à, c et d, le produit abcd peut s'écrire
sous la forme rs, où r et «9 sont des réflexions convenables. Le fait
est banal quand a, à et c sont incidentes. Plaçons-nous donc dans
le cas où elles ne le sont pas. Nous savons qu'il existe dans Z un
faisceau de première classe Si a appartient à #x, posons
a' a et V — b. Si a n'appartient pas à <Plr désignons par a'
l'élément commun aux faisceaux <P1 et <P (a, b). Dans tous les cas,
on peut écrire:

ab a'.a' ab — ar bf, bf a' abed> (a b), b' =£ c

Désignons alors par e l'élément commun à et #(&', c). Posons

f eb'ceZ. On peut écrire:

abcd a'b' cd a' e.ebf c.d af e.fd

Lorsque /(c, /, d), la démonstration est achevée. Sinon désignons

par g l'intersection des faisceaux d>1 et $(/, d), et posons:

r a'ege<P1; s gfde$(f,d).
On a alors:

abcd a'e.fd a' eg.gfd rs C.Q.F.D.

Il convient de souligner que la démonstration de cette
proposition ne fait pas intervenir l'axiome P III. Lorsqu'on fait
usage de cet axiome, on peut affirmer l'existence dans Z de

plusieurs faisceaux de première classe. Plus précisément, on peut
montrer que toute réflexion appartient à deux faisceaux de

première classe, au moins. Prenons en effet un faisceau de

première classe et une réflexion 5 n'appartenant pas à

Choisissons un élément a dans et soit u un élément bissecteur
de a et s. Le faisceau est de première classe. Comme il
contient 5, il est distinct de L'élément commun à et u^-^u
appartient à deux faisceaux de première classe distincts. En
vertu de l'axiome de bissection, il en est de même de toute
réflexion.
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1,6. Il est facile de reconnaître les éléments involutifs propres
de G. Comme G est de dimension 2, tout élément propre de G

peut se mettre sous la forme ab, où a, bel. Pour que ab soit

involutif, il faut que a et b commutent. En géométrie-
euclidienne plane, cela revient à exiger que les axes des réflexions

a et & soient confondus ou perpendiculaires. Nous conviendrons
donc d'appeler perpendiculaires deux réflexions distinctes qui
commutent. La relation ainsi définie dans I est symétrique.
De plus, elle est invariante pour les automorphismes intérieurs
de G. En effet, soit a, b et s trois réflexions, a et b étant
perpendiculaires ; sas et sbs sont des réflexions distinctes et :

sas.sbs sabs sbas sbs.sas

Nous allons énoncer un théorème d'existence au sujet des

éléments perpendiculaires de I", mais il convient auparavant
d'établir un lemme.

Lemme. Soit G un Rl-groupe engendré par un ensemble distingué

I de réflexions satisfaisant Vaxiome de bissection. Pour que
tous les éléments d'un même faisceau commutent avec une
même réflexion s, il faut et il suffit que s nyappartienne pas à

$ et que les faisceaux $ et s$s soient confondus.

Montrons d'abord la nécessité de ces conditions. Prenons un
faisceau $ dont tous les éléments commutent avec une même
réflexion s. Il est clair que les faisceaux $ et s<Ps sont confondus.
Soit a un élément de # distinct de s. Si «9 était contenu dans $,
tout élément bissecteur de a et «9 appartiendrait à <P sans toutefois

commuter avec ,9. Donc 5 n'appartient pas à $.
Réciproquement, considérons un faisceau $ et une réflexion

5 n'appartenant pas à # telle que les faisceaux # et s$s coïncident.

Prenons dans <P un élément quelconque x. Il résulte des

hypothèses que x' sxs appartient aussi à <P. Les réflexions
x et x' sont confondues, car sinon s appartiendrait à #(z, x') <$>.

Par suite, x commute avec i, Comme ,9 n'appartient pas à $, on
peut même affirmer que s et x sont perpendiculaires. C.Q.F.D.

Nous dirons qu'un faisceau <£> est entièrement perpendiculaire
à une réflexion «9 quand chaque élément de # est perpendiculaire
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à s. Pour qu'il en soit ainsi, il faut et il suffît que <P ne contienne

pas «9 mais en revanche qu'il contienne deux éléments distincts
perpendiculaires à s, en vertu du lemme précédent.

Proposition 5. Soit une réflexion s et un faisceau de première
classe ne contenant pas s; <P± contient au moins un élément

perpendiculaire à s; s'il en contient plus d'un, il est entièrement

perpendiculaire à s.

Considérons le faisceau de première classe sd^. Lorsque d>±

et sd^ sont distincts, leur élément commun t commute avec s.

Comme s n'appartient pas à dt, 5 et t sont perpendiculaires.
Lorsque d± et sd^ sont confondus, d>1 est entièrement

perpendiculaire à s, comme l'indique le lemme ci-dessus. Cela se

produit dès que d± contient deux éléments distincts perpendiculaires

à s. C.Q.F.D.
Il convient de remarquer que, quel que soit le faisceau de

première classe dlr on peut trouver une réflexion «9 non contenue
dans d± et perpendiculaire à un seul élément de dv En effet,
soit a un élément de d x et b une réflexion non contenue dans

il suffit de prendre pour s un élément bissecteur de a et b.

Proposition 6. Tout faisceau de première classe contient au
moins quatre éléments distincts.

Soit un faisceau de première classe, b un élément de dx
et s une réflexion non contenue dans d1 et non perpendiculaire
à b. Soit a l'élément de d± perpendiculaire à ,9. La réflexion
b' — sbs est contenue dans sd-^s, mais elle n'appartient ni à

d(a, b) <P1 ni à d(a, s).
Considérons un élément bissecteur t de a et 5; il est distinct

de a et de «9 et il ne leur est pas perpendiculaire. Il s'ensuit que
la réflexion t' sts est distincte de a, de s et de t. Les réflexions

a, s, t et t' appartiennent à un même faisceau qui ne contient pas
b'. Par suite les faisceaux d(bf a), d(bf «9), d(b\ t) et d(bf t') sont
distincts. Comme b' n'appartient pas à #l7 les intersections de

ces faisceaux avec d1 fournissent quatre éléments distincts
de dx. C.Q.F.D.
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Corollaire. Toute réflexion appartient à quatre faisceaux distincts

au moins.

On vient de voir, en effet, que c'est le cas de b' ; c'est vrai par

conséquent pour toute réflexion, en vertu de l'axiome P III.

Fig. 1.

Proposition 7. Soit une réflexion s et un faisceau de première
classe <P1 contenant s. Il existe dans <P1un élément perpendiculaire

as, au moins.

Nous savons que la réflexion s appartient au moins à quatre
faisceaux; deux d'entre eux au moins, soit $1 et sont de

première classe. Il existe donc une réflexion a non perpendiculaire

à s et n'appartenant à ni d>1 à ni Soit u un élément
bissecteur de a et s. Les faisceaux u$xu et ud>tu contiennent a
mais pas s. En vertu de la proposition 5, ces faisceaux
contiennent chacun un élément perpendiculaire à s. Soit b et c ces

éléments; ils sont distincts car a, qui n'est pas perpendiculaire
à s, est le seul élément commun à uQpi et u$fu. Le faisceau

c), qui contient deux éléments distincts perpendiculaires
à s, est entièrement perpendiculaire à 5. 11 est distinct de <PV
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Par suite la réflexion t commune à $1 et <P(b, c) répond aux
conditions de l'énoncé. C.Q.F.D.

Fig. 2.

Corollaire. A toute réflexion, on peut faire correspondre au
moins deux réflexions qui la coupent perpendiculairement et qui
déterminent avec elle des faisceaux distincts.

Proposition 8. Deux réflexions perpendiculaires se coupent.

Soit a et s deux réflexions perpendiculaires. On peut trouver
une réflexion b coupant .s, perpendiculaire à s, et telle que
<P(s, a)^z^(s1b). Le faisceau $(a, b) est entièrement perpendiculaire

à 5. Prenons un élément bissecteur u de a et b. Il appartient
à <P(a, b) ; il est donc perpendiculaire à 5. L'automorphisme
intérieur de G associé à u envoie b sur a et laisse s fixe. Par conséquent
<P(a, s) u<P(b, s)u. Comme #(è, 5) est de première classe, il en est
de même de $(a, s). C.Q.F.D.

Corollaire. Toute réflexion appartient à trois faisceaux de

première classe, au moins.

En effet, dans la démonstration précédente le faisceau #(a, b)

contient u mais pas 5. Comme les éléments a,b et u sont distincts,
il en est de même des faisceaux $(s, a), #(s, b) et #($, u). La
proposition 8 affirme qu'ils sont de première classe.
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Proposition 9. Soit une réflexion s et un faisceau de première

classe contenant s; $xne contient qu^un seul élément

perpendiculaire à s.

D'après la proposition 7, tout faisceau de première classe

contenant s possède au moins un élément perpendiculaire à s.

D'autre part, soit x et x' deux éléments perpendiculaires à s

tels que x) x'), et soit u un élément bissecteur de x et

x\ Le faisceau <P(x, x') étant entièrement perpendiculaire à s,

u est perpendiculaire à 5. L'automorphisme intérieur de G associé

à u laisse s fixe et transforme l'un en l'autre les faisceaux <P(s, x)
et x'). Il résulte immédiatement de là que si l'un des

faisceaux de première classe contenant «9 ne possède qu'un seul

élément perpendiculaire à 5, il en est de même de tous les autres.
Soit r une réflexion distincte de s et non perpendiculaire à s.

Il existe un faisceau de première classe contenant r mais pas «9.

Prenons dans ce faisceau l'élément a perpendiculaire à s. Admettons,

par absurde, que le faisceau de première classe #(s, a)
contienne un élément b distinct de a et perpendiculaire à s. Il existe
une réflexion c perpendiculaire à s et n'appartenant pas à #(s, a).
Le faisceau $(è, c), qui ne contient ni a, ni 5, est entièrement
perpendiculaire à 5. En particulier, l'élément d commun à

#(a, r) et #(ô, c) est perpendiculaire à s. Le faisceau #(a, r)
contient donc deux éléments distincts perpendiculaires à s,

Fig. 3.
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soit a et d, et un élément non perpendiculaire à s, soit r, ce qui
est absurde. Il en résulte que $(s, a) ne contient qu'un seul
élément perpendiculaire à Comme on l'a vu, cela implique
qu'il en est de même pour tout faisceau de première classe <P1

contenant 5. C.Q.F.D.

1.7.

Proposition 10. Uensemble des éléments de 1 perpendiculaires
à une même réflexion constitue un faisceau.

En vertu de la proposition 7 et du corollaire de la proposition
8, il existe trois réflexions distinctes a, b et c perpendiculaires à

une même réflexion s. Le faisceau $(a, b) est entièrement
perpendiculaire à s. Il suffit donc de montrer que a, b et c sont
incidentes. Considérons l'élément c' commun aux faisceaux
distincts $(a, b) et <P(c, s). Il est perpendiculaire à s comme tout
élément de #(a, b). Il résulte alors des propositions 8 et 9 que
c' est confondu avec c, donc que a, b et c sont trois réflexions
incidentes. C.Q.F.D.

Convenons d'appeler système polaire de la réflexion s et dénoter
n(s) le faisceau formé des réflexions perpendiculaires à s. La
réflexion s est une base de II(s). Tout élément de <P est une base

d'un système polaire bien déterminé. Cependant, il peut arriver
que les systèmes polaires de deux réflexions distinctes coïncident.

Remarquons que, s'il existe des faisceaux de seconde classe

dans Z, toute réflexion s appartient à l'un d'eux, au moins. En
effet, soit <P'2 un faisceau de seconde classe contenant une
réflexion a distincte de s. Si l'on désigne par u un élément
bissecteur de a et «9, il est clair que le faisceau de seconde classe

<p2= u<P'2u contient 5. Nous pouvons en déduire, en particulier
que le système polaire II(s) est de seconde classe. Car, sans cela,
l'élément commun à II(s) et <P2 serait une réflexion perpendiculaire

à s mais ne coupant pas s, contrairement à la proposition 8.

Ainsi, quand 1 contient des faisceaux de seconde classe, tout
système polaire est de seconde classe. Signalons toutefois qu'il
peut éventuellement se trouver dans I des faisceaux de seconde

classe qui ne sont pas des systèmes polaires.
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Lorsque deux réflexions distinctes s et £ ont le même système

polaire, elles ne se coupent pas. En effet, si a est un élément

quelconque de TI(s), le système polaire de a est <P(s, t) en vertu de la

proposition 10. L'intersection de 11(a) et II(s) est vide, sinon il
existerait dans 11(a) #(s, t) un élément perpendiculaire à s et

t à la fois, contrairement aux propositions 8 et 9. Par suite,

$(s, t) est de seconde classe. On peut déduire de là que, lorsqu'il
n'existe pas de faisceau de seconde classe dans I, Ja correspondance

entre les réflexions «9 et les systèmes polaires Il(s) est

biunivoque.

1.8. Nous sommes maintenant en mesure de donner plus de

détails au sujet des éléments bissecteurs de deux réflexions.

Commençons par établir un lemme.

Lemme. Soit u, v et x trois réflexions incidentes. La condition
nécessaire et suffisante pour que uvx soit perpendiculaire à

x est que u et y soient elles-mêmes perpendiculaires.

Nous avons vu que la condition nécessaire et suffisante pour
qu'un élément de dimension 1 dans G soit involutif est que,
lorsqu'il est mis sous la forme ab, où a, bel, les réflexions a et b

soient perpendiculaires. Supposons donc que u et v sont
perpendiculaires. Alors uv et xuvx sont des éléments involutifs de

dimension 1. Par hypothèse, uvx est une réflexion; nous pouvons
affirmer qu'elle est perpendiculaire à x. Réciproquement, si x et

uvx sont deux réflexions perpendiculaires, uvx.x uv est un
élément involutif de dimension 1 dans G; il en résulte que u et
v sont perpendiculaires. C.Q.F.D.

Proposition 11. Deux réflexions non sécantes ont exactement
un élément bissecteur. Deux réflexions sécantes ont exactement
deux éléments bissecteurs, qui sont perpendiculaires.

Soit a et b deux réflexions distinctes. Nous savons qu'elles
ont au moins un élément bissecteur u. Admettons qu'il existe
un élément bissecteur v de a et b distinct de u. Nous pouvons
observer que u et v appartiennent tous deux au faisceau $(a, b)

et que, par suite, uva est une réflexion. Comme:
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a uvavu uva.a.avu uva.a.uva

ma est une réflexion perpendiculaire à a. Donc u et v sont
perpendiculaires en vertu du lemme précédent.

Nous déduisons de là que, lorsque a et à ne se coupent pas,
elles ne possèdent qu'un seul élément bissecteur. En revanche,
quand elles se coupent, elles ne sauraient en avoir plus de deux.
Il nous faut montrer qu'elles en ont effectivement deux dans ce

cas. Prenons l'élément u' perpendiculaire à u dans le faisceau de

première classe <P(a, b). Comme uu'a est une réflexion, on peut
écrire :

uu'.a.u'u nu' a.u'a — au' u.ur u — a

et, par suite:

b iiau u' au'

Donc u' est aussi élément bissecteur de a et b. C.Q.F.D.

Proposition 12. Lorsqu'il existe des faisceaux de seconde classe

dans le centre de G se réduit à l'élément neutre I. Lorsque
1 ne contient que des faisceaux de première classe, le centre de

G est d'ordre 2.

Nous savons que Ine contient pas d'élément du centre de G.

Recherchons alors les éléments centraux propres de G. Soit ab

l'un d'eux, où a, bel. Comme ab commute avec a, {ab)2 I.
Par suite, a et b sont confondus ou perpendiculaires. Si a et à

étaient perpendiculaires, on pourrait trouver une réflexion s non
incidente avec a et à, perpendiculaire à a mais pas à b. On

pourrait alors écrire:

ba.s.ab bsb ^ s

ce qui serait absurde. 11 s'ensuit que a et b sont confondus et que

/ est le seul élément central propre de G.

Le carré d'un élément central de dimension 2 est un élément
central propre. Ce qui précède montre qu'un tel élément est in-
volutif. Nous sommes donc conduits à la recherche des éléments
involutifs de dimension 2 dans G. Soit A l'un d'eux et soit x une
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réflexion arbitraire. On peut poser: A xyz, où x, y et z sont

trois réflexions non incidentes. Comme A est involutif, on a:

xyx zy.xzx

ce qui montre que les réflexions xyx et xzx appartiennent au
faisceau <P(y, z). En vertu du lemme de la proposition 5, <P(y, z)

est entièrement perpendiculaire à x. Par suite:

(yz)2 xyz.xyz A2 I.
Donc y et z sont perpendiculaires et le système polaire $(?/, z)

de x est de première classe. Prenons un élément quelconque y'
dans <P(y, z) et posons z' y'yz. D'après ce qui précédé, A xy'z'
et z' est la réflexion perpendiculaire à y' dans $(y, z). D'autre
part, A commute avec x; et comme x est arbitrairement choisi
dans Z, A est un élément central de G.

En résumé G ne possède d'élément central distinct de / que
lorsque les systèmes polaires sont de première classe, autrement
dit quand il n'existe pas de faisceaux de seconde classe dans L.
Dans ce cas, G ne contient qu'un seul élément de cette espèce.

C.Q.F.D.

Corollaire. Lorsqu'il contient des faisceaux de seconde classe,

I constitue V ensemble de tous les éléments involutifs impropres
de G. Dans le cas contraire, il existe dans G un élément involutif
impropre nyappartenant pas à Z, et un seul. Cet élément
engendre le centre de G. Il peut être mis sous la forme abc, où

a, b et ù sont trois réflexions deux à deux perpendiculaires.

2. L'axiome d'Euclide

2.1 Les axiomes précédents ne permettent aucune conclusion
quant à l'existence de faisceaux de seconde classe dans Z,
particulièrement de ceux d'entre eux qui ne sont pas des systèmes
polaires, et que nous qualifierons de singuliers. Remarquons à ce

propos que si l'on admet l'existence de faisceaux singuliers dans
I, toute réflexion appartient à deux d'entre eux, au moins. En
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