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1. Les quatre premiers axiomes de la géométrie plane

1.1 On dit qu'une partie X d’un groupe G engendre G (au sens
étroit) lorsque tout élément de G peut s’écrire d’'une maniére au
moins sous forme du produit d’un nombre fini d’éléments de X.
On peut ainsi remplacer chaque élément de G par un mot dont
les lettres sont des éléments de X. Comme G est un groupe,
chacun de ses éléments peut étre représenté par plusieurs mots
différents. On appelle relations de structure de G relativement
a 2 l'ensemble des égalités par lesquelles on donne les mots
représentant I’élément neutre / de G. Le groupe G est déterminé
quand on se donne ’ensemble X et les relations de structure de
G relativement & X.

Considérons un groupe G, d’élément neutre /, possédant les
propriétés suivantes:

1) G est engendré par un ensemble X formé d’éléments in-
volutifs de G. Nous désignerons les éléments de X par des
lettres minuscules: a, b, ...

2) Les relations de structure de G relativement & X expri-
ment toutes I par des mots d’'un nombre pair de lettres.

Nous appellerons réflexions les éléments de X et nous dirons que
G est un « groupe engendré par des réflexions » ou plus simple-
ment un R-groupe. Nous utiliserons la notation (G, X) pour pré-
ciser que G est un R-groupe engendré par 'ensemble de réfle-
xions Z. ‘

Les relations de structure du R-groupe G relativement & X
peuvent prendre deux formes:

a) x> =1 xeX ,
aeX;i =1,2,..,2n,

b)a,a,...a,, =1;n>1
) 142 2 aj¢aj+1;j=1,2,...,2n—1.

A titre d’exemple, on peut se donner arbitrairement un ensemble
2 non vide et se borner aux relations de structure de la forme a).
On obtient ainsi le R-groupe libre engendré par X.
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En vertu de la propriété 2), les longueurs des mots repré-
sentant un méme élément du R-groupe (G, X) ont toutes la méme
parité. On appellera propres les éléments de G représentables par
des produits d’un nombre pair de réflexions et impropres les
autres. Les éléments propres de (G, 2) forment un sous-groupe
(distingué) G, d’indice 2 dans G, que nous appellerons la com-
posante propre de (G, X). On obtient tous les éléments impropres
de (G, X) en prenant la classe aG,, ot ¢ est un élément arbitraire-
ment choisi dans Z.

Considérons un groupe H d’élément neutre I, engendré par
un ensemble non vide £ d’éléments involutifs. Introduisons le
groupe multiplicatif C d’ordre 2, formé des éléments +1 et —1.
Soit £’ I'ensemble des couples (e, —1), avec a eE. Considérons
la loi1 de formation suivante:

(al > _1) (612, —1)...(61,,, '—1) = (al a _“an,(——l)"); aiEE'

Les éléments ainsi construits constituent manifestement un
R-groupe H', d’élément neutre (/,+1), engendré par £’. Lorsque
H est lui-méme un R-groupe engendré par E, H' est isomorphe
a H. Dans le cas contraire, /I’ est isomorphe au produit direct
de H et C; H est isomorphe a la composante propre de (H', E’).
Nous dirons que (H’, E’) est le R-groupe naturellement associé
a H. ,

Dans le méme ordre d’idées, bornons-nous a signaler un fait
intéressant: quel que soit le groupe g, il existe au moins un R-
groupe (G, X) dont la composante propre est isomorphe d g.

A tout élément T d’un R-groupe (G, X) on peut associer un
automorphisme intérieur de G défini par:

X->T YXT.

Cet automorphisme est banal lorsque 7 appartient au centre
de G. Il est involutif chaque fois que I’on prend pour 7 un é1é-
ment non central de X'; on dit dans ce cas que 'on a affaire & un
' automorphisme intérieur spécial de G. Tout automorphisme
intérieur de G peut étre considéré comme le produit d’un nombre
fini d’automorphismes intérieurs spéciaux de G. Une partie de G
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est dite distinguée quand elle est stable pour les automorphismes
intérieurs de G. Pour qu’il en soit ainsi, il faut et il suffit qu’elle
soit stable pour les automorphismes intérieurs spéciaux de G.

Considérons un R-groupe (G, X). La plus petite partie dis-
tinguée X’ de G contenant X s’obtient en formant la réunion des
images de X par les automorphismes intérieurs de G. I1 en résulte
que 2’ est formée d’éléments involutifs impropres de (G, Z).
Par suite, G peut étre considéré comme un R-groupe engendré par
X’. Les propriétés de (G, ) auxquelles nous nous attacherons
surtout concernent en fait (G, 2’). C’est pourquoi nous substi-
tuerons systématiquement l'étude de (G, X’) a celle de (G, -2)
lorsque X # 2’. Nous n’introduisons pas de restriction essen-
tielle en admettant que, par la suite, nous ne considérerons que
des R-groupes engendrés par des ensembles distingués de réflexions.

Dans un R-groupe (G, X), nous appellerons dimension d’ un
élément X différent de I’élément neutre [ le plus petit entier
rationnel r tel que I'on puisse représenter X par un produit de
r--1 éléments de 2. Nous attribuerons & / la dimension —1. La
dimension du R-groupe (G, X) est le maximum de la dimension
de X lorsque X parcourt G. Par exemple, le groupe des permuta-
tions finies d’un ensemble infini1 £ (chacune d’elles laissant fixes
tous les éléments de £ sauf un nombre fini d’entre eux) est en-
gendré par les transpositions (permutations effectives portant
sur deux éléments) de £; comme tel, ¢’est un R-groupe de dimen-
sion infinie. Les groupes finis d’ordres 1 et 2 peuvent étre regardés
comme des R-groupes de dimensions respectives —1 et O; par la
suite, nous qualifierons ces R-groupes de « banals ».

Nous sommes maintenant en mesure d’énoncer le premier
axiome concernant le groupe fondamental G d’une géométrie
euclidienne plane.

Axiome P I. Le groupe G est un R-groupe non banal engendré
par un ensemble distingué X de réflexions

Le R-groupe G n’étant pas banal, nous savons que X contient
au moins deux éléments distincts.
1.2. Soit un ensemble £ et une relation ternaire : définie dans E.
Le fait que trois éléments a, b et ¢ de E, pris dans cet ordre,
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vérifient la relation ¢ se note «(a, b, ¢). On dit que 1 est une relation
d’ incidence (ternaire) lorsqu’elle satisfait les conditions suivantes:

1) Elle est symétrique : (a, b, ¢) implique «(c, b, a) et «(b, a, ¢).

2) Elle est réflexive: u(a, a, b) quels que soient a, b e E.

3) Elle est transitive: quand a et b sont deux éléments
distincts de E, «(a, b, ¢) et i(a, b, d) impliquent «(a, ¢, d).

Les relations d’incidence se rencontrent en géométrie élémen-
taire; ¢’est, par exemple, dans ensemble des points du plan, le
fait pour trois points d’appartenir & une méme droite; ou dans
Iensemble des droites du plan le fait pour trois droites d’avoir
un point commun ou une direction commune.

Revenons au R-groupe G. Le fait que le produit de trois
réflexions est une réflexion définit une relation ternaire dans X.
Soit a, b, ¢, trois éléments de ¥ tels que abc € X. Alors:

cba = (abc)™' = abceX,

bac = c(cba)c = c(abc)cel,

ou 'on fait usage du fait que X est une partie distinguée de G.
D’autre part, il est évident que aab est dans 2 quelles que soient
les réflexions a et b. La relation ternaire considérée est donc
symétrique et réflexive. Il n’est pas possible de prouver que la
condition de transitivité est aussi satisfaite. C’est l'objet de
I’axiome suivant.

Axiome P II (Axiome d’incidence). Le fait que le produit de
trois réflextons est une réflexion définit dans X une relation
d’ incidence.

Nous appellerons RI-groupe tout groupe satisfaisant les
axiomes P [ et P II. Nous adopterons les notations ci-dessus:
sia, b, ce X, a, b, c) signifie que abc € X et 'on dit que a,bet ¢
sont incidents.

La relation d’incidence : dans X est conservée par les trans-
formations induites dans X parles automorphismes intérieurs de
G. 11 suffit évidemment de le vérifier pour les automorphismes
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intérieurs spéciaux de G. Soit alors a, b, ¢ tels que «(a, b, ¢) et soit
s une réflexion quelconque:

(sas) (sbs) (scs) = s(abc)sel,

ou I'on utilise le fait que X est une partie distinguée de G. Par
suite (sas, sbs, scs).

Plagons ici une remarque. On peut considérer une notion
d’incidence plus générale. Admettons que, dans un ensemble F,
pour tout entier naturel n, on a défini une relation R, en choisis-
sant dans E" une partie P,; on note R, (a4, a,, ..., a,) lorsque
Iélément (a4, ay, ..., a,) de E" appartient a P,, et R,(a, a,, ..., a,)
dans le cas contraire. Nous disons que les relations R,, R,, ...,
R,, ... déterminent une incidence (générale) dans £ quand les
conditions suivantes sont satisfaites:

1) Ry(a), VaekE.

2) Symétrie: pour tout entier naturel n et st a; € £, R,(a,
@y, ... , @) implique R,(a;, a;, ..., a;,), ou (i4, iy, ..., 1,) est une
permutation quelconque des indices (1, 2, ..., r).

3) Réflexivité : pour tout entier naturel n et quels que soient
les a; dans E, R (a, ay, @y, ..., @Gy q)-

4) Transitivité: pour tout entier naturel n supérieur a 1, les
conditions R,_ (ay, @y ..., @y_q) b Ray, a9y ..., @u_y, by,
ouk=1,2,...,n,eta;b, ek, impliquent R, (b4, by, ..., b,).

Ainsi, une relation d’équivalence dans £ peut étre assimilée
& une incidence pour laquelle R (a,, @,, ..., a,) quels que soient
a; € E, dés que n > 2. Dans I'ensemble des éléments non nuls
d’un espace vectoriel, la dépendance linéaire est une incidence.

Soit un R-groupe (G, X); nous disons qu’il satisfait la condi-
tion J, ou encore qu’il est un RJ-groupe, si 'on définit une inci-
dence générale dans X en posant, pour tout n naturel, R, (a,,
ay, ..., a,) dés que dim (aa, ... a,) < n-1, avec a;€Z. On voit
quun RI-groupe de dimension 2 est un RJ-groupe. On peut
aussi dire qu'un R/-groupe est un R-groupe (G, X) tel que 'on
introduit une incidence générale dans X en posant:

HSin=1,2,3:Rlay ..., a,) quand dim(a; ... a,)<n-i,
2) Sin>3 | : Rn('al, o a,) VaeX. GE2.
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1.3. Soit a et b deux réflexions distinctes. Nous appellerons
faisceau déterminé par a et b et nous noterons @(a, b) ’ensemble
des éléments de X incidents avec a et b. Il est clair que &(a, b)
contient a et b et qu’il est identique & &(b, a).

PropositioN 1.  Un faisceau est entiérement déterminé par deux
quelconques de ses éléments, pourvu qu’ils soient distincts.

Prenons deux éléments distincts x et y dans un faisceau
®@(a, b), a et b étant deux réflexions distinctes. On peut supposer
sans restriction que a et y sont distincts. Nous voulons prouver
que les faisceaux &(a, b) et P(x,y) coincident. Soit s un élément
arbitraire de ®(a, b). On peut écrire:

(1) (a, by2) () e, by)  (3) Ua, b, s)

En vertu de ’axiome P /7, on peut tirer de (1) et (2):

(4) «(a, z,y) (D) ub, 2, y)

ce qui montre que chacun des deux faisceaux contient les é1é-
ments déterminant I’autre. Par suite, il suffit de prouver que 'un
de ces faisceaux contient autre. De (2) et (3), on tire 1(q, v, $);
en associant ce fait a (4), on voit que (z, y, s), ou l'on tient
compte du fait que a # y. Par conséquent &(a, b) = &(z, y).
C.Q.F.D.

CoROLLAIRE. Soit a, b et ¢ trois réflexions distinctes telles que
a = cbe. Chacune d’elles appartient au faisceau déterminé par
les deux autres.

En effet, acb = c¢; donc ced(a, b). Le reste se déduit de la
proposition 1.

Lorsque I'on ne désirera pas mettre en évidence un couple
particulier d’éléments déterminant un faisceau, on désignera
celui-ci par la seule lettre .
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PropositioN 2. Soit G un Rl-groupe non banal engendré par
un ensemble distingué X de réflexions et soit ® un faisceau
dans X. Le groupe engendré par ® est un Rl-groupe g(®) de
dimension 1. Les éléments propres de g(®) forment un sous-
groupe abélien go( D).

Désignons par a et b deux réflexions déterminant ¢:
@ = &(a, b). Montrons d’abord que, quels que soient z, y, et zdans
@, le produit zyz est également dans @. Quand x = y, zyz = zed.
Quand z # y, les faisceaux @ et &(zx, y) sont confondus en vertu
de la proposition 1. Par suite zyz est une réflexion. Comme
yr.xyz = zeX, xyz appartient a @(z, y), donc a .

Désignons alors par g(®) ’ensemble des mots formés avec des
éléments de @. Il résulte de ce qui précede que ’on peut obtenir
g(®) en prenant tous les mots d’'une ou deux «lettres» prises
dans @. Quels que soient z, ye®, x~ ' = z et (xy)~' = yx. Donc
g(®) est un groupe engendré par &. Il résulte de la premiére
partie de la démonstration que @ est une partie distinguée de
g(®). Comme I'élément neutre / de G ne peut étre représenté par
le produit d’un nombre impair d’éléments de X, g(®) est un R-
groupe. De plus, quels que soient z, y et z dans @, i(x, vy, z).
Donc g(®) est un R/-groupe de dimension 1.

I’ensemble go(P) des éléments propres de g(®) forment un
sous-groupe d’indice 2 dans g(®). Prenons arbitrairement A
dans go(®) et u dans @. On peut affirmer que Au = v et ud = w
sont des éléments de @. Ainsi tout élément A de go(P) peut se
mettre sous les deux formes ¢u et uw, avec u, ¢, wed, u étant
arbitrairement choisi. On en déduit que 'automorphisme inté-
rieur de g(®) associé & u envoie tout élément de go(P) sur son
nverse:

udu = u(vu)u = uv = A~

IT résulte immédiatement de 1a que go(®) est abélien. On peut le
voir en prenant quatre éléments c, d, e et f dans @ et en obser-
vant que:

(cd)(ef) (cd)™" = c(d.ef.d)c = cfe.c = ef,
C.Q.F.D.



Rappelons le fait suivant que nous avons démontré en
passant: '

COROLLAIRE. Quand X,V et z sont trois éléments d’un faisceau P,
le produit xyz appartient a P.

Les faits que nous venons de voir ont une illustration tres
simple en géométrie élémentaire. Lorsque a et b sont deux
réflexions d’axes concourants, ®(a, b) est ’ensemble des réflexions
dont les axes passent par I'intersection de ceux de a et b. Lorsque
les axes de a et b sont paralléles, &(a, b) est I'ensemble des
réflexions dont les axes ont la méme direction que ceux de a et b.
Soit z, y et z trois réflexions dont les axes respectifs X, 7, et Z
sont concourants. Le produit ¢ = xyz est une réflexion dont I’axe
7 est la conjuguée 1sogonale de y par rapport & X et z.

La géométrie élémentaire étudie la transformation ou in-
version isogonale par rapport & un triangle ABC. Son existence
repose sur le théoréeme suivant: soit x, y et z trois droites passant
respectivement par C, A et B; soit 2’ la conjuguée isogonale de
x par rapport & CA et CB, y' celle de y par rapport & AB etAC,
et z’ celle de z par rapport & BC et BA. Si z, y et z sont incidentes
(concourantes ou de méme direction), il en est de méme de z’,
y' et z’. La transformation isogonale considérée associe au point
d’intersection de x, y et z celui de «’, ¥y’ et z’, quand ils existent.
Il est facile de voir que le théoreme cité est un cas particulier
de la proposition suivante qui concerne les R-groupes en géné-
ral: |

Soit G un R-groupe engendré par un ensemble distingué X
de réflexions. Soit a, b, ¢, x, y et z six réflexions telles que: ' = axb,
y' = byc, 2’ = cza et t = xyz soient dans X'; alors ¢’ = x'y'z’ est
aussi dans Z.

En effet: 2'y'z" = axb.byc.cza = a.xyz.a €a Ya =23

1.4. Nous appellerons élément bissecteur de deux réflexions
distinctes a et b tout élément u de Z tel que a = ubu. I est clair
que b = uau et que u est distinct de a et de b. Nous sommes
maintenant en mesure de poser le troisiéme axiome concernant
le groupe G, axiome qui est assez restrictif.

L’Enseignement mathém., t. X, fasc. 1.

o
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Axiome P III (axiome de bissection). Toute paire de réflexions
distinctes admet au moins un élément bissecteur.

L’axiome P III implique d’abord que & ne contient aucun
élément central de G. De plus, 'ensemble des automorphismes
intérieurs de G agit transitivement dans X. On aurait pu tenter
de remplacer I’axiome P III par 'hypothése suivante, apparem-
ment moins restrictive:

(1) Il existe dans X un élément a tel que, quel que soit s
différent de a dans 2, a et s admettent au moins un
élément bissecteur.

Mais il est facile de voir que, moyennant ce qui précede, (1) en-
traine la validité de I'axiome P III dans G. En effet, soit b et ¢
deux réflexions distinctes et différentes 'une et I'autre de a.
Soit u un élément bissecteur de a et b et posons ¢’ = ucu. Si ¢’
= @, posons ¢ = a; sl ¢’ # a, soit ¢ un élément bissecteur de a
et ¢’. Alors

| ¢ = uc'u = uvav.u = uvu.b.uvu ,

et uvu est un élément bissecteur de b et c.

Tout faisceau contient les éléments bissecteurs de chacune
de ses paires d’éléments distincts, d’apres le corollaire de la pro-
position 1. Par suite, tout faisceau contient trois éléments
distincts, au moins.

1.5. Remarquons que la notion de faisceau ne se présente dans
2 que lorsque G est de dimension supérieure a zéro. Lorsque G
est de dimension 1, ¥ ne contient qu'un seul faisceau, et récipro-
quement. Par la suite nous ne nous intéresserons qu’aux cas ou
2 contient plusieurs faisceaux, et nous poserons un axiome a ce
sujet. Mais auparavant, il convient de poser quelques définitions.

Lorsque G est au moins de dimension 2, on peut trouver dans
Y trois éléments non incidents a, b et c. Cela implique qu’il
existe dans X au moins trois faisceaux distincts ®(a, b), @(b, c)
et @(c, a). L’intersection de deux faisceaux distincts comporte au
plus un élément; elle peut étre vide. Prenons un faisceau @. S’il
posséde un élément commun avec chacun des autres faisceaux
de X, on dit qu’il est-de premiére classe et on le note @,. Dans le
cas contraire, il existe au moins un faisceau de X disjoint de @;
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on dit alors que @ est de seconde classe et on le note @,. 11 résulte
immédiatement de la définition que §’il existe un faisceau de
seconde classe dans X, il en existe au moins deux.

PropositioN 3. Tout automorphisme intérieur de G transforme
un faisceau de X en un faisceau de méme classe.

Il suffit d’établir la proposition dans le cas des automor-
phismes intérieurs spéciaux. Désignons par ¢ 'automorphisme
intérieur de G associé & une réflexion s et soit un faisceau quel-
conque ®(a, b) de 2. Quel que soit x dans &(a, b), szs appartient
au faisceau ®(sas, sbs). Done o envoie &(a, b) dans P(sas, sbs).
Prenons y dans ®(sas, sbs). Comme sas, sbs et y sont incidents,
sys appartient au faisceau @(a, b). Mais o envoie sys sur y. Donc
o®(a, b) contient P(sas, sbs). Ce qui prouve que g transforme le
faisceau @(a, b) en.le faisceau @(sas, sbs).

Montrons encore que o transforme tout faisceau @ en un
faisceau de méme classe. Lorsque @ est de seconde classe, il
existe un faisceau @’ disjoint de @. Comme o est un automor-
phisme, 6@ et 0@’ sont disjoints. Donc o@ est de seconde classe.
Quand @ est de premiére classe, 0® n’est pas de seconde classe
car ¢ est une transformation involutive. C.Q.F.D.

En géométrie élémentaire plane, un faisceau de premieére
classe est I'ensemble des réflexions dont les axes passent par un
point donné; un faisceau de seconde classe est I’ensemble des
réflexions dont les axes ont une direction donnée. Pour I'instant,
nous ne sommes pas renseignés sur lexistence dans X de
faisceaux appartenant a 'une ou l'autre des deux classes. Pour
nous assurer I'existence de « points », nous allons poser 'axiome
sulvant:

Axiome P IV. (Axiome des faisceaux de premiére classe)
Dans Z, 1l existe au moins deux faisceaux dont un de premiére
classe.

Nous dirons de deux réflexions distinctes qu’elles se coupent

ou qu’elles sont sécantes lorsqu’elles déterminent un faisceau de
premiere classe.

L’axiome P IV entraine immédiatement un fait important.
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ProrositioN 4. Le R-groupe G est de dimension 2. -

Nous avons déja observé que Iexistence de deux faisceaux
distincts implique que la dimension de G égale au moins 2. Pour
établir qu’elle est exactement 2, il suffit de montrer que, quelles
que solent les réflexions a, b, c et d, le produit abed peut §’écrire
sous la forme rs, ou r et s sont des réflexions convenables. Le fait
est banal quand a, b et ¢ sont incidentes. Plagcons-nous donc dans
le cas ou elles ne le sont pas. Nous savons qu’il existe dans 2 un
faisceau de premiere classe @,. Si a appartient & &,, posons
a' = aet b’ =0. Si a n’appartient pas a &,, désignons par a’
I’élément commun aux faisceaux @, et @ (a, b). Dans tous les cas,
on peut écrire:

ab = a'.a’ab =a'b’, b’ = a"abed(a, D), b" #c.

Désignons alors par e ’élément commun & &, et &(b’, ¢). Posons
f = eb'ceX. On peut écrire:

abcd = a’'b'cd = a’e.eb’ c.d :'a’e.fd.

Lorsque (e, f, d), la démonstration est achevée. Sinon désignons
par g lintersection des faisceaux @, et &(f, d), et posons:

r=a'eged ;s = gfde®(f, d).

On a alors:
| abed = a'e.fd = a' eg.gfd = rs. C.Q.F.D.

Il convient de souligner que la démonstration de cette pro-
position ne fait pas intervenir 'axiome P III. Lorsqu’on fait
usage de cet axiome, on peut affirmer I’existence dans X de plu-
sieurs faisceaux de premiére classe. Plus précisément, on peut
montrer que toute réflexion appartient & deux faisceaux de
premiére classe, au moins. Prenons en effet un faisceau de pre-
miére classe &, et une réflexion s n’appartenant pas a &,.
Choisissons un élément ¢ dans @, et soit u un élément bissecteur
de a et s. Le faisceau u®,u est de premiere classe. Comme il con-
tient s, il est distinct de @,. I’élément commun & &, et udu
appartient & deux faisceaux de premiére classe distincts. En
vertu de 'axiome de bissection, il en est de méme de toute

réflexion.
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1.6. 11 est facile de reconnaitre les éléments involutifs propres
de G. Comme G est de dimension 2, tout élément propre de G
peut se mettre sous la forme ab, ou a, beZ. Pour que ab soit
involutif, il faut que a et b commutent. En géométrie. eucli-
dienne plane, cela revient & exiger que les axes des réflexions
a et b soient confondus ou perpendiculaires. Nous conviendrons
donc d’appeler perpendiculaires deux réflexions distinctes qui
commutent. La relation ainsi définie dans X est symétrique.
De plus, elle est invariante pour les automorphismes intérieurs
de G. En effet, soit a, b et s trois réflexions, a et & étant perpen-
diculaires; sas et sbs sont des réflexions distinctes et:

sas.sbs = sabs = sbas = sbs.sas .

Nous allons énoncer un théoréme d’existence au sujet des élé-
ments perpendiculaires de X, mais il convient auparavant
d’établir un lemme.

LemMme.  Soit G un Rl-groupe engendré par un ensemble distingué
> de réflexions satisfaisant I'axiome de bissection. Pour que
tous les éléments d’un méme faiscean & commutent avec une
méme réflexion s, il faut et il suffit que s n’appartienne pas a
& et que les faisceaux @ et s®s sotent confondus.

Montrons d’abord la nécessité de ces conditions. Prenons un
faisceau @ dont tous les éléments commutent avec une méme
réflexion s. Il est clair que les faisceaux @ et s@s sont confondus.
Soit ¢ un élément de @ distinct de s. Si s était contenu dans @,
tout élément bissecteur de a et s appartiendrait & @ sans toute-
fols commuter avec s. Donc s n’appartient pas & &.

Réciproquement, considérons un faisceau @ et une réflexion
s n’appartenant pas a @ telle que les faisceaux @ et sds coinci-
dent. Prenons dans @ un élément quelconque x. Il résulte des
hypothéses que z’ = sxs appartient aussi & &. Les réflexions
x et ' sont confondues, car sinon s appartiendrait & &(x, 2') = &.
Par suite, x commute avec s. Comme s n’appartient pas a @, on
peut méme affirmer que s et z sont perpendiculaires. C.Q.F.D.

Nous dirons qu'un faisceau @ est eniiérement perpendiculaire
a une réflexion s quand chaque élément de @ est perpendiculaire




a s. Pour qu’ll en soit ainsi, il faut et il suffit que & ne contienne
pas s mais en revanche qu’il contienne deux éléments distincts
perpendiculaires & s, en vertu du lemme précédent.

Prorosition 5. Soit une réflexton s et un faisceau de premiére
classe @ ne contenant pas s; @, contient au moins un élément
perpendiculaire a s; s’il en contient plus d’un, il est entiérement
perpendiculaire a s.

Considérons le faisceau de premiére classe s®,s. Lorsque &,
et s@s sont distincts, leur élément commun ¢ commute avec s.
Comme s n’appartient pas a @4, s et ¢ sont perpendiculaires.

Lorsque @, et s®;s sont confondus, ¢, est entierement per-
pendiculaire & s, comme l'indique le lemme ci-dessus. Cela se
produit dés que @; contient deux éléments distincts perpendi-
culaires a s. C.Q.F.D.

Il convient de remarquer que, quel que soit le faisceau de
premiere classe @, on peut trouver une réflexion s non contenue
dans @, et perpendiculaire a un seul élément de @,. En effet,
soit @ un élément de @ et b une réflexion non contenue dans @4
il suffit de prendre pour s un élément bissecteur de a et b.

ProrositioNn 6. Tout faisceau de premiére classe contient au
moins quatre éléments distincts.

Soit @, un faisceau de premiére classe, b un élément de @,
et s une réflexion non contenue dans @, et non perpendiculaire
a b. Soit a I’élément de &, perpendiculaire a s. La réflexion
b' = sbs est contenue dans s@,s, mais elle n’appartient ni a
®(a, b) = &, n1 a d(a, s).

Considérons un élément bissecteur ¢ de a et s; il est distinct
de a et de s et il ne leur est pas perpendiculaire. Il s’ensuit que
la réflexion ¢’ = sts est distincte de a, de s et de ¢. Les réflexions
a, s, t et ¢’ appartiennent a un meéme faisceau qui ne contient pas
b'. Par suite les faisceaux @(b’, a), (b, s), ¢(b', t) et &(b’, t') sont
distincts. Comme b6’ n’appartient pas a &, les intersections de
ces faisceaux avec @, fournissent quatre éléments distincts
de @,. C.Q.F.D.
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CoroLLAIRE. Toute réflexion appartient & quatre faisceaux distincts
auw Mmoins.

On vient de voir, en effet, que c’est le cas de b'; c’est Yrai par
conséquent pour toute réflexion, en vertu de Uaxiome p III.

Fig. 1.

Proposition 7. Soit une réflexion s et un faisceau de premiére
classe @, contenant s. Il existe dans &, un élément perpendicu-
laire a s, au moins.

Nous savons que la réflexion s appartient au moins & quatre
faisceaux:; deux d’entre eux au moins, soit ¢, et &;, sont de
premiére classe. Il existe donc une réflexion ¢ non perpendicu-
laire & s et n’appartenant & ni @, a ni &;. Soit u un élément
bissecteur de a et s. Les faisceaux u®,u et ud;u contiennent a
mais pas s. En vertu de la proposition 5, ces faisceaux con-
tiennent chacun un élément perpendiculaire a s. Soit b et ¢ ces
éléments; ils sont distincts car a, qui n’est pas perpendiculaire
a s, est le seul élément commun & ud,u et ud,u. Le faisceau
®(b, c), qui contient deux éléments distincts perpendiculaires
& s, est entierement perpendiculaire a s. 11 est distinct de @;.
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Par suite la réflexion ¢t commune & @, et &(b, ¢) répond aux con-
ditions de I'énoncé. C.Q.F.D.

CorOLLAIRE. A toute réflexion, on peut faire correspondre au
moins deux réflexions qui la coupent perpendiculairement et qui
déterminent avec elle des faisceaux distincts.

ProrositioNn 8. Deux réflexions perpendiculaires se coupent.

Soit a et s deux réflexions perpendiculaires. On peut trouver
une réflexion b coupant s, perpendiculaire & s, et telle que
@(s, a) # D(s, b). Le faisceau P(a, b) est entierement perpendicu-
laire & s. Prenons un élément bissecteur u de a et b. Il appartient
a ®(a, b); 1l est donc perpendiculaire a s. L’automorphisme inté-
rieur de G associé & u envoie b sur a et laisse s fixe. Par conséquent
d(a, s) = uP(b, s)u. Comme P(b, s) est de premiére classe, il en est
de méme de &(a, s). C.Q.F.D. |

CoroLLAIRE. Toute réflexion appartient a trois faisceaux de
premiére classe, au moins.

En effet, dans la démonstration précédente le faisceau &(a, b)
contient u mais pas s. Comme les éléments a, b et u sont distincts,
il en est de méme des faisceaux &(s, a), &(s, b) et &(s, u). La pro-
position 8 affirme qu’ils sont de premiere classe.
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ProposiTION 9. Soit une réflexion s et un faisceau de premiere
classe @, contenant s; @, ne contient qu'un seul élément per-
pendiculaire a s.

D’aprés la proposition 7, tout faisceau de premiére classe
contenant s posséde au moins un élément perpendiculaire & s.

D’autre part, soit z et 2’ deux éléments perpendiculaires & s
tels que &(s, x) # D(s, z’), et soit u un élément bissecteur de z et
z’. Le faisceau &(x, x') étant entiérement perpendiculaire a s,
u est perpendiculaire a s. L’automorphismeintérieur de & associé
a u laisse s fixe et transforme P'un en autre les faisceaux @(s, z)
et @(s, z'). Il résulte immédiatement de la que si I'un des fais-
ceaux de premiere classe contenant s ne possede quun seul
élément perpendiculaire & s, il en est de méme de tous les autres.

Soit r une réflexion distincte de s et non perpendiculaire & s.
Il existe un faisceau de premiére classe contenant r mais pas s.
Prenons dans ce faisceau I’élément a perpendiculaire a s. Admet-
tons, par absurde, que le faisceau de premiere classe (s, a) con-
tienne un élément b distinct de a et perpendiculaire a s. Il existe
une réflexion ¢ perpendiculaire & s et n’appartenant pas a @(s, a).
Le faisceau &(b, c¢), qui ne contient ni a, ni s, est entiérement
perpendiculaire & s. En particulier, I'élément d commun &
d(a, r) et ®(b, c) est perpendiculaire & s. Le faisceau &(a, r)
contient donc deux éléments distincts perpendiculaires a s,
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soit a et d, et un élément non perpendiculaire & s, soit r, ce qui
est absurde. Il en résulte que &(s, a) ne contient qu’un seul
élément perpendiculaire & s. Comme on ’a vu, cela implique
qu’il en est de méme pour tout faisceau de premiére classe @,
contenant s. C.Q.F.D.

1.7.

ProrosiTioN 10. L’ensemble des éléments de X perpendiculaires
a une méme réflexion constitue un faisceau.

En vertu de la proposition 7 et du corollaire de la proposition
8, 1l existe trois réflexions distinctes a, b et ¢ perpendiculaires &
une méme réflexion s. Le faisceau &(a, b) est entiérement per-
pendiculaire & s. Il suffit donec de montrer que a, b et ¢ sont in-
cidentes. Considérons I’élément ¢’ commun aux faisceaux
distincts ®(a, b) et &(c, s). Il est perpendiculaire & s comme tout
élément de &(a, b). Il résulte alors des propositions 8 et 9 que
¢’ est confondu avec ¢, done que a, b et ¢ sont trois réflexions
incidentes. C.Q.F.D. '

Convenons d’appeler systéme polaire de laréflexion s et de noter
II(s) le faisceau formé des réflexions perpendiculaires & s. La
réflexion s est une base de II(s). Tout élément de & est une base
d’un systeme polaire bien déterminé. Cependant, il peut arriver
que les systémes polaires de deux réflexions distinctes coinci-
dent.

Remarquons que, §’1l existe des faisceaux de seconde classe
dans X, toute réflexion s appartient a 'un d’eux, au moins. En
effet, soit @', un faisceau de seconde classe contenant une
réflexion a distincte de s. Si I'on désigne par u un élément bis-
secteur de a et s, il est clair que le faisceau de seconde classe
b, = ud’,u contient s. Nous pouvons en déduire, en particulier
que le systéme polaire II(s) est de seconde classe. Car, sans cela,
I’élément commun a II(s) et @, serait une réflexion perpendicu-
laire & s mais ne coupant pas s, contrairement a la proposition 8.
Ainsi, quand X contient des faisceaux de seconde classe, tout
systeme polaire est de seconde classe. Signalons toutefois qu’il
peut éventuellement se trouver dans 2 des faisceaux de seconde
classe qui ne sont pas des systémes polaires.
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Lorsque deux réflexions distinctes s et ¢ ont le méme systeme
polaire, elles ne se coupent pas. En effet, si a est un élément quel-
conque de II(s), le systéme polaire de @ est @(s, ¢) en vertu de la
proposition 10. L’intersection de II(a) et II(s) est vide, sinon il
existerait dans II(a) = &(s, t) un élément perpendiculaire'd s et
t a4 la fois, contrairement aux propositions 8 et 9. Par suite,
®(s, t) est de seconde classe. On peut déduire de la que, lorsqu’il
n’existe pas de faisceau de seconde classe dans X, la correspon-
dance entre les réflexions s et les systémes polaires II(s) est
biunivoque.

1.8. Nous sommes maintenant en mesure de donner plus de
détails au sujet des éléments bissecteurs de deux réflexions.
Commencons par établir un lemme.

LemMmE. Soit u, v et x trois réflexions incidentes. La condition
nécessaire et suffisante pour que uvx soit perpendiculaire d
X est que u et v sotent elles-mémes perpendiculaires.

Nous avons vu que la condition nécessaire et suffisante pour
qu’'un élément de dimension 1 dans G soit involutif est que,
lorsqu’il est mis sous la forme ab, ou a, beX, les réflexions a et b
solent perpendiculaires. Supposons donc que u et ¢ sont per-
pendiculaires. Alors u¢ et zuvxr sont des éléments involutifs de
dimension 1. Par hypothese, uoz est une réflexion; nous pouvons
affirmer qu’elle est perpendiculaire & z. Réciproquement, si x et
uex sont deux réflexions perpendiculaires, uvzr.x = u¢ est un
¢lément involutif de dimension 1 dans G; il en résulte que u et
¢ sont perpendiculaires. C.Q.F.D.

Prorosition 11. Deux réflexions non sécantes ont exactement
un élément bissecteur. Deux réflexions sécantes ont exactement
deux éléments bissecteurs, qui sont perpendiculaires.

Soit a et b deux réflexions distinctes. Nous savons qu’elles
ont au moins un élément bissecteur u. Admettons qu’il existe
un élément bissecteur ¢ de a et b distinct de u. Nous pouvons
observer que u et ¢ appartiennent tous deux au faisceau ®(a, b)
et que, par suite, uva est une réflexion. Comme:
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a = uvavu = uva.a.avi = uva.a.uva ,

uva est une réflexion perpendiculaire & a. Donc u et ¢ sont per-
pendiculaires en vertu du lemme précédent.

Nous déduisons de 1a que, lorsque @ et b ne se coupent pas,
elles ne possedent qu’un seul élément bissecteur. En revanche,
quand elles se coupent, elles ne sauraient en avoir plus de deux.
Il nous faut montrer qu’elles en ont effectivement deux dans ce
cas. Prenons I’élément u’ perpendiculaire & u dans le faisceau de
premiere classe ®(a, b). Comme uu’'a est une réflexion, on peut
écrire:

uv'.au'u =uuw'auw'u = auv'uu'u = a,

et, par suite:

b = uau = u' au’.

Donc u’ est aussi élément bissecteur de a et b. C.Q.F.D.

ProrositioN 12. Lorsqu’il existe des faisceaux de seconde classe
dans X, le centre de G se réduit a Iélément neutre 1. Lorsque

2 ne contient que des faisceaux de premiére classe, le centre de
G est d’ordre 2.

Nous savons que X ne contient pas d’élément du centre de G.
Recherchons alors les éléments centraux propres de G. Soit ab
I'un d’eux, ou a, beX. Comme ab commute avec a, (ab)* = I.
Par suite, a et b sont confondus ou perpendiculaires. Si a et b
‘étaient perpendiculaires, on pourrait trouver une réflexion s non
incidente avec a et b, perpendiculaire & a mais pas & b. On
pourrait alors écrire:

ba.s.ab = bsb # s,

ce qui serait absurde. 11 s’ensuit que a et b sont confondus et que
I est le seul élément central propre de G.

~ Le carré d’un élément central de dimension 2 est un élément
central propre. Ce qui précede montre qu'un tel élément est in-
volutif. Nous sommes donc conduits & la recherche des éléments
involutifs de dimension 2 dans G. Soit A 'un d’eux et soit x une
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réflexion arbitraire. On peut poser: A = xyz, ou z, y et z sont
trois réflexions non incidentes. Comme A est involutif, on a:

XyxX = zy.XzXx,

ce qui montre que les réflexions xyxr et xzr appartiennent au
faisceau ®(y, z). En vertu du lemme de la proposition 5, &(y, z)
est entiérement perpendiculaire & x. Par suite:

(yz)* = xyz.xyz = A*> = 1.

Donc y et z sont perpendiculaires et le systeme polaire &(y, 2)
de x est de premiére classe. Prenons un élément quelconque y’
dans @(y, z) et posons z° = y'yz. D’apres ce qui précéde, A = zy'z’
et z’ est la réflexion perpendiculaire & y’ dans &(y, z). D’autre
part, A commute avec x; et comme x est arbitrairement choisi
dans X, A est un élément central de G.

En résumé G ne posséde d’élément central distinct de / que
lorsque les systemes polaires sont de premiére classe, autrement,
dit quand 1l n’existe pas de faisceaux de seconde classe dans Z.
Dans ce cas, G ne contient quun seul élément de cette espece.

C.Q.F.D.

COROLLAIRE. Lorsqu'tl contient des faisceaux de seconde classe,
2 constitue U'ensemble de tous les éléments tnvolutifs impropres
de G. Dans le cas contraire, il existe dans G un élément involutif
umpropre n appartenant pas a X, et un seul. Cet élément en-
gendre le centre de G. Il peut étre mis sous la forme abe, ot
a, b et ¢ sont trois réflexions deux a deux perpendiculaires.

2. LPL’axiome d’Euclide

2.1 Les axlomes précédents ne permettent aucune conclusion
quant a 'existence de faisceaux de seconde classe dans ¥, parti-
culierement de ceux d’entre eux qui ne sont pas des systémes
polaires, et que nous qualifierons de singuliers. Remarquons a ce
propos que si 'on admet I'existence de faisceaux singuliers dans
Z, toute réflexion appartient & deux d’entre eux, au moins. En
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