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INTRODUCTION

La géométrie dite « élémentaire » est une notion assez
confuse. Elle dissimule — si Y on ose dire — certains chapitres de

mathématiques derrière une collection de recettes, de

conventions et de rites extrêmement subtils qui présentent un caractère

quelque peu ésotérique. Ce ne sont pas ces procédés qui nous
intéressent ici, mais bien le domaine mathématique auquel ils

s'appliquent: celui de la géométrie euclidienne à deux ou trois
dimensions. Pour la suite, il nous est nécessaire de préciser ce

que nous entendons par là. Nous avons le choix entre trois
définitions qui, bien qu'équivalentes, reflètent des attitudes très
différentes.

La première définition peut être considérée comme « analytique

». Soit K un corps réel (autrement dit le corps R des

nombres réels ou l'un de ses sous-corps) contenant la racine
carrée de chacun de ses éléments positifs. On appelle points les
éléments de Kn; tout point x est un système ordonné de n
éléments de K: x — (xt) (x^ #2, xn). On introduit une
distance d dans Kn en posant:

à (x y) I Oi-yd2 X (X;), y (y,) eKn.

On appelle isométrie de Kn toute application de Kn dans lui-
même qui conserve la distance d. On montre qu'une isométrie de
Kn est une application biunivoque de Kn sur lui-même.
L'ensemble des isométries de Kn constitue donc un groupe que nous
désignerons par GE(n, K): le groupe euclidien de dimension n
sur K. On appelle géométrie euclidienne de dimension n sur K la
recherche et la classification des invariants de Kn vis-à-vis du
groupe GE(n, K).

Une translation de Kn est une application de Kn dans lui-
même définie par (xt) -» (^+^) où (at) est un point arbitrairement

choisi dans Kn. L'ensemble des translations de Kn est un
sous-groupe distingué zn de GE(n, K). Le groupe rn est visible-
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ment isomorphe à Kn+ où K+ désigne le groupe additif sous-
jacent à K. Le sous-groupe des éléments de GE(n, K) qui laissent
fixe le point (0, 0, 0), ou groupe de stabilité de (0, 0, 0),
est isomorphe au groupe orthogonal à n variables sur if, noté
0(n, K). Ce groupe 0(n, K) est constitué par l'ensemble des

automorphismes de l'espace vectoriel de dimension n sur K
(que l'on désigne encore par Kn) qui laissent invariante la forme
quadratique

n

<I> (x) £ xf ; X (Xf) eK".
i-1

On montre que GE(n, K) est le produit semi-direct de t„ et
du groupe de stabilité de (0, 0, 0) (voir 2.3). Il en résulte, en

particulier, que les géométries euclidiennes à deux ou trois dimensions

ne sont que des épisodes mineurs dans l'étude des formes

quadratiques (voir [7]). La définition que nous venons de rappeler
a l'avantage de la concision et de la netteté. Elle insère très
naturellement la géométrie élémentaire dans l'édifice des

mathématiques tel qu'il est conçu actuellement par beaucoup de

mathématiciens.
La deuxième définition pourrait être qualifiée de « physique

». C'est celle qui apparaît chez Euclide, celle qui a été mise

en forme par Hilbert dans ses Grundlagen. A la suite d'expériences

innombrables pratiquées par toutes sortes d'individus,
il s'est révélé possible de décrire convenablement une quantité
considérable de faits matériels en employant quelques termes et

expressions bien choisis: point, droite, intersection, être sur,
être entre, etc. Les règles permettant de combiner ces mots
entre eux sont consignées une fois pour toutes dans des axiomes,
dont l'axiome d'Euclide est le plus fameux. La géométrie
euclidienne est alors l'art de découvrir et de classer les propositions
correctes que l'on peut formuler à partir des notions fondamentales

et des axiomes. Nous ne préciserons pas plus ces notions
fondamentales et ces axiomes, renvoyant pour cela aux ouvrages
de Hilbert [12] et de Kerékjarto [13]. Disons simplement qu'il
est possible de le faire de manière que la définition « physique »

de la géométrie euclidienne soit équivalente à la définition
« analytique ». Vue sous cet angle, la géométrie élémentaire cons-
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titue une branche de la physique théorique élémentaire,
comparable à la mécanique rationnelle, par exemple. Le mérite d'un

exposé « physique » de la géométrie élémentaire est de refléter

une étape essentielle dans le cheminement historique des

mathématiques et, par là-même, de convenir à des intelligences adolescentes

qui doivent parcourir en raccourci un cheminement
analogue. Le grand inconvénient d'un tel exposé est de dissimuler

ce que l'on considère aujourd'hui comme les structures
fondamentales des mathématiques.

La troisième définition relève des idées de F. Klein. Soit Es

un ensemble E muni d'une structure bien déterminée S. Soit G

un groupe de transformations agissant effectivement et
transitivement dans Es; cela signifie que G est un sous-groupe du

groupe des automorphismes de Es tel qu'à tout couple d'éléments
(a, b) de E on puisse faire correspondre au moins un élément de G

qui envoie a sur b. G peut être muni d'une structure S' plus forte

que celle de groupe (de groupe topologique, par exemple). La
géométrie de Es relativement à G est l'étude des invariants de

Es vis-à-vis de G.

Si l'on désigne par g le sous-groupe de stabilité de l'élément
a de E dans G, on peut établir une correspondance biunivoque
canonique / entre E et l'espace homogène G/g. Lorsqu'on
considère que G agit simultanément dans E et dans G/g, on observe

que / commute avec chaque élément de G. L'espace homogène
G/g peut souvent être muni d'une structure S" obtenue à partir
de S' « par passage au quotient » suivant g. Il peut alors se
produire que / soit un isomorphisms entre G/g et Es. (A ce propos,
voir par exemple [17], page 65.) Nous dirons que la géométrie de

Es par rapport à G est régulière dans ce cas. On peut alors
substituer G/g à Es, et pour autant qu'on se borne aux géométries
régulières, on peut poser la définition suivante:

Soit G un groupe (muni éventuellement d'une structure
plus forte que celle de groupe) et g un sous-groupe de G tel que
Vintersection des sous-groupes conjugués de g dans G se réduise
à l'élément neutre. On appelle géométrie de G relativement à g
l'étude des invariants de l'espace homogène G/g vis-à-vis des

transformations qui y sont induites par les éléments de G.
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Les axiomes d'une telle géométrie s'expriment par des
hypothèses formulées sur le groupe G uniquement. Une telle situation
se présente justement dans le cas de la géométrie euclidienne de

dimension n sur un corps K: elle est la géométrie du groupe
GE(n, K) par rapport au groupe de stabilité d'un point
quelconque de Kn. De ce point de vue, la géométrie euclidienne est un
paragraphe de la théorie générale des groupes.

Si l'on néglige la définition dite « physique » qui ne se prête
pas à une généralisation suffisante, semble-t-il, il ne reste en

présence que la définition « analytique » et la troisième définition
que l'on hésite à qualifier de «synthétique», ce terme étant
officieusement condamné par les tenants de la première définition.

Nous ne prenons pas parti ici entre «analystes»
triomphants et « synthétistes » obstinés. Nous remarquerons seulement

que la géométrie euclidienne est une introduction à deux
domaines très vastes qui ne se recouvrent pas: la théorie des

formes quadratiques et celle des groupes de transformations. Loin
de condamner une définition au profit de l'autre, l'enseignement
élémentaire a tout avantage à adopter à l'égard de la géométrie
euclidienne deux attitudes mentales qui se complètent. Dans ce

qui suit, nous allons essayer d'examiner la contribution que peut
apporter notre troisième définition à la géométrie élémentaire.
Pour cela, nous partirons de la définition analytique de GE (n, K)
et nous formulerons un système d'axiomes dont nous montrerons
qu'il caractérise GE(n, K). Afin de préciser notre cheminement,
nous allons rappeler quelques faits très simples.

Pour fixer les idées, nous nous plaçons dans le cas de la
géométrie plane: n 2. A toute droite d du plan, on peut associer

une isométrie distincte de la transformation identique I et
laissant fixes tous les points de d. Cette isométrie est unique; on

l'appelle la réflexion suivant d. Tout élément A de GE{2, K)
peut être obtenu en formant le produit d'un certain nombre de

réflexions. Ce nombre peut être borné à trois et sa parité est uni-
voquement déterminée par l'élément A. Les éléments de

GE(2, K) qui résultent du produit d'un nombre pair de réflexions
sont dits propres et constituent un sous-groupe d'indice 2 dans

GE(2, K). Lorsque trois droites a, b et c passent par un même

point ou admettent une même perpendiculaire, le produit des
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réflexions suivant a, b et c est encore une réflexion; la réciproque
est vraie. La condition nécessaire et suffisante pour que deux

droites a et b soient perpendiculaires est que les réflexions associées

à a et b soient distinctes et commutent. Les seuls éléments

involutifs de GE(2, K) sont les réflexions et les demi-tours, tout
demi-tour étant le produit de deux réflexions suivant des droites

perpendiculaires. En associant à tout demi-tour son centre, on

établit une correspondance biunivoque entre Pensemble des

demi-tours et celui des points du plan. Un demi-tour et une
réflexion commutent quand le centre du demi-tour est sur Paxe

de la réflexion, et dans ce cas seulement.
Comme on le voit, il existe tout un ordre de faits géométriques

élémentaires qui s'interprètent très simplement comme des

propriétés du groupe GE(2, K). Il est naturel de considérer un

groupe G engendré par un ensemble d'éléments involutifs
appelés les-uns « droites » et les autres « points », tout point étant
le produit de deux droites distinctes qui commutent. Un point P
est « sur » une droite d quand P et d commutent. Deux droites
sont perpendiculaires quand elles sont distinctes et qu'elles
commutent, et ainsi de suite. Après quoi l'on pose un ensemble
d'axiomes portant sur les points et les droites de G de sorte que
G soit isomorphe à un groupe GE(2, K). Sous l'impulsion de

plusieurs géomètres parmi lesquels il faut signaler d'abord
Hjelmslev, cette idée s'est développée. Mais il s'est révélé
intéressant de ne conserver qu'une partie des axiomes nécessaires à

la détermination de GE(2, K) et d'abandonner des axiomes
concernant l'ordre, l'existence de droites parallèles et la libre mobilité.

L'étude des groupes ainsi caractérisés — parmi lesquels on
trouve non seulement GE(2, A), mais encore les groupes
fondamentaux des géométries elliptiques et hyperboliques, par
exemple — est l'objet de la géométrie métrique absolue. L'exposé
le plus complet sur la question est le beau traité de M. F. Bach-
mann qui a paru récemment (voir [3]). Des développements
analogues peuvent être faits pour la géométrie de l'espace
(n 3) (voir [1], par exemple).

Nous pouvons situer maintenant notre démarche par rapport
à la géométrie métrique absolue. En simplifiant un peu, nous
pouvons considérer que celle-ci se propose d'étudier certains
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groupes à l'aide de termes et d'expressions propres à la géométrie
élémentaire: point, droite, être sur, etc. Mais on pourrait insister
plus particulièrement sur le fait suivant: si l'on reprend le cas
de la géométrie plane, on peut observer que le groupe GE(2, K)
est engendré par une famille 27(2, K) d'éléments involutifs — les

réflexions — telle que le produit d'un nombre impair de ces
éléments générateurs ne saurait être égal à l'élément neutre I
de GE(2, K). Nous dirons d'un groupe possédant cette propriété
qu'il est engendré par des réflexions ou encore que c'est un
R-groupe. Les groupes symétriques finis, les groupes GE(n, if),
les groupes orthogonaux 0(L, <P) sur les corps L de caractéristique
7^ 2 et relatifs à des formes quadratiques $ régulières sont des

ü-groupes (voir [11]). Plus généralement, tout groupe engendré

par une famille d'éléments involutifs est un ü-groupe ou le

groupe-quotient d'un i?-groupe par un sous-groupe distingué
d'ordre 2.

Si nous reprenons le groupe GE(2, if), nous voyons que la
condition suivante:

(1) «le produit de trois réflexions est une réflexion»

définit dans 2(2, if) une relation intéressante. Géométriquement,
cette condition est équivalente au fait que les axes des trois
réflexions considérées appartiennent à un même faisceau de droites.
Dans l'ensemble des droites du plan, le fait d'appartenir à un même
faisceau détermine une relation ternaire symétrique (si a1? a2, et
a 3 appartiennent à un même faisceau, il en est de même de

au üj et akl où (i, /, k) est une permutation quelconque des

indices 1, 2 et 3), reflexive (les droites a, a et b appartiennent à un
même faisceau, quelles que soient a et b) et transitive (si les

droites a et b sont distinctes, si a, 6, et c appartiennent à un
même faisceau tout comme a, b et d, alors a, e et d appartiennent
encore à un même faisceau). Ces trois propriétés caractérisent
les relations d'incidence ternaires. Les iLgroupes dans lesquels
la condition (1) définit une relation d'incidence ternaire seront
appelés Ri-groupes. Les exemples donnés plus haut sont des

i?/-groupes.
La notion de i?-groupe semble assez générale pour justifier

des recherches plus détaillées. En ce qui concerne en particulier
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les i?/-groupes, on peut signaler les travaux de M. R. Lingenberg
(voir [16]). Nous nous sommes proposé ici deux buts. Le premier
consiste en l'examen sur un exemple bien connu de quelques
notions qui interviendront probablement dans l'étude des

iî-groupes. Le deuxième est de formuler pour la géométrie
euclidienne à n dimensions un système d'axiomes maniables en

nombre réduit, en adoptant le langage des /^-groupes. Il ne

s'agit pas là d'une recherche axiomatique en soi. Notre propos
est de donner un exemple de construction de la géométrie
élémentaire fondé sur des notions généralement peu exploitées dans

l'enseignement du second degré. Le changement de point de vue
est susceptible de faire apparaître des perspectives intéressantes.

Afin de ne pas manquer notre second objectif, nous avons
fait en sorte de conserver le contact avec les problèmes de la

géométrie élémentaire. Ainsi nous avons développé particulièrement

la géométrie plane à partir de laquelle il est possible de

construire simplement la géométrie euclidienne à n dimensions
(n > 3) par une sorte de récurrence. Dans ce domaine restreint,
nous avons fait en sorte de donner toutes les démonstrations
utiles, même lorsqu'elles sont classiques. Pour les mêmes raisons,
nous avons introduit deux axiomes dont le rôle algébrique est

assez mince dans notre construction: il s'agit de l'axiome
d'Archimède et de celui du compas. Ils ne se justifient ici que par
le rôle essentiel qu'ils jouent dans l'enseignement élémentaire.
En revanche, nous n'avons généralement pas traduit les propositions

énoncées en terme de géométrie élémentaire traditionnelle,

laissant ce soin au lecteur curieux d'observer l'incidence
des développements qui vont suivre sur l'ordonnance d'un
exposé élémentaire de géométrie euclidienne. Il importe de

rappeler toutefois qu'ils ne sauraient figurer tels quels dans un
cours destiné aux enfants.
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