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Chapitre VI

La méthode directe du Calcul des Variations

Bien qu'une très faible partie des ressources que fournit la
méthode classique du Calcul des Variations ait seule été exposée
dans ce qui précède, on a dû comprendre que ces ressources
sont bien, comme je l'ai dit, aussi importantes que celles données

par les dérivées dans les problèmes de minimum ordinaire. En
même temps, on a pu noter que la lacune logique de ces deux
méthodes (qu'on peut appeler dans l'un ou l'autre cas: méthodes
des dérivées) est la même: la méthode des dérivées détermine,
totalement ou partiellement, l'élément qui peut être minimisant,
mais ne prouve pas que cet élément donne effectivement un
minimum; la méthode suppose donc acquise à l'avance la preuve
que l'extremum envisagé est atteint. Or la méthode directe se

propose précisément de construire immédiatement l'élément
minimisant, laissant au besoin à plus tard le soin de bien préciser
sa détermination. Il semble donc que la réunion des deux
méthodes forme un tout logiquement complet. Les choses sont
malheureusement moins simples, comme on le verra. Pourtant la
méthode directe vient heureusement au secours de la méthode
classique.

Il a déjà été parlé des origines lointaines de cette méthode
directe. Pour qu'elle prenne une forme précise, il ne faut pas
cependant remonter plus haut que les objections faites par
Weierstrass à la théorie des fonctions abéliennes de Riemann.
Celui-ci s'appuyait sur la solution de ce problème de minimum
connu sous le nom de problème de Dirichlet. Il admettait que
le minimum est atteint, comme l'avait fait, avant lui, Dirichlet
et Gauss. Weierstrass, à cette occasion, introduisit la distinction
dont nous avons parlé entre borne inférieure et minimum, et
bien qu'il s'agisse là d'un problème du Calcul des Variations, ce

lui fut l'occasion de créer la méthode directe, non pour ce calcul,



— 305 —

mais pour les problèmes de minimum ordinaire. Cette méthode,

qui nous a déjà quelque peu servi, peut être précisée comme il
suit.

Soit une fonction F (P) dépendant d'un point P. Pour en trouver

le minimum, on considère une suite de points Px, P2i etc...

telle que F (i^), F (P2) etc... tendent vers la borne inférieure
des valeurs que puisse prendre F (P) (suite minimisante). On

considère un point P0, limite des points de la suite. La valeur

F(P0) si Fest continue enP0est bien la borne inférieure considérée,
et par suite le minimum est atteint pour la position P0 de P.

La méthode directe pour le Calcul des Variations repose sur

un principe correspondant exactement à celui qui vient d'être

indiqué. Soit une quantité F (P), P étant maintenant une fonction

d'une ou plusieurs variables, ou même un ensemble de

fonctions. F est appelée une fonctionnelle d'après une dénomination
due à M. Hadamard. On considère une suite de fonctions P3,

JP2, etc... telle que F (P-,), F (P2) etc... tendent vers la borne
inférieure des valeurs que prend la fonctionnelle F (suite
minimisante). On prend une fonction P0 limite des fonctions P^
P2, etc... La valeur F (P0) moyennant une certaine continuité
de F en P0 est bien la borne inférieure considérée, donc le minimum

est atteint pour la détermination P0 de P.
Cette méthode a tout d'abord été indiquée par Arzela dans

une note fort remarquable et qui néanmoins passa inaperçue
au point que, quand M. Hilbert retrouvant le principe de la
méthode directe l'exposa au Congrès de Zurich en 1897, il ne
fit en quelque sorte que reproduire la note d'Arzela qu'il ignorait,
alors que, possédant des résultats très personnels et profonds
sur le problème de Dirichlet, il aurait pu la prolonger. Ce n'est
que quelques années plus tard, quand Arzela se décida à signaler
modestement à quelques amis sa priorité, que justice put lui être
rendue. C'est donc à Arzela et à M. Hilbert qu'il convient de
faire remonter la méthode directe du Calcul des Variations.
Encore n'est-ce qu'à partir des travaux d'Hilbert, lesquels eurent
immédiatement un retentissement considérable, que l'on se mit
à étudier comme il le méritait ce procédé nouveau.

Il exige que l'on effectue certaines opérations dont nous allons
examiner la possibilité. Il faut d'abord prendre une suite mini-
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misante P11 P2, etc... Une telle suite existe toujours. Il faut
ensuite considérer un élément-limite P0 de cette suite. Or
existe-t-il uïi tel élément-limite La proposition connue sous le

nom de théorème de Bolzano Weierstrass prouve l'existence
de P0 lorsque les P sont des points situés dans une partie bornée
de l'espace. Donc la considération de P0 ne présente pas de

difficulté quand il s'agit d'une fonction de points pourvu qu'on
ne l'envisage que dans une région bornée. Au contraire, s'il s'agit
d'une fonctionnelle, si donc les P désignent des fonctions, une
suite infinie de fonctions même bornée dans son ensemble n'a pas
nécessairement une fonction-limite. Il en est ainsi par exemple

pour P„ sin nx. Un travail d'Ascoli fournit cependant un
résultat à rapprocher du théorème de Bolzano-Weierstrass. On

appelle fonctions également continues, par exemple dans le

cas d'une variable t, les fonctions + (+ /2(+ etc... qui, quel
que soit s positif, admettent un r\ tel que l'on ait

\fi(t+h)-Mt)\ <8

dès que l'on a | h | < /y, rj étant indépendant de i. Le théorème
d'Ascoli s'énonce ainsi: une suite de fonctions également continues

et bornées dans leur ensemble admet une fonction-limite.
En effet, prenons des valeurs de t en infinité dénombrable et

réparties dans tout l'intervalle borné que l'on considère. Soient

tl7 t2 etc... ces valeurs. Parmi les fu choisissons une suite partielle
fj telle que les f'j de tx convergent, ce qui est possible puisqu'il
s'agit de fonctions bornées dans leur ensemble. Dans la suite
des f'j, prenons une suite partielle fl telle que les f'k de t2

convergent, etc... et prenons enfin la suite /2, f[, fl etc... Il est clair
que cette suite converge pour chacun des tn. Or, soit maintenant
une valeur 0 de t et prenons un intervalle 0—vj, 0+rç, rj étant le

nombre correspondant à un £ choisi. Les nombres/(0), /i(0), etc...
diffèrent de moins de s de la limite de la suite /x, /x, etc... pour
la valeur tn, cette valeur tn étant comprise dans l'intervalle
0 — v], 0+7]. Or nous pouvons prendre e aussi petit que nous
voulons, donc la suite /x(0), fl(0), etc... converge, et vers une
valeur qui diffère de la limite obtenue pour tn de moins de e.

Donc le théorème d'Ascoli est démontré et l'on voit que la fonc-
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tion-limite fait partie de la même famille de fonctions également
continues que les fonctions de départ. En particulier, si Ton a

affaire à une suite de courbes situées dans une région bornée de

Tespace et toutes de longueur au plus égale à un nombre fini
A, il suffit de prendre pour paramètre de représentation Tare s

pour que les fonctions définissant la courbe soient également
continues et que par suite l'application du théorème d'Ascoli
montre que ces courbes ont une courbe-limite de longueur
d'ailleurs au plus égale à S. Ainsi, dans le Calcul des Variations,

pourvu qu'on introduise les restrictions nécessaires pour être
dans le cas d'égale continuité, l'élément-limite P0 existe et
jusqu'ici il n'y a donc pas de différence essentielle entre les deux
sortes de problèmes de minimum envisagés.

Il faut ensuite se servir d'une condition de continuité qui
doit être remplie en P0 pour en déduire que F(P0) est bien la
valeur du minimum. Comme sur P0, on ne connaît rien d'autre
que son existence, il faudra naturellement supposer que la condition

de continuité en question est remplie pour chaque choix
possible de P. S'il s'agit d'une fonction de points F(P) dans les

problèmes de minimum qu'on se propose, F est toujours
supposée continue partout et par suite il n'y a aucune difficulté.
Mais dans le cas de fonctionnelles, la continuité de la fonctionnelle

F(P) est tout-à-fait exceptionnelle, les plus simples exemples
le montrent. Ainsi la longueur d'une courbe n'est nullement la
limite des longueurs des courbes infiniment voisines. Ceci pourtant

n'avait arrêté ni Arzela ni Hilbert, car les propriétés des

longueurs sont connues et simples et l'on pouvait, sans invoquer
une continuité, conclure que, cherchant le plus court chemin
d'un point à un autre sur une surface, la méthode d'Ascoli
permettait bien de l'obtenir. Mais, pour les cas un peu plus
généraux, il fallait avoir recours à une continuité, laquelle, nous
venons de le dire, n'existe pas.

Dans ma thèse (Intégrale-Longueur-Aire; Annali di Matema-
tica, 1902), j'ai envisagé une sorte de continuité qui permet de
conclure dans bien des cas. Baire avait décomposé la notion de
continuité des fonctions d'une variable en deux notions distinctes
qu'il appelait semi-continuité inférieure et supérieure. Je n'ai eu
qu'à étendre ces notions aux fonctionnelles et, tandis que,
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réduites à leur utilisation dans le cas des fonctions de points,
elles n'avaient guère qu'un intérêt philosophique, elles se sont
révélées d'importance capitale pour la méthode directe.

On dit qu'une fonctionnelle F(P) est semi-continue inférieure-
ment si la plus petite des limites des F(P) quand P tend vers
une détermination 77 est au plus égale à F(II). Il est clair que,
si une fonctionnelle F(P) est semi-continue inférieurement et si

P0 est l'élément limite obtenu précédemment, F(P0) sera bien
égal au minimum. On définit d'une façon analogue la semi-continuité

supérieure; elle permet de conclure qu'un maximum est
atteint. Dans ma thèse, je me suis borné à ce genre d'indications
sans rechercher des cas où une telle semi-continuité existait
effectivement, car mon but n'était pas du tout l'étude du Calcul
des Variations et je n'en parlais que dans la mesuré où cela
m'était immédiatement utile. Goursat, puis M. Hadamard
montrèrent que la semi-continuité existait dans des cas étendus,
puis M. Léonida Tonelli montra que la semi-continuité nécessaire
à l'emploi de la méthode directe était réalisée pour tous les
problèmes que l'on appelle réguliers, et il réussit à donner une
méthode complète pour la résolution du premier problème du
Calcul des Variations. C'est là un progrès très important et c'est
précisément parce que j'apprécie à un très haut point ces résultats

de M. Tonelli que je me suis permis de rappeler la toute
petite part qui me revient dans ces progrès: avoir étendu aux
fonctionnelles les notions de semi-continuité; ce que plusieurs
ouvrages récents attribuent à M. Tonelli. On peut d'ailleurs me
rendre justice sans crainte; l'apport de M. Tonelli est si grand
qu'il ne sera diminué en rien.

Je voudrais maintenant montrer que ces notions de semi-
continuité obtenues par Baire grâce à son esprit profondément
critique dans le cas des fonctions de points sont des notions
simples et qui vraiment s'imposent dans le cas des fonctionnelles.

Tous mes travaux se rattachent à une plaisanterie de collégien.

Au Collège de Beauvais, nous démontrions que, dans un
triangle, un côté est égal à la somme des deux autres. Soit
ABC un triangle. Si Av B11C1 sont les milieux de ses côtés, on a

BA+AC BC1+C1A1+AtB1+B1 C.
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Opérons sur chacun des triangles BCXAX, AXBXC comme sur ABC.
On trouve une ligne brisée formée de huit segments et égale à

BA-\-A C. En continuant ainsi, on a une suite de lignes brisées

qui s'écartent de moins en moins du côté BC et qui ont toujours

pour longueur la somme des deux autres côtés de notre triangle
de départ. Les collégiens de Beauvais en concluaient que le

segment BC, limite géométrique de nos lignes brisées, avait pour
longueur la somme des deux autres côtés, BA-\-AC. Mes camarades

ne voyaient là qu'une bonne plaisanterie. Pour moi, ce

raisonnement m'a paru extrêmement troublant, car je ne voyais
aucune différence entre lui et les démonstrations relatives aux
aires et surfaces des cylindres, cônes, sphères, ou à la longueur
de la circonférence. Je finis par me contenter d'observer que,

pour cette dernière longueur, on pouvait se servir de polygones
inscrits et, lorsqu'on en utilisait d'autres, c'étaient des polygones
voisins de ceux-ci et ne présentant nullement les complications
accumulées à souhait dans les lignes brisées de notre
pseudodémonstration. Pour les cylindres, cônes et sphères, on avait aussi

recours ou l'on pouvait si on le désirait avoir recours à des

polyèdres quelque peu inscrits dans les surfaces considérées.
Plus tard, je sus démontrer que les polygones inscrits dans une
courbe ont effectivement une limite et que cette limite est la
longueur de la courbe. J'imaginais bien entendu que l'aire d'une
surface pouvait se définir de la même manière quand, en
première année d'Ecole Normale, j'appris, par la lettre de Schwarz
à Genocchi insérée dans le cours lithographié d'Hermite, que
l'aire des polyèdres inscrits dans une surface n'a pas une limite
déterminée et que le problème de la définition de l'aire était en
somme un problème ouvert. Pour le résoudre, il fallait tout
d'abord abandonner l'idée d'utiliser des éléments inscrits, ce qui
paraissait bien regrettable puisqu'ils donnaient une définition
logique parfaite de la longueur des courbes. Mais il y avait une
raison péremptoire pour considérer que cette définition logiquement

parfaite était cependant mauvaise à certains égards:
c'est qu'une longueur se mesure pratiquement; s'il fallait pour
l'avoir prendre nécessairement des points sur la courbe comme
sommets des polygones utilisés, la mesure physique serait impossible

puisqu'on ne peut distinguer un point d'un point extrême-

L'Enseignenieiit maUiéni., t. IX, l'a se. 4. 8
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ment voisin. Si Y on réfléchit d'ailleurs à la façon dont on s'y prend
pour mesurer une courbe, par exemple un chemin avec un mètre à

ruban, on en revient à ce que nous avons déjà dit, qu'il s'agit
avant tout de supprimer les complications inutiles, en somme de

prendre les polygones qui donnent la plus petite valeur possible
comme valeur-limite. Si de plus on observe que, par la construction

de lignes en dents de scie, il est possible de remplacer les

polygones fournissant une certaine limite par d'autres fournissant

une limite supérieure choisie à volonté, on voit que la limite
inférieure dont nous parlons est vraiment le seul nombre fourni
par l'ensemble des polygones s'approchant indéfiniment d'une
courbe donnée.

D'où les deux définitions que j'ai posées:
La longueur Lune courbe est la plus petite des limites des

longueurs des polygones tendant uniformément vers la courbe.

Uaire Lune surface est la plus petite des limites des aires des

surfaces polyédrales tendant uniformément vers la surface.
On voit que ces deux définitions mettent en évidence la semi-

continuité inférieure de la longueur et de l'aire. Ce n'est pas par
l'introduction de restrictions que la longueur et l'aire sont semi-
continues. Leur définition même est basée sur la semi-continuité

et l'entraîne.
La méthode directe a donc pour point de départ la distinction

élémentaire entre borne inférieure et minimum; elle fait usage
d'un procédé de construction simple et qu'on peut dire naturel;
elle s'appuie enfin sur une notion de continuité très élémentaire
également et qui, à certains égards, s'impose à l'esprit. Il ne
faudrait pas croire cependant que, parce qu'il s'agit de considérations

n'exigeant presque aucune connaissance mathématique
préalable, les principes de la méthode directe sont de ceux qu'on
n'oublie pas une fois qu'on les a employés. Par exemple, j'ai eu
l'occasion dans l'article qui va être reproduit de montrer que
ceux-là même qui avaient attiré l'attention sur la distinction
entre borne inférieure et minimum confondaient cependant ces

notions dès qu'elles se présentaient sous un aspect un peu
nouveau.1)

i) Le texte qui suit est paru sous le titre: Sur la méthode de Carl Neumann, dans
le Journal de mathématiques pures et appliquées, 9e série, t. XVI, 1937, pp. 205-217
et 421-423.



— 311 —

On sait qu'au début de ses recherches sur les fonctions abé-

liennes, Riemann résout le problème de Dirichlet par une méthode

fautive, car elle suppose que toute quantité variable atteint sa

borne inférieure; il confond borne inférieure et minimum.
Weierstrass releva la faute. A Weierstrass nous devons la

démonstration du fait que toute fonction continue de variables

atteint sa borne inférieure et les célèbres conditions suffisantes

pour le calcul des variations. Mais le problème de Dirichlet n'était
pas résolu par ces recherches; l'existence d'intégrales de première
espèce pour une surface de Riemann quelconque, que Riemann
avait déduite du problème de Dirichlet, restait en question.

Carl Neumann s'est occupé avec succès de ces questions; il a

notamment donné pour la résolution du problème de Dirichlet
une méthode restée justement célèbre; Neumann se bornait à

l'étude des domaines convexes, Poincaré a justifié la méthode

pour des cas étendus de domaines non convexes; les recherches
de Fredholm ont fait mieux comprendre encore l'importance de

cette méthode et les raisons de son succès. La critique que j'en
veux faire ici ne portera que sur sa légitimation classique pour
le cas des domaines convexes.

Celle-ci repose en effet sur un lemme géométrique dont la

prétendue démonstration donnée est basée uniquement sur la
même confusion entre borne inférieure et minimum. Cette faute
est de Neumann; mais elle est aussi celle des Auteurs qui opposent
Riemann et Neumann; celle des professeurs qui ont exposé le
raisonnement de Neumann et de tous ceux qui ont lu ce raisonnement

sans protester. Bref, nous avons tous fait cette faute;
aussi mérite-t-elle qu'on s'arrête un instant pour l'examiner.

Sans doute, maintenant qu'est faite la distinction entre borne
inférieure et minimum, il n'y a plus guère de profit mathématique

précis à tirer de cet examen; mais il y a un profit certain,
quoique d'un autre ordre, à constater avec quelle facilité nous
errons et qu'il suffit d'avoir donné un aspect géométrique à une
erreur classique et ancienne pour que personne ne la reconnaisse
plus.
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Il s'agit bien d'une erreur ancienne; quelque cinquante ans
avant l'objection de Weierstrass, Servois opposait la même
objection à Argand.

Plus anciennement encore, on avait compris qu'il fallait
distinguer quand on étudie la convergence d'une série, entre

Un+1
1

Un+1 « i<1 et < X < 1;
un Un

et, comme la quantité à majorer dans le raisonnement de
Neumann est précisément le rapport de deux termes consécutifs
d'une série, c'est cette faute de débutant que nous ne reconnaissons

pas.
Le lemme est d'ailleurs facile à démontrer rigoureusement en

s'aidant de la méthode directe du calcul des variations et de
calculs qui remontent à Neumann lui-même. On le démontre ici
pour tous les domaines convexes non biétoilés; condition restrictive

essentielle pour l'exactitude du lemme, sous quelque forme
qu'on l'énonce.

Un autre lemme, nettement différent, nous permettra d'ailleurs
de légitimer les développements en série de Neumann pour tous
les domaines convexes, sans aucune espèce de restriction.

1. La méthode de Cari Neuman pour la résolution du
problème de Dirichlet est basée, comme l'on sait, sur les propriétés
des potentiels de double couche: on recherche la densité S (s)

d'une double couche répartie sur la frontière F du domaine
donné et dont le potentiel se réduise sur cette frontière du côté
intérieur au domaine, à la fonction donnée f(x). Ceci conduit à

l'équation:

[E-A (*)] <5 (*) + J ô (s) d9sx= f{x)
F

dans laquelle x et 5 désignent deux points de la frontière; £,
A(x), 9SX sont les mesures, faites avec les unités trigonométriques
normales, d'angles solides. Pour jE, il s'agit de tout l'espace;

pour A(x), de l'angle sous lequel on voit le domaine, supposé

convexe, du point x\ pour 0*, de l'angle sous lequel, de x, on voit
un domaine découpé sur la frontière et parcouru par le point s.
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L'intégrale est ce qu'on appelle maintenant une intégrale de

Stieltj es.

Sous cette forme, l'équation convient aux domaines convexes
les plus généraux; mais cela suppose qu'on a étudié les propriétés
des doubles couches réparties sur la frontière de tels domaines;
je ne m'y arrêterai pas car mes observations s'appliquent tout
aussi bien aux domaines les plus simples, à un polygone et tout
spécialement à un quadrilatère. On pourra donc supposer qu'oïl
est dans le plan, interpréter x et s comme des paramètres;
E sera 2 tu, A(x) l'angle du contour F au point x et, si l'on suppose
que F n'a qu'un nombre fini de points singuliers, comme le faisait
Neumann, l'intégrale se transformera en une intégrale ordinaire;
mais on pourra aussi, au contraire, conserver aux symboles leur
portée générale.

Pour résoudre l'équation du problème, Neumann l'écrit sous
la forme équivalente

f(x) Eô (x) + J [ô (s) - ô (x)] d0%9
F

et, par approximations successives, il trouve

S(x) v0(x)+v1 (x)+v2(x) +
avec

f(x) 1 r
[té-! (s) — Vi_ (x)] ddsx.\

f(X^> 1

VoO) —, V;O) - -E E

Un calcul facile montre que, si la série 8(x) est majorée par une
série convergente de constantes positives, la fonction 8(x) vérifie
bien l'équation et conduit à la solution du problème de Dirichlet.
Pour obtenir cette série majorante supposons que, sur tout F,
on ait

^ (s) g M;

et partageons F en deux parties A, et Bt lieux des points s tels
que:

P°ur At ^vm(s)|Mh

i
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pour Bt i-1 ^ Vt-i(s) < Mi-! +mi_1

D'où, pour Vi-! (s) — Vi-! (x), respectivement les limites,

7 Mt-i — YYli-!
pour s dans At

pour s dans Bt — (Mt-x —

et, par suite,

JWi-1 -m.--]
E

~ l *

ddsx+- ddsx

A i B i

<

^ t;(X)

M;_i -m;-t ijd0i+

Si donc on prend pour mt et il/f les bornes exactes de vf,
la différence Mi—mi qui sera la borne supérieure de vt{x) — v^y),
est telle que

Mi-Mi ^ (Mi-! - Mi-!) y1,

/t étant la borne supérieure de

A(x,y, Ai,Bi) —| — J + Jdd* + J dOsy+ — dOl

cette borne supérieure étant relative à tous les choix possibles
de x et de y sur F et à tous les partages possibles de F en deux
ensembles complémentaires Âu Bt 1). D'où Mi — Mi<kA\
avec une valeur convenable de et, puisque J dOsx ne peut

F

surpasser jE,
I vf(x) | < k A1'1.

Si donc A est inférieur à 1, la solution est obtenue.

i) On pourrait assujettir Ai à être fermé, donc Bi à être ouvert, et à contenir
tous deux des domaines, mais, en réalité, il suffît que Ai, donc Bi, soit mesurable afin
que les intégrales considérées existent.
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2. C'est ici qu'intervient le lemme géométrique dont j'ai
parlé; on l'énonce sous des formes diverses. Les intégrales qui

figurent dans la définition de A sont les angles Aix\ Bt x;

Ai} y ; Bi} y sous lesquels les parties At et Bt sont vues des points x
et y; de sorte que l'on a, par exemple,

A(x,y,Ai,Bd -
"1 1

— A, x+Bi, x+A, y + - Bt y

(Ai, x "fi Bi, x) "fi (A, y "fi Bi, y)
2 x Bi>

2
(A, x+Bi,x) + - (^i, y + Bi, y) +

2 ^ y + *)

(Au x + BU x) +
2 ^ + Bi> ^ +

2
(^i, }> A, x)^j

En remarquant que les parenthèses (Ait x-\-Bit J, (AityA-Bîty)
E

sont au plus égales à — à ces expressions de A correspondent les

formes suivantes du lemme :

Il existe un nombre q, indépendant du choix des deux points x
et y sur la frontière F et de la division de F en deux parties At
et Efi tel que Von ait

(Formel) ~Ai} x +BU x +Ait y + y S qE avec q< 1;

(Forme II) Ai>x+BUy ^ qE, avec q > 0;

(Forme III) AifX+BUy ^ qE, avec q < 1;

(Forme IV) Ai} y
— Au x ^ qE, avec q < — •

La forme II se démontre généralement en disant: AUx ne
peut être nul que si x est le sommet d'une partie conique de F
à laquelle At appartient; en d'autres termes si At est un lieu
de segments de droites passant toutes par x, Bi y ne s'annule
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que dans des conditions analogues. Donc la forme II est justifiée
pour tous les domaines non biétoilés, c'est-à-dire tels que F ne
soit pas formée de deux parties coniques.

De la forme II la forme III résulte de suite, puisque Ton a

x + Ai} y +Bt x +Bt y ^ E;

cette forme III est celle que Neumann formule dans son énoncé.
On pourrait certes F atteindre directement sans passer par II,
mais c'est par le détour employé ici que Neumann y arrive.

Il est clair que le raisonnement rappelé est inopérant; du
fait que

C X+Bt x —
E

est inférieur à 1 pour tout choix de la division Au Bt et des

points x, y il n'en résulte nullement que sa borne supérieure X

soit aussi inférieure à 1. On ne peut l'affirmer que si l'on a prouvé
que la borne supérieure est aussi un maximum, c'est-à-dire est

elle-même atteinte pour un choix des Ah Bh x, y. Le raisonnement

de Neumann, destiné à remplacer celui de Biemann, est

donc fondé exactement sur la même confusion entre borne
supérieure et maximum, justement critiquée par Weierstrass.

Il est tout à fait étonnant que tout le monde, à commencer

par Weierstrass, ait admis la validité du raisonnement de

Neumann et que nos traités actuels continuent à opposer le raisonnement

de Riemann, déclaré faux, à celui de Neumann, proclamé
entièrement correct. Et pourtant Neumann attirait l'attention
sur le point litigieux dans l'énoncé même de son lemme Hauptsache;

c'est, en effet, dans l'énoncé qu'il passe du fait, exact,
démontré sur Ç à la conclusion fausse relative à la borne
supérieure X de Ç. Il le fait en utilisant la notation (sic\) qui ne peut
manquer d'attirer l'attention, dans les termes suivants 1):

«..., so wird Ç dem Spielraum unterworfen sein:

o Û C < 1

(sie

i) Untersuchungen über das logarithmische und Newton'sche Potential, par C.
Neumann, Leipzig, Teubner, 1877, p. 173.
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Was von der Variablen Ç gilt, gilt aber nothwendig auch

von jedem Specialwerth dieser Variablen. Bezeichnet man also

den Maximalwerth von Ç mit X, so folgt aus der vorstehenden

Formel sofort :

o ^ Ç ^ X < 1 ».

(sie

vn+1
Ainsi Neumann, ayant à majorer le rapport -, fait exac-

tement la faute des élèves qui ne distinguent pas

Un+1 ^ 1 -, Un+1 - 1<1 de < à < 1;
un un

mais il la fait, si je puis dire, d'une façon plus savante, en
affirmant que la maximalwerth de Ç est une Specialwerth de Ç,

c'est-à-dire exactement sous la même forme que Riemann.

3. On ne saurait mettre la confusion qu'il a commise en plus
parfaite lumière qu'il ne l'a fait lui-même, mais, si la lacune de la
démonstration est claire, comme nous justiflrons dans un instant
le lemme de Neumann, avec l'énoncé de Neumann et en nous
restreignant comme lui au cas des domaines non biétoilés, il ne

sera pas superflu d'indiquer que, dans cette question du lemme
de Neumann, le raisonnement faux de Neumann n'a pas conduit
seulement à des résultats exacts mais aussi à des énoncés erronés.

Dans un ouvrage excellent, l'Auteur adopte la forme IV
et, raisonnant comme Neumann, il dit: Ai>y—Ai x ne peut être

E E
égal à — que pour Ai}y —, AifX 0 et ceci exige que le

domaine soit limité par une partie conique At et une variété
linéaire Bu on prendra x au sommet du cône, y dans Bt. Ainsi,
il ne sera done plus nécessaire d'écarter que ces domaines
pyramidaux et non tous les domaines biétoilés.

On notera que c'est bien le seul raisonnement de Neumann
qui a été employé, qu'aucune faute nouvelle n'a été surajoutée
à celle de Neumann, c'est-à-dire à celle que nous commettons
tous quand nous acquiesçons au raisonnement de Neumann, et
pourtant, cette fois, la conclusion est fausse; car:
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Le lemme de Neumann est faux pour tout domaine biétoilé
quelle que soit celle des formes I à IV sous laquelle on Vénonce.

Pour montrer cela il suffira de s'occuper de la forme I puisque
les autres ont été obtenues par des majorations des intégrales
servant à la définition de A. Plaçons-nous d'abord dans le cas
du plan, un domaine biétoilé est un quadrilatère, ABCD,
exceptionnellement un triangle ABC, on placerait alors D sur le
côté AC. et étant arbitrairement petit positif, prenons des

voisinages de A et de C, tels, pour celui de A, par exemple, que pour
chaque point £ de ce voisinage, les angles BAD, BÇD diffèrent
de moins de ef; prenons £ dans le voisinage de A et sur AB et
faisons subir à l'angle DÇB une translation dans laquelle £ se

rapproche de A sur BA, arrêtons-nous dans une position telle

que la partie du côté AD extérieure à cet angle soit vue du
voisinage de C sous un angle inférieur à soient alors xt la
position de £, Doq la partie de DA extérieure à l'angle. De façon
analogue nous prendrons y), puis yt sur CB et Dyt sur DC. Bt sera
formée de Aoq, Dyf, BC; At sera formée de Cyf, Doch AB. On a:

tend vers 1.

Dans le cas d'un domaine biétoilé à plus de deux dimensions,
on opérera exactement de même. La frontière F pourra toujours
être considérée comme formée de deux partie coniques sé et ^
de sommets A et C se coupant suivant une certaine variété BD ;

sur sé on choisira une génératrice le long de laquelle il existe un
élément tangent et sur cette génératrice un point £ dans un
certain voisinage de A d'où l'on voit la variété BD sous un angle
solide différant de moins de zt de celui sous lequel elle est vue
de A, et l'on fera subir au cône (£, BD) la translation rectiligne
qui amènerait en A en s'arrêtant quand la partie de sé exté-

AUyi > n-lSi, Bi}yi>n-2sh

Axi+Bi,xi Ai,yi+Bi,yi 71>

donc, pour zt tendant vers zéro,
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rieure à ce cône est vue du voisinage de # sous un angle solide

inférieur à sf,

Ainsi, on ne peut étendre le lemme de Neumann au-delà du

cas considéré par Neumann; il est vain d'espérer atteindre de

cette façon des domaines biétoilés.

Il est tout à fait surprenant que Neumann se soit juste arrêté
à point. J'ai déjà indiqué que Neumann, bien que concluant

pour la forme III, avait en réalité raisonné sur la forme II; s'il
E

avait raisonné directement sur III, il aurait dit: Ai>x — —

seulement quand il y a un élément tangent en x et que Bt est

tout entier dans cet élément tangent. La même chose peut se

répéter après permutation de Au Bu de x, y; or les conditions
indiquées dans les deux cas sont incompatibles, donc:

et, comme conclusion, la forme III du lemme pour tous les

domaines convexes sans aucune exception; ce qui serait erroné.
D'ailleurs, des considérations mêmes de Neumann on pourrait

tirer la même conclusion, puisqu'elles donnent la première
des inégalités précédentes sauf pour le cas où At et Bt seraient
deux parties coniques de sommets respectivement y et x et
qu'alors on a

les deux dernières égalités s'excluant l'une l'autre. Cela revient
en somme à utiliser la forme I et, en effet, le mode de preuve de
Neumann appliqué à I donnerait cet énoncé pour tous les
domaines sans restrictions.

Bref, le mode de raisonnement employé est non seulement
insuffisant, il est erroné et conduit aussi bien à des conclusions
fausses qu'à des conclusions exactes.

4. Une démonstration du lemme de Neumann ne peut reposer
que sur l'évaluation approchée de la quantité, dont la borne est

Ai, x+Bi,y < E
(sic

d'où Au x +Bt y ^ qE < E;
(sic
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en discussion, et le calcul à faire pour cela s'impose. Il a été fait
par Neumann lui-même qui, après la démonstration de son
lemme, calcule X pour une ellipse et un ellipsoïde, par exemple.

Neumann ne voyait pas dans ce calcul un appui pour sa
démonstration dont la validité lui paraissait certaine, mais
certains auteurs, qui ont introduit le commencement du calcul de

Neumann dans la démonstration même du lemme, avaient peut-
être quelque doute sur cette validité. Ils ne nous ont pas
renseignés sur ces doutes; il est peu vraisemblable d'ailleurs qu'ils
aient bien assimilé l'une à l'autre les lacunes des raisonnements
de Neumann et de Riemann, sans quoi, après avoir majoré
l'expression étudiée par une quantité variable F, ils n'auraient
pas oublié de prendre les précautions nécessaires pour passer de F
à sa borne supérieure sans donner prise à la même critique. Ces

précautions sont d'ailleurs simples; F est le plus souvent une
fonction ordinaire, il suffit donc de se placer dans des conditions
où elle est continue, mais on aboutit ainsi à des domaines
formant une famille moins vaste que celles que les exposés que j'ai
vus croyaient examiner.

Quoi qu'il en soit, c'est au calcul de Neumann et à ces essais

de meilleure démonstration du lemme que se rattache immédiatement

la preuve qui suit. Pour lui donner une valeur pour tous
les domaines convexes non biétoilés il suffit de se rappeler que,
presque partout, la frontière d'un tel domaine a un élément

tangent et que, dans les intégrales, il suffit de s'occuper de ces

points non exceptionnels pour lesquels s'appliquent tous les

calculs qui sont classiques pour le cas où la frontière a partout
des éléments tangents; on pourra d'ailleurs, si on le veut,
interpréter ce qui suit pour ce cas particulier.

Prenons, par exemple, la forme de Neumann, et raisonnons

sur la borne supérieure de

J de°Xi+jde;.
Bi

pour tous les choix possibles de xu yu Ah Bt. Nous pouvons, c'est
le point de départ même de la méthode directe, ne conserver que
des choix pour lesquels les xt d'une part, les yt d'autre part, ont
des points limites, £, rj qui, d'ailleurs, sont peut-être confondus.
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Puisque le domaine n'est pas biétoilé, il existe un point M de F
en lequel i^aun élément tangent lequel ne passe ni par £, ni par y).

Alors si autour de £ et y) on a pris des voisinages assez petits V {£)

et V (y]), autour de M on peut prendre un voisinage V (M)
tel que tout élément m tangent à F en un point m de V (M) ne

coupe ni V (£), ni V(yj). Prenons xety respectivement dans V (£)
et V (y)); les égalités classiques

d6 mx sin (mx, m) d6 my sin (my, m) dO mO sin (mO, m)

dans lesquelles 0 est un point intérieur au domaine, conservent
le même sens dans le cas général, c'est-à-dire qu'elles permettent
la transformation d'intégrales en dO en intégrales en d 6

dans lesquelles il n'y a à tenir compte que des points m pour
lesquels m existe. Or, les distances et les sinus ont des bornes
finies et différentes de zéro, donc, pour un certain k > 0, on a

dQ. > kdO0m? d6£ > kdOo;
si l'on pose

v J d6 v > o,
V(M)

et, si A' et B' sont les parties de V (M) qui appartiennent à At
et Bu on a

J ddsyi > k j dos0,Jd6%. > k J de:, j de: v.
A' A' B' B' A' B'

Et puisque
r e r e

J de;^-,
Bi + A' Ai + B'

on a

| desx. + J desyi < E—kv
Ai Bi

le lemme de Neumann est prouvé pour tous les domaines convexes
non biétoilés.

5. Le développement en série de Neumann pour la fonction
densité fournissant la solution du problème de Dirichlet est donc
prouvé dans les mêmes conditions. On sait que Poincaré a
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montré (Acta Mathematical t. XX) que ce développement s;appliquait

même à des domaines non convexes sous la condition de

l'existence de certaines courbures. Ici, on ne sortira pas du cas
des domaines convexes, le seul pour lequel on puisse utiliser les
raisonnements simples de Neumann, mais on ne fera aucune
hypothèse supplémentaire. Le cas des domaines biétoilés, qui
comprend celai des domaines pyramidaux, reste en réalité le
seul à examiner.
On a vu (§ 1), que l'on a

KOO-VjO) |

d'où, d'après la définition par récurrence des v(,

(M:_i — m;_i) f
| vi+1 (X)I^ E

J A (s, d0sx

F

si A (s, X) est la limite supérieure de A (s, X, Ah Bt) pour tout
choix de Au Bt.

Supposons que l'intégrale du second membre ait qE pour

borne supérieure, avec q pour tout choix de s et X; alors

de l'inégalité précédente résulterait aussi

hi-etI vi+1 (X)-vi+1 (F) I ^ 2 (Mi_1 -
Donc, l'oscillation de / étant 2 c$ E, on aurait successivement

I v1 (x) I ^ co I v2 0) I ^ co ; I v3 (x) I ^ 2qco | v4 (x) | ^ 2qco ;

I v5 (x) I ^ (2q)2 œ; | v6 (x) | ^ (2q)2 co ;

et il serait démontré que la série de Neumann converge encore
à la façon d'une progression géométrique.
Mais il faut prouver un nouveau lemme :

Pour chaque domaine convexe Vintégrale J A (s, X) d6sx a une borne
F

supérieure qE, q étant inférieure à
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La quantité A (5, X, Ah Bt) ne surpassant jamais 1, il en est

de même de A (s, X); si donc Ton sait que A (s, X) est inférieur
à A < 1 pour les points 5 d'un domaine vu de X sous un angle

non nul et supérieur à une limite fixe a, l'intégrale sera au plus
E
— — (1 — A)oc et la proposition sera prouvée.

Soit £ un point limite de points X pour lesquels J A (s, X) d9sx,
F

qui est une fonction du point X, tend vers sa borne supérieure.
Choisissons, ce qui est toujours possible, un point vj tel que, si

le domaine est biétoilé £ et vj n'en soient pas deux sommets; alors

nous avons, au paragraphe précédent, considéré un point M en

lequel il y avait un élément tangent ne passant ni par £, ni par y)

et, grâce à lui, nous avons déterminé deux voisinages V (£),
V (tj) de £ et y) tels que si X est dans le premier, s dans le second,
A («ç, X, Au Bt) soit inférieur à un nombre X inférieur à 1. Alors,
A (5, X) est inférieur à X. Si, de plus, le voisinage V (rj) est vu
de chacun de ces X sous un angle plus grand que a > 0, la
démonstration est acquise.

Or, si le cône tangent à F et de sommet a ne passe pas par £,

de £ on voit V (rj) sous un angle non nul 2a; de tout point de

V (£), pris assez petit, on le verra sous un angle supérieur à a.
Ainsi, il ne reste à examiner que les domaines tels que, si l'on a

pris M ayant un élément tangent M ne passant pas par £, le
cône tangent à F en un point quelconque yj passe toujours par M
ou £. En d'autres termes, le domaine doit être biétoilé et de
sommets M et Ç, quel que soit le choix indiqué de M\ donc il
doit être pyramidal, F étant constituée d'une partie conique
de sommet £ et d'une base

Imaginons alors que les points £ et y) du paragraphe précédent

sont confondus en notre sommet £; prenons V (£) et V(rj)
confondus et limités par une section ^ parallèle à I. I sera
pris intérieur à âB, ainsi que V {M). Alors, pour s et X dans V (£),
A (5, X, Ah Bt) est inférieur à un nombre X inférieur à 1, donc
aussi A (s, X). Mais, de tout point X de V (Ç) sauf du point Ç 2),

on voit F (73) V (Ç) sous un angle supérieur au minimum a

i) Le cas de j A (s, §) ddï n'est pas à examiner puisque / d,ol est inférieur à -F s 'F * 2'
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de Tangle sous lequel on voit V (£), ou &l7 d'un point quelconque
P frontière de M et de lequel angle est une fonction continue
de P. Donc le lemme est prouvé dans tous les cas.

La fonction, harmonique dans un domaine convexe et se réduisant

sur sa frontière à une fonction continue donnée, est donc fournie
par la série de Neumann qui converge à la façon Lune progression
géométrique; dans tous les cas, sans aucune restriction1).

6. J'ai dit, à plusieurs reprises, que pour atteindre tous les

cas il fallait utiliser des généralisations de l'intégrale mais que
le lecteur pouvait cependant se borner à l'examen de domaines

simples et à l'emploi d'intégrales ordinaires. Cela demande des

explications: on peut n'utiliser que les intégrales ordinaires et

constater, comme au paragraphe 2, l'existence d'une lacune dans
le raisonnement de Neumann, comme au paragraphe 3 l'inexactitude

du lemme avec certains énoncés, ou comprendre la marche
des démonstrations des paragraphes 4 et 5. Mais ces démonstrations

exigent, même pour les domaines les plus simples et les

fonctions à la frontière les plus simples, l'emploi d'intégrales
étendues aux parties At et Bt de la frontière et nous avons dit
que tout ce qu'on savait sur ces ensembles c'était que At est

fermé et Bt ouvert. Ainsi, supposons que le domaine soit un
cercle, Bt pourra être formé d'une infinité dénombrable d'arcs
de circonférence. Si Ton veut, avec Neumann, n'utiliser que les

intégrales ordinaires, le raisonnement présente une lacune grave
qui a été signalée depuis longtemps par M. Volterra (« Sul prin-
cipio di Dirichlet », Bend, del Cire, di Pal., t. XI, 1897). M.
Volterra a indiqué comment lever cette difficulté qui se rencontrait
aussi dans d'autres problèmes.

On voit combien ces questions simples sont délicates et que
l'objection examinée ici n'est pas la seule qu'on puisse faire au
raisonnement de Neumann. L'objection de Weierstrass n'est pas
non plus la seule qu'on puisse faire au raisonnement de Riemann:

i) Les cinq premiers paragraphes de ce Mémoire ont paru dans le Journal de

mathématiques pures et appliquées (9e série, t. XVI, 1937, pp. 205-217). Par suite d'une
malencontreuse erreur de transmission il n'a pu être tenu compte que d'une partie des
corrections et additions faites par l'auteur sur les épreuves. En particulier, ont été
omises des indications bibliographiques et des observations qui, légèrement développées,

ont été réunies dans le paragraphe supplémentaire qui. suit, paru dans le même
tome du Journal de mathématiques pures et appliquées pp. 421 à 423.
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M. Hadamard a montré qu'il existait des cas où les données sont

telles que le problème de Dirichlet ait une solution et que, pourtant,

le problème de minimum envisagé par Riemann n'ait même

aucun sens; toutes les intégrales intervenant dans ce problème
étant infinies (Bull, de la Soc. Math, de France, t. XXXIV, 1906).

Et l'exemple de M. Hadamard est aussi simple que possible;
le domaine est un cercle sur la frontière duquel est donnée

une fonction continue convenablement choisie. Il n'y a donc

pas équivalence entre le problème de Dirichlet et le problème de

Riemann.
On peut préciser la relation entre ces deux problèmes en

disant que toutes les fois que le problème de Riemann a une solution,

celle-ci fournit aussi la solution du problème de Dirichlet.
Mais, pour démontrer ce fait, il ne faut pas compter sur le

raisonnement classique de Riemann basé sur la formule de Green
et ses généralisations, car celui-ci suppose qu'on puisse parler
d'intégrales étendues à la frontière, — donc que celle-ci soit assez

simple —, et qu'on ne rencontre que des fonctions dérivables
encore à la frontière — ce qui n'a pas lieu en général même pour
un domaine circulaire. Il m'a fallu pour arriver au résultat
(«Sur le problème de Dirichlet», Rend, del Cire. Mat. di Pal.,
t. XXIV, 1907) faire un assez long détour. M. Zaremba (« Sur
le principe du minimum », Rull, de VAc. de Cracovie, juillet 1909)
a obtenu ce résultat tout autrement.

Peut-il arriver que le problème de Riemann ait un sens mais
n'ait pas de solution et que le problème de Dirichlet en ait une
Non, cela découle facilement des travaux cités et d'autres au
sujet desquels on se reportera avec fruit à un Mémoire de
M. F. Vasilesco, couronné récemment par l'Académie de Belgique
(.Mémoires de VAc. roy. de Belgique, t. XVI, 1937). L'hypothèse
que le problème de Riemann ait un sens et pas de solution que
je viens d'envisager, donc de cas tels que le problème de Dirichlet
n'ait pas non plus de solution, se présente effectivement comme
je l'ai montré (Comptes rendus des séances de la Soc. Math, de

France, t. XXXXI, 1912). En d'autres termes, l'objection de
Weierstrass n'est pas relative seulement à la forme du raisonnement,

la circonstance prévue par Weierstrass : une quantité variable
n'atteignant pas son minimum, se rencontre effectivement pour
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V intégrale de Riemann, comme nous avons vu au paragraphe 3

qu'elle se rencontre effectivement pour la quantité A de Neumann.
La contribution de M. Hadamard au problème de Dirichlet

rappelée ci-dessus occupe certes peu de place dans l'œuvre
considérable de M. Hadamard, son intérêt n'en est pas moins fort
grand; elle m'a été très utile mathématiquement jadis, aujourd'hui

elle sera pour moi prétexte à lui dédier cette petite étude
critique.
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