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CuAPITRE VI

La méthode directe du Calcul des Variations

Bien qu’une tres faible partie des ressources que fournit la
méthode classique du Calcul des Variations ait seule été exposée
dans ce qui précede, on a di comprendre que ces ressources
sont bien, comme je I’ai dit, aussi importantes que celles données
par les dérivées dans les problémes de minimum ordinaire. En
meéme temps, on a pu noter que la lacune logique de ces deux
méthodes (qu’on peut appeler dans I'un ou I'autre cas: méthodes
des dérivées) est la méme: la méthode des dérivées détermine,
totalement ou partiellement, I’élément qui peut étre minimisant,
mais ne prouve pas que cet élément donne effectivement un
minimum; la méthode suppose donc acquise a 'avance la preuve
que 'extremum envisagé est atteint. Or la méthode directe se
propose précisément de construire immédiatement I’élément mi-
nimisant, laissant au besoin & plus tard le soin de bien préciser
sa détermination. Il semble donc que la réunion des deux mé-
thodes forme un tout logiquement complet. Les choses sont mal-
heureusement moins simples, comme on le verra. Pourtant la
méthode directe vient heureusement au secours de la méthode
classique.

I1 a déja été parlé des origines lointaines de cette méthode
directe. Pour qu’elle prenne une forme précise, il ne faut pas
cependant remonter plus haut que les objections faites par
Weierstrass a la théorie des fonctions abéliennes de Riemann.
Celui-ci s’appuyait sur la solution de ce probleme de minimum
connu sous le nom de probléme de Dirichlet. Il admettait que
le minimum est atteint, comme 'avait fait, avant lui, Dirichlet
et Gauss. Weierstrass, & cette occasion, introduisit la distinction
dont nous avons parlé entre borne inférieure et minimum, et
bien qu’il s’agisse 18 d’un probléme du Calcul des Variations, ce
lui fut 'occasion de créer la méthode directe, non pour ce calcul,
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mais pour les problémes de minimum ordinaire. Cette méthode,
qui nous a déja quelque peu servi, peut étre précisée comme il
suit.

Soit une fonction F (P) dépendant d’un point P. Pour en trou-
ver le minimum, on considére une suite de points Py, P,; etc...
telle que F (P,), F (P,) etc... tendent vers la borne inférieure
des valeurs que puisse prendre F (P) (suite minimisante). On
considére un point P, limite des points de la suite. Lia valeur
F(P,)siFestcontinue en Pyest bien la borne inférieure considérée,
et par suite le minimum est atteint pour la position P, de P.

La méthode directe pour le Calcul des Variations repose sur
un principe correspondant exactement & celul qui vient d’étre
indiqué. Soit une quantité F (P), P étant maintenant une fonc-
tion d’une ou plusieurs variables, ou méme un ensemble de fonc-
tions. F est appelée une fonctionnelle d’apres une dénomination
due & M. Hadamard. On considere une suite de fonctions Py,
P,, etc... telle que F (Py), F (P,) etc... tendent vers la borne
inférieure des valeurs que prend la fonctionnelle /' (suite mini-
misante). On prend une fonction P, limite des fonctions P,
P,, etc... La valeur F (P,) moyennant une certaine continuité
de F en P, est bien la borne inférieure considérée, donc le mini-
mum est atteint pour la détermination P, de P.

Cette méthode a tout d’abord été indiquée par Arzela dans
une note fort remarquable et qui néanmolins passa inapercue
au point que, quand M. Hilbert retrouvant le principe de la
méthode directe I'exposa au Congres de Zurich en 1897, il ne
fit en quelque sorte que reproduire la note d’Arzela qu’il ignorait,
alors que, possédant des résultats tres personnels et profonds
sur le probléme de Dirichlet, il aurait pu la prolonger. Ce n’est
que quelques années plus tard, quand Arzela se décida & signaler
modestement a quelques amis sa priorité, que justice put lui étre
rendue. C’est donc & Arzela et & M. Hilbert qu’il convient de
faire remonter la méthode directe du Calcul des Variations.
Encore n’est-ce qu’a partir des travaux d’Hilbert, lesquels eurent
immeédiatement un retentissement considérable, que ’on se mit
a étudier comme il le méritait ce procédé nouveau.

I1 exige que I’on effectue certaines opérations dont nous allons
examiner la possibilité. Il faut d’abord prendre une suite mini-
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misante P;, P,, etc... Une telle suite existe tdujours. Il faut
ensuite considérer un élément-limite P, de cette suite. Or
existe-t-il un tel élément-limite ? La proposition connue sous le
nom de théoréme de Bolzano Weierstrass prouve I’existence
de P lorsque les P sont des points situés dans une partie bornée
de l'espace. Donc la considération de P, ne présente pas de
difficulté quand il s’agit d’une fonction de points pourvu qu’on
ne 'envisage que dans une région bornée. Au contraire, s’il s’agit
d’une fonctionnelle, si donc les P désignent des fonctions, une
suite infinie de fonctions méme bornée dans son ensemble n’a pas
nécessairement une fonction-limite. Il en est ainsi par exemple
pour P, = sin nx. Un travail d’Ascoli fournit cependant un
resultat a rapprocher du théoreme de Bolzano-Weierstrass. On
appelle fonctions également continues, par exemple dans le
cas d’une variable ¢, les fonctions f,(t), f,(t), etc... qui, quel
que soit e positif, admettent un v tel que l'on ait

[fit+)—fi()] <e

dés que 'on a [h| < n, n étant indépendant de i. Le théoréeme
d’Ascoli g’énonce ainsi: une suite de fonctions également conti-
nues et bornées dans leur ensemble admet une fonction-limite.
En effet, prenons des valeurs de ¢ en infinité dénombrable et
réparties dans tout I'intervalle borné que I'on considére. Soient
t,, ty etc... ces valeurs. Parmi les f;, choisissons une suite partielle
f; telle que les f; de ¢, convergent, ce qui est possible puisqu’il
s’agit de fonctions bornées dans leur ensemble. Dans la suite
des f;, prenons une suite partielle f, telle que les f; de ¢, con-
vergent, etc... et prenons enfin la suite f,, f;, f1 etc... Il est clair
que cette suite converge pour chacun des ¢,. Or, soit maintenant
une valeur 0 de ¢ et prenons un intervalle 0—m, 8-+7, n étant le
nombre correspondant & un e choisi. Les nombres f(0), f; (0), etc...
différent de moins de ¢ de la limite de la suite f,, f;, etc... pour
la valeur t,, cette valeur ¢, étant comprise dans l'intervalle
0—m, 6+. Or nous pouvons prendre e aussi petit que nous
voulons, donc la suite f,(0), f;(6), etc... converge, et vers une
valeur qui différe de la limite obtenue pour ¢, de moins de e.
Donc le théoréme d’Ascoli est démontré et I’on voit que la fone-




— 307 —

tion-limite fait partie de la méme famille de fonctions également
continues que les fonctions de départ. En particulier, si I'on a
affaire & une suite de courbes situées dans une région bornée de
I'espace et toutes de longueur au plus égale & un nombre fini
S, il suffit de prendre pour paramétre de représentation I'arc s
pour que les fonctions définissant la courbe soient également
continues et que par suite 'application du théoréme d’Ascoli
montre que ces courbes ont une courbe-limite de longueur
d’ailleurs au plus égale & S. Ainsi, dans le Calcul des Variations,
pourvu qu’on introduise les restrictions nécessaires pour étre
dans le cas d’égale continuité, I’élément-limite P, existe et jus-
qu'ici il n’y a donc pas de différence essentielle entre les deux
sortes de problemes de minimum envisagés.

Il faut ensuite se servir d’une condition de continuité qui
doit étre remplie en P, pour en déduire que F(P,) est bien la
valeur du minimum. Comme sur P, on ne connait rien d’autre
que son existence, 1l faudra naturellement supposer que la condi-
tion de continuité en question est remplie pour chaque choix
possible de P. S’il s’agit d’une fonction de points F(P) dans les
problémes de minimum qu’on se propose, /' est toujours sup-
posée continue partout et par suite il n’y a aucune difficulté.
Mais dans le cas de fonctionnelles, la continuité de la fonction-
nelle F(P) est tout-a-fait exceptionnelle, les plus simples exemples
le montrent. Ainsi la longueur d’une courbe n’est nullement la
limite des longueurs des courbes infiniment voisines. Ceci pour-
tant n’avait arrété ni Arzela ni Hilbert, car les propriétés des
longueurs sont connues et simples et 'on pouvait, sans invoquer
une continuité, conclure que, cherchant le plus court chemin
d’un point & un autre sur une surface, la méthode d’Ascoli per-
mettait bien de I'obtenir. Mais, pour les.cas un peu plus géné-
raux, il fallait avoir recours & une continuité, laquelle, nous
venons de le dire, n’existe pas.

Dans ma these (Intégrale-Longueur-Aire; Annali di Matema-
tica, 1902), J’ai envisagé une sorte de continuité qui permet de
conclure dans bien des cas. Baire avait décomposé la notion de
continuité des fonctions d’une variable en deux notions distinctes
qu’il appelait semi-continuité inférieure et supérieure. Je n’ai eu
qu'a étendre ces notions aux fonctionnelles et, tandis que,
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réduites a leur utilisation dans le cas des fonctions de points,
elles n’avaient guere qu’un intérét philosophique, elles se sont
révélées d’importance capitale pour la méthode directe.

On dit qu’'une fonctionnelle F(P) est semi-continue inférieure-
ment si la plus petite des limites des F(P) quand P tend vers
une détermination IT est au plus égale a F(II). Il est clair que,
si une fonctionnelle F(P) est semi-continue inférieurement et si
P, est I’élément limite obtenu précédemment, F(P,) sera bien
égal au minimum. On définit d’une facon analogue la semi-conti-
nuité supérieure; elle permet de conclure qu’'un maximum est
atteint. Dans ma thése, je me suis borné a ce genre d’indications
sans rechercher des cas ou une telle semi-continuité existait
effectivement, car mon but n’était pas du tout ’étude du Calcul
des Variations et je n’en parlais que dans la mesure ou cela
m’était immédiatement utile. Goursat, puis M. Hadamard mon-
trerent que la semi-continuité existait dans des cas étendus,
puis M. Léonida Tonelli montra que la semi-continuité nécessaire
a I’emplo1 de la méthode directe était réalisée pour tous les pro-
bléemes que I'on appelle réguliers, et 1l réussit & donner une
méthode compléte pour la résolution du premier probleme du
Calcul des Variations. C’est 14 un progrés trés important et c’est
précisément parce que J’apprécie a un tres haut point ces résul-
tats de M. Tonelli que je me suis permis de rappeler la toute
petite part qui me revient dans ces progres: avoir étendu aux
fonctionnelles les notions de semi-continuité; ce que plusieurs
ouvrages récents attribuent & M. Tonelli. On peut d’ailleurs me
rendre justice sans crainte; ’apport de M. Tonelli est si grand
qu’il ne sera diminué en rien.

Je voudrais maintenant montrer que ces notions de semi-
continuité obtenues par Baire grace a son esprit profondément
critique dans le cas des fonctions de points sont des notions
simples et qui vraiment s’imposent dans le cas des fonctionnelles.

Tous mes travaux se rattachent & une plaisanterie de collé-
gien. Au College de Beauvais, nous démontrions que, dans un
triangle, un coté est égal a la somme des deux autres. Soit
ABC un triangle. Si 4,, B;, C; sont les milieux de ses c6tés, on a

BA+AC = BC1 +C1 A]_ +A1 Bl +Bl C.
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Opérons sur chacun des triangles BC1A,, A;B,C comme sur ABC.
On trouve une ligne brisée formée de huit segments et égale a
BA-+AC. En continuant ainsi, on a une suite de lignes brisées
qui s’écartent de moins en moins du c6té BC et qui ont toujours
pour longueur la somme des deux autres cotés de notre triangle
de départ. Les collégiens de Beauvais en concluaient que le
segment BC, limite géométrique de nos lignes brisées, avait pour
longueur la somme des deux autres cotés, BA-+AC. Mes cama-
rades ne voyaient 14 qu'une bonne plaisanterie. Pour moi, ce
raisonnement m’a paru extrémement troublant, car je ne voyais
aucune différence entre lui et les démonstrations relatives aux
aires et surfaces des cylindres, cones, sphéres, ou a la longueur
de la circonférence. Je finis par me contenter d’observer que,
pour cette derniére longueur, on pouvait se servir de polygones
inscrits et, lorsqu’on en utilisait d’autres, ¢’étaient des polygones
voisins de ceux-ci et ne présentant nullement les complications
accumulées & souhait dans les lignes brisées de notre pseudo-
démonstration. Pour les cylindres, cones et sphéres, on avait aussi
recours ou l’on pouvait si on le désirait avoir recours a des
polyédres quelque peu inscrits dans les surfaces considérées.
Plus tard, je sus démontrer que les polygones inscrits dans une
courbe ont effectivement une limite et que cette limite est la
longueur de la courbe. J’imaginais bien entendu que I’aire d’une
surface pouvait se définir de la méme maniére quand, en pre-
miere année d’Ecole Normale, j’appris, par la lettre de Schwarz
a Genocchi insérée dans le cours lithographié d’Hermite, que
Paire des polyeédres inscrits dans une surface n’a pas une limite
déterminée et que le probléme de la définition de I’aire était en
somme un probléme ouvert. Pour le résoudre, il fallait tout
d’abord abandonner 'idée d’utiliser des éléments inscrits, ce qui
paraissait bien regrettable puisqu’ils donnaient une définition
logique parfaite de la longueur des courbes. Mais il y avait une
raison péremptoire pour considérer que cette définition logique-
ment parfaite était cependant mauvaise a certains égards:
c¢’est qu'une longueur se mesure pratiquement; s’il fallait pour
Pavoir prendre nécessairement des points sur la courbe comme
sommets des polygones utilisés, la mesure physique serait impos-
sible puisqu’on ne peut distinguer un point d’un point extréme-

L’Enseignement mathém., t. IX, lasc. 4. 8
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ment voisin. Sil’on réfléchit d’ailleurs a la facon dont on 8’y prend
pour mesurer une courbe, par exemple un chemin avec un métre a
ruban, on en revient & ce que nous avons déja dit, qu’il s’agit
avant tout de supprimer les complications inutiles, en somme de
prendre les polygones qui donnent la plus petite valeur possible
comme valeur-limite. Si de plus on observe que, par la construc-
tion de lignes en dents de scie, il est possible de remplacer les
polygones fournissant une certaine limite par d’autres fournis-
sant une limite supérieure choisie & volonté, on voit que la limite
inférieure dont nous parlons est vraiment le seul nombre fourni
par 'ensemble des polygones s’approchant indéfiniment d’une
courbe donnée.

D’ou les deux définitions que j’ai posées:

La longueur d’une courbe est la plus petite des limites des lon-
gueurs des polygones tendant uniformément vers la courbe.

L’aire d’une surface est la plus petite des limites des aires des
surfaces polyédrales tendant uniformément vers la surface.

On voit que ces deux définitions mettent en évidence la semi-
continuité inférieure de la longueur et de ’aire. Ce n’est pas par
I'introduction de restrictions que la longueur et aire sont semi-
continues. Leur définition méme est basée sur la semi-conti-
nuité et I'entraine.

La méthode directe a donc pour point de départ la distinction
¢lémentaire entre borne inférieure et minimum; elle fait usage
d’un procédé de construction simple et qu’on peut dire naturel;
elle s’appuie enfin sur une notion de continuité tres élémentaire
également et qui, a certains égards, s'impose a l’esprit. Il ne
faudrait pas croire cependant que, parce qu’il s’agit de considéra-
tions n’exigeant presque aucune connaissance mathématique
préalable, les principes de la méthode directe sont de ceux qu’on
n’oublie pas une fois qu'on les a employés. Par exemple, J’al eu
I’occasion dans I'article qui va étre reproduit de montrer que
ceux-la méme qui avaient attiré lattention sur la distinction
entre borne inférieure et minimum confondaient cependant ces
notions dés qu’elles se présentaient sous un aspect un peu
nouveau.l)

1) Le texte qui suit est paru sous le titre: Sur la méthode de Carl Neumann, dans
le Journal de mathématiques pures et appliquées, 9e série, t. XVI, 1937, pp. 205-217
el 421-423.
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On sait qu’au début de ses recherches sur les fonctions abé-
liennes, Riemann résout le probléme de Dirichlet par une méthode
fautive, car elle suppose que toute quantité variable atteint sa
borne inférieure; il confond borne inférieure et mintmum.

Weierstrass releva la faute. A Weierstrass nous devons la
démonstration du fait que toute fonction continue de variables
atteint sa borne inférieure et les célébres conditions suffisantes
pour le caleul des variations. Mais le probléme de Dirichlet n’était
pas résolu par ces recherches; I'existence d’intégrales de premiére
espéce pour une surface de Riemann quelconque, que Riemann
avait déduite du probléme de Dirichlet, restait en question.

Carl Neumann s’est occupé avec succes de ces questions; il a
notamment donné pour la résolution du probleme de Dirichlet
une méthode restée justement célébre; Neumann se bornait a
Iétude des domaines convexes, Poincaré a justifié la méthode
pour des cas étendus de domaines non convexes; les recherches
de Fredholm ont fait mieux comprendre encore I'importance de
cette méthode et les raisons de son succes. La critique que )’en
veux faire ici ne portera que sur sa légitimation classique pour
le cas des domaines convexes.

Celle-ci repose en effet sur un lemme géométrique dont la
prétendue démonstration donnée est basée uniquement sur la
méme confusion entre borne inférieure et minimum. Cette faute
est de Neumann ; mais elle est aussi celle des Auteurs qui opposent
Riemann et Neumann; celle des professeurs qui ont exposé le
raisonnement de Neumann et de tous ceux qui ont lu ce raisonne-
ment sans protester. Bref, nous avons tous fait cette faute;
aussi mérite-t-elle qu'on s’arréte un instant pour I’examiner.

Sans doute, maintenant qu’est faite la distinction entre borne
inférieure et minimum, il n’y a plus guére de profit mathéma-
tique précis a tirer de cet examen; mais il y a un profit certain,
quolque d’un autre ordre, a constater avec quelle facilité nous
errons et qu’il suffit d’avoir donné un aspect géométrique a une
erreur classique et ancienne pour que personne ne la reconnaisse
plus.
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Il s’agit bien d’une erreur ancienne; quelque cinquante ans
avant l'objection de Weierstrass, Servois opposait la méme
objection & Argand.

Plus anciennement encore, on avait compris qu’il fallait dis-
tinguer quand on étudie la convergence d’une série, entre

U1 Upt1

<1 et
un un

< A <1;

et, comme la quantité & majorer dans le raisonnement de Neu-
mann est précisément le rapport de deux termes consécutifs
d’une série, ¢’est cette faute de débutant que nous ne reconnais-
sons pas.

Le lemme est d’ailleurs facile & démontrer rigoureusement en
s’aidant de la méthode directe du calcul des variations et de
calculs qui remontent & Neumann lui-méme. On le démontre ici
pour tous les domaines convexes non biétoilés; condition restric-
tive essentielle pour I'exactitude du lemme, sous quelque forme
qu’on I’énonce.

Un autre lemme, nettement différent, nous permettra d’ailleurs
de légitimer les développements en série de Neumann pour tous
les domaines convexes, sans aucune espéce de restriction.

1. La méthode de Carl Neuman pour la résolution du pro-
bléeme de Dirichlet est basée, comme Pon sait, sur les propriétés
des potentiels de double couche: on recherche la densité & (s)
d’une double couche répartie sur la frontiere F du domaine
donné et dont le potentiel se réduise sur cette frontiere du coté
intérieur au domaine, a la fonction donnée f(z). Ceci conduit a
I’équation:

[E—A(x)]é(x)-l—lié(s)d(}fc = f(x)

dans laquelle x et s désignent deux points de la frontiére; E,
A(x), 05 sont les mesures, faites avec les unités trigonométriques
normales, d’angles solides. Poﬁr E, 1l s’agit de tout ’espace;
pour A(x), de 'angle sous lequel on voit le domaine, supposé
convexe, du point z; pour 6, de ’angle sous lequel, de z, on voit
un domaine découpé sur la frontiére et parcouru par le point s.
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L’intégrale est ce qu’on appelle maintenant une intégrale de
Stieltjes.

Sous cette forme, ’équation convient aux domaines convexes
Jes plus généraux; mais cela suppose qu’on a étudié les propriétés
des doubles couches réparties sur la frontiére de tels domaines;
je ne m’y arréterai pas car mes observations s’appliquent tout
aussi bien aux domaines les plus simples, & un polygone et tout
spécialement & un quadrilatére. On pourra donc supposer qu'on
est dans le plan, interpréter x et s comme des parametres;
E sera 2w, A(z) I'angle du contour /' au point z et, s1’on suppose
que I n’a qu’'un nombre fini de points singuliers, comme le faisait
Neumann, l'intégrale se transformera en une intégrale ordinaire;
mais on pourra aussi, au contraire, conserver aux symboles leur
portée générale. |

Pour résoudre I’équation du probléme, Neumann I’écrit sous
la forme équivalente

f(x) = Eé(x)+ 3[[5 (s)—d(x)]do-,

et, par approximations successives, il trouve

0(x) = vo(x)+v (X)+v, (x)+...
avec ’
J(x) 1 ‘
vo(X) = —=, vi(x) = — — | [Vi-1 () =iy ()] d63.
E E
F
Un calcul facile montre que, si la série 3(x) est majorée par une
série convergente de constantes positives, la fonction §(z) vérifie
bien I’équation et conduit & la solution du probléme de Dirichlet.
Pour obtenir cette série majorante supposons que, sur tout F,
on ait

m; = v;(s) = M;

et partageons / en deux parties A; et B; lieux des points s tels
que:

pour 4; = < Vie1(s) = M;_,4
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M;_y+m;_y

pour B; m_y S v;i—1(8) < 5

D’ou, pour v;_; (s) — v;_; (), respectivement les limites,

' Mi"' _mi_
pour s dans 4; — 1 > (Mg —my_y),

—Mi—q

2 9

M;_
pour s dans B; —(M;_; —m;_;) ——

et, par suite,

E ;’x‘ E X = vi(x)
A; B;
M, y—m;_4| 1 ,
S22 aes+ | des |-
E 2
A; B;

lIA

Si donc on prend pour m; et M; les bornes exactes de v,
la différence M;—m; qui sera la borne supérieure de v;(z) — v,(y),
est telle que ~
M;—m; = (M;_{ —m;_4) 4,

A étant la borne supérieure de
A( A;, By L1 do,+ | do.+ | 46, + ! ao,
X, YV, Ajy, D) = =~ x x ~ 5
Y E|2 g 1
A; B; 43 B

cette borne supérieure étant relative a tous les choix possibles
de z et de y sur F et & tous les partages possibles de F en deux
ensembles complémentaires A;, B;1). Dou M;,—m; <k A,

avec une valeur convenable de k, et, puisque [d6; ne peut
' F

surpasser E,
|v;(x) | <k AL,

Si donc A est inférieur & 1, la solution est obtenue.

1) On pourrait assujettir A; & étre fermé, donc Bi & étre ouvert, et & contenir
tous deux des domaines, mais, en réalité, il suffit que A, donc Bi, soit mesurable afin
que les intégrales considérées existent.
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9. Cest ici quintervient le lemme géométrique dont j’ai
parlé; on I’énonce sous des formes diverses. Les intégrales qui
figurent dans la définition de A sont les angles A; oy Bi s
A; ,; By, sous lesquels les parties A; et B; sont vues des points
et y; de sorte que 'on a, par exemple,

1 1
A(x,y, A;,B) = EAi,x+Bi,x+Ai,y+ ’2“Bi,y:| |

ey =

1
L(Ai’ x +Bi, x) +(Ai, y +Bi,y) - E(Ai, x+Bi,y)]

] =

1 1 1
—Z—(Ai, x +Bi, x) + 5 (Ai,y +Bi, y) + '2—(Ai,y +Bi, x)]

| —

—

] —

1 1
(Ai,x+Bi, x) + E(Ai,y +Bi,y) + E(Ai,y—Ai, x)]

-

En remarquant que les parenthéses (4A; +B;, ), (4; ,+B; ;)

E . .
sont au plus égales & X a ces expressions de A correspondent les

formes suivantes du lemme:

Il existe un nombre q, indépendant du choix des deux points x
et v sur la frontiére F et de la division de F en deux parties A,
et B; tel que lon ait

1 1
(Forme I) —2~Ai,x+Bi,x+A,~,y+ EB"y <qE avec g<1;

il

(Forme II) A; .+B; , ZqE, avec g > 0;

Ly =

(Forme III) A;,x+Bi’y < qE, avec q < 1;

1

(Forme 1V) A; ,—A; . SqE, aveec g < 3

La forme II se démontre généralement en disant: A; . ne
peut étre nul que si z est le sommet d’une partie conique de F
a laquelle A; appartient; en d’autres termes si 4; est un lieu
de segments de droites passant toutes par z, B;, ne s’annule
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que dans des conditions analogues. Donc la forme 11 est justifiée
pour tous les domaines non biétoilés, c’est-a-dire tels que F' ne
soit pas formée de deux parties coniques. |

De la forme II la forme III résulte de suite, puisque 'on a

A; t+4;,+B; . +B; , = E;

cette forme III est celle que Neumann formule dans son énoncé.
On pourrait certes I'atteindre directement sans passer par II,
mais c¢’est par le détour employé ici que Neumann y arrive.

Il est clair que le raisonnement rappelé est inopérant; du
fait que

1
= Ai x+Bi X —
C ( s ’y) E

/

est inférieur a 1 pour tout choix de la division A4;, B; et des
points z, y il n’en résulte nullement que sa borne supérieure A
soit aussi inférieure & 1. On ne peut I’affirmer que sil’on a prouvé
que la borne supérieure est aussi un maximum, c’est-a-dire est
elle-méme atteinte pour un choix des 4;, B;, z, y. Le raisonne-
ment de Neumann, destiné a remplacer celur de Riemann, est
donc fondé exactement sur la méme confusion entre borne supé-
rieure et maximum, justement critiquée par Weierstrass.

Il est tout a fait étonnant que tout le monde, & commencer
par Weierstrass, ait admis la validité du raisonnement de Neu-
mann et que nos traités actuels continuent a opposer le raisonne-
ment de Riemann, déclaré faux, & celui de Neumann, proclamé
entiérement correct. Et pourtant Neumann attirait 'attention
sur le point litigieux dans I’énoncé méme de son lemme Haupt-
sache ; ¢’est, en effet, dans I’énoncé qu’il passe du fait, exact,
démontré sur { & la conclusion fausse relative a la borne supé-
rieure A de . Il le fait en utilisant la notation (sic!) qui ne peut
mangquer d’attirer ’attention, dans les termes suivants 1):

«..., 50 wird ¢ dem spielraum unterworfen sein:

o ={<l1

(sic )

1) Untersuchungen Uber das logarithmische und Newton’sche Potential, par C. NEU-
MANN, Leipzig, Teubner, 1877, p. 173.
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Was von der Variablen ¢ gilt, gilt aber nothwendig auch
von jedem specialwerth dieser Variablen. Bezeichnet man also
den Maximalwerth von ¢ mit 2, so folgt aus der vorstehenden
Formel sofort:

o 2l <1

(sic!)

. . . v vn+1 .
Ainsi Neumann, ayant & majorer le rapport ——, fait exac-
v

n

tement la faute des éleves qui ne distinguent pas

un+1 de un-’rl

<1 <A<l

u, u,

mais il la fait, si je puis dire, d’une fagon plus savante, en affir-
mant que la maximalwerth de { est une specialwerth de G,
¢’est-a-dire exactement sous la méme forme que Riemann.

3. On ne saurait mettre la confusion qu’il a commise en plus
parfaite lumiére qu’il ne I’a fait lui-méme, mais, sila lacune de la
démonstration est claire, comme nous justifirons dans un instant
le lemme de Neumann, avec I’énoncé de Neumann et en nous
restreignant comme lui au cas des domaines non biétoilés, il ne
sera pas superflu d’indiquer que, dans cette question du lemme
de Neumann, le raisonnement faux de Neumann n’a pas conduit
seulement & des résultats exacts mais aussi a des énoncés erronés.

Dans un ouvrage excellent, I’Auteur adopte la forme IV
et, raisonnant comme Neumann, il dit: A; ,—A; , ne peut étre

E E L
égal & > que parr A;,= > A; .= 0 et ceci exige que le
domaine soit limité par une partie conique A; et une variété
linéaire B;, on prendra z au sommet du cone, y dans B;. Ainsi,
il ne sera donc plus nécessaire d’écarter que ces domaines pyra-
midaux et non tous les domaines biétoilés.

On notera que ¢’est bien le seul raisonnement de Neumann
qui a été employé, qu’aucune faute nouvelle n’a été surajoutée
a celle de Neumann, c’est-a-dire & celle que nous commettons
tous quand nous acquiescons au raisonnement de Neumann, et
pourtant, cette fois, la conclusion est fausse; car:
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Le lemme de Neumann est faux pour tout domaine biétoilé
quelle que soit celle des formes 1 a IV sous laguelle on I énonce.

Pour montrer cela il suffira de s’occuper de la forme I puisque
les autres ont été obtenues par des majorations des intégrales
servant & la définition de A. Placons-nous d’abord dans le cas
du plan, un domaine biétoilé est un quadrilatére, ABCD, ex-
ceptionnellement un triangle ABC, on placerait alors D sur le
cOté AC. g; étant arbitrairement petit positif, prenons des voisi-
nages de A et de C, tels, pour celui de 4, par exemple, que pour
chaque point & de ce voisinage, les angles BAD, BED différent
de moins de ¢;; prenons ¢ dans le voisinage de A et sur AB et
faisons subir & 'angle DEB une translation dans laquelle & se
rapproche de A sur BA, arrétons-nous dans une position telle
que la partie du coté AD extérieure a cet angle soit vue du
voisinage de C sous un angle inférieur a ¢;; soient alors z; la
position de &, Do; la partie de DA extérieure & I’angle. De fagon
analogue nous prendrons v, puis y; sur CB et Dvy; sur DC. B; sera
formée de Aw;, Dv;, BC; A; sera formée de Cv;, Do;, AB. On a:

Ai,yi > T —28i’ Bi,yi > 7T —28i)

A, +B; , = 7, 4; ,,+B = 7,

i,yi

done, pour g; tendant vers zéro,

1 (1 1
'2‘7; { “2“ Ay 5+ By 5+ 4iy, t EBi,yi }
tend vers 1. ’

Dans le cas d’un domaine biétoilé a plus de deux dimensions,
on opérera exactement de méme. La frontiére F pourra toujours
étre considérée comme formée de deux partie coniques &/ et €
de sommets A et C se coupant suivant une certaine variété BD;
sur &/ on choisira une génératrice le long de laquelle 1l existe un
élément tangent et sur cette génératrice un point & dans un cer-
tain voisinage de 4 d’ou V'on voit la variété BD sous un angle
solide différant de moins de ¢; de celui sous lequel elle est vue
de A, et Pon fera subir au cone (£, BD) la translation rectiligne
qui ameénerait & en A en s’arrétant quand la partie de &/ exté-
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rieure & ce cone est vue du voisinage de € sous un angle solide
inférieur a g, ....

Ainsi, on ne peut étendre le lemme de Neumann au-dela du
cas considéré par Neumann; il est vain d’espérer atteindre de
cette facon des domaines biétoilés.

I1 est tout a fait surprenant que Neumann se soit juste arrété
a point. J’ai déja indiqué que Neumann, bien que concluant
pour la forme III, avait en réalité raisonné sur la forme IT; ¢’il

avait raisonné directement sur III, il aurait dit: 4; , = 3

seulement quand il y a un élément tangent en z et que B; est
tout entier dans cet élément tangent. La méme chose peut se
répéter aprés permutation de A4;, B;, de z, y; or les conditions
indiquées dans les deux cas sont incompatibles, donc:

A; +B;, <E d’ou A; «+B; , = qE <E;
(sic!) (sic!)

et, comme conclusion, la forme III du lemme pour tous les
domaines convexes sans aucune exception; ce qui serait erroné.

D’ailleurs, des considérations mémes de Neumann on pour-
rait tirer la méme conclusion, puisqu’elles donnent la premiére
des inégalités précédentes sauf pour le cas ou A4; et B; seraient
deux parties coniques de sommets respectivement y et x et
qu’alors on a

A

A, = B; ., =0, A4;,+B; A; ,+B;

7N
o |

y X =

E.
2’ s Y
les deux derniéres égalités s’excluant 'une Pautre. Cela revient
en somme & utiliser la forme I et, en effet, le mode de preuve de
Neumann appliqué & I donnerait cet énoncé pour tous les do-
maines sans restrictions.

Bref, le mode de raisonnement employé est non seulement
insuffisant, il est erroné et conduit aussi bien & des conclusions
fausses qu’a des conclusions exactes. |

4. Une démonstration du lemme de Neumann ne peut reposer
que sur I’évaluation approchée de la quantité, dont la borne est
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en discussion, et le calcul & faire pour cela s'impose. Il a été fait
par Neumann lui-méme qui, aprés la démonstration (?) de son
lemme, calcule A pour une ellipse et un ellipsoide, par exemple.

Neumann ne voyait pas dans ce calcul un appui pour sa
démonstration dont la validité lui paraissait certaine, mais cer-
tains auteurs, qui ont introduit le commencement du calcul de
Neumann dans la démonstration méme du lemme, avaient peut-
etre quelque doute sur cette validité. Ils ne nous ont pas ren-
seignés sur ces doutes; il est peu vraisemblable d’ailleurs qu’ils
alent bien assimilé I'une & l'autre les lacunes des raisonnements
de Neumann et de Riemann, sans quoi, aprés avoir majoré
I'expression étudiée par une quantité variable V, ils n’auraient
pas oublié de prendre les précautions nécessaires pour passer de V
a sa borne supérieure sans donner prise & la méme critique. Ces
précautions sont d’ailleurs simples; V est le plus souvent une
fonction ordinaire, il suffit donc de se placer dans des conditions
ou elle est continue, mais on aboutit ainsi & des domaines for-
mant une famille moins vaste que celles que les exposés que j’ai
vus croyaient examiner.

Quoi qu’il en soit, c¢’est au calcul de Neumann et & ces essais
de meilleure démonstration du lemme que se rattache immédiate-
ment la preuve qui suit. Pour lui donner une valeur pour tous
les domaines convexes non biétoilés il suffit de se rappeler que,
presque partout, la frontiere d’un tel domaine a un élément
tangent et que, dans les intégrales, il suffit de s’occuper de ces
points non exceptionnels pour lesquels s’appliquent tous les
calculs qui sont classiques pour le cas ou la frontiere a partout
des éléments tangents; on pourra d’ailleurs, si on le veut, inter-
préter ce qui suit pour ce cas particulier.

Prenons, par exemple, la forme de Neumann, et raisonnons
sur la borne supérieure de

,Ldeii_l— Bfidé);i
pour tous les choix possibles de z;, y;, 4;, B;. Nous pouvons, c¢’est
le point de départ méme de la méthode directe, ne conserver que
des choix pour lesquels les x; d’'une part, les y; d’autre part, ont
des points limites, &, 5 qui, d’ailleurs, sont peut-étre confondus.
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Puisque le domaine n’est pas biétoilé, il existe un point M de F
en lequel F a un élément tangent lequel ne passe ni par ¢, nipar 7.
Alors si autour de & et » on a pris des voisinages assez petits V (§)
et V (7)), autour de M on peut prendre un voisinage V-(M)
tel que tout élément i tangent & F en un point m de V (M) ne
coupe ni V (&), ni ¥V (n). Prenons z et y respectivement dans V (&)
et V (n); les égalités classiques

dgy mx sin (mx, m) = d0; my sin (my, m) = df, m0 sin (m0, m)

dans lesquelles 0 est un point intérieur au domaine, conservent
le méme sens dans le cas général, c¢’est-a-dire qu’elles permettent
la transformation d’intégrales en df7 en intégrales en d 6,
dans lesquelles 1l n’y a a tenir compte que des points m pour
lesquels m existe. Or, les distances et les sinus ont des bornes
finies et différentes de zéro, done, pour un certain k> 0, on a

doy, > kdy, doy, > kdo;';
si ’on pose
v= | doy, v > 0,
V(M) :

et, si A" et B’ sont les parties de V (M) qui appartiennent & A;
et B;, on a

(a5, >k [des, [des,>k|[de:, [dos+ [de: = .
A’ A4’ B’ B’ A’ B’

Et puisque

on a
[dos,+ [de, < E—kv
A B;

le lemme de Neumann est prouvé pour tous les domaines convexes
non biétoilés.

5. Le développement en série de Neumann pour la fonction
densité fournissant la solution du probléme de Dirichlet est donc
prouve dans les mémes conditions. On sait que Poincaré a
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montré (Acta Mathematica, t. XX) que ce développement s’appli-
quait méme & des domaines non convexes sous la condition de
I'existence de certaines courbures. Iei, on ne sortira pas du cas
des domaines convexes, le seul pour lequel on puisse utiliser les
raisonnements simples de Neumann, mais on ne fera aucune
hypothése supplémentaire. Le cas des domaines biétoilés, qui
comprend celui des domaines pyramidaux, reste en réalité le
seul a examiner.

On a vu (§ 1), que 'on a

[ vi(x¥)=v; () | S (M- —m;_y) A(x, y, 4;, B)
d’ou, d’aprés la définition par récurrence des v;,

(M;—y —

[vie (X)) | = 5

mi_l)fA(s,X)d@}
F

si A (s, X) est la limite supérieure de A (s, X, 4;, B;) pour tout
choix de A;, B;.- |
Supposons que l'intégrale du second membre ait ¢£ pour

1

borne supérieure, avec ¢ <5, pour tout choix de s et X; alors
de I'inégalité précédente résulterait aussi

[Vis . D= q(M;—y—m;_y) et

P (X)) =y (V= 29 (M— g —my_y).
Donc, ’oscillation de f étant 2 o £, on aurait successivement
Vi@ =0 [vE|[sw; [vE]=290 |[v,x)] = 2q0;

vs(X) | =29 05 [v(x)] =29 0;...,

et il serait démontré que la série de Neumann converge encore h
a la facon d’une progression géométrique.
Mais il faut prouver un nouveau lemme:

Pour chaque domaine convexe Uintégrale | A (s, X) d0% a une borne
F

supérieure qE, q étant inférieure a %. i
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La quantité A (s, X, 4;, B;) ne surpassant jamais 1, il en est
de méme de A (s, X); si donc P'on sait que A (s, X) est inférieur
a A <1 pour les points s d’un domaine vu de X sous un angle
non nul et supérieur & une limite fixe o, 'intégrale sera au-plus

E o
— —(1—2)a et la proposition sera prouvée.

Soit & un point limite de points X pour lesquels | A (s, X) d0Y,
F

qui est une fonction du point X, tend vers sa borne supérieure.
Choisissons, ce qui est toujours possible, un point v tel que, si
le domaine est biétoilé £ et m n’en soient pas deux sommets; alors
nous avons, au paragraphe précédent, considéré un point M en
lequel il y avait un élément tangent ne passant ni par &, nipary
et, grace a lui, nous avons déterminé deux voisinages V (&),
V (n) de € et v tels que s1 X est dans le premier, s dans le second,
A (s, X, A;, B,) soit inférieur & un nombre A inférieur & 1. Alors,
A (s, X) est inférieur a A. Si, de plus, le voisinage V (%) est vu
de chacun de ces X sous un angle plus grand que o« > 0, la
démonstration est acquise.

Or, si le cone tangent & I et de sommet o ne passe pas par ¢,
de ¢ on voit V () sous un angle non nul 2«; de tout point de
V (&), pris assez petit, on le verra sous un angle supérieur a «.
Ainsi, 1l ne reste a examiner que les domaines tels que, si 'on a
pris M ayant un élément tangent M ne passant pas par &, le
cone tangent & F en un point quelconque v passe toujours par M
ou ¢. En d’autres termes, le domaine doit étre biétoilé et de
sommets M et &, quel que soit le choix indiqué de M; done il
doit étre pyramidal, / étant constituée d’une partie conique %
de sommet ¢ et d’une base 4.

Imaginons alors que les points & et v du paragraphe précé-
dent sont confondus en notre sommet &; prenons V (&) et V(7))
confondus et limités par une section %, paralléle & #. M sera
pris intérieur a 4, ainsi que V (M). Alors, pour s et X dans V (&),
A (s, X, A;, B;) est inférieur & un nombre X inférieur a 1, donc
aussit A (s, X). Mais, de tout point X de V (&) sauf du point & 1),
on voit V (y) = V (&) sous un angle supérieur au minimum o

1) Le cas de '/F A (s, ) dﬂz n’est pas & examiner puisque [ deg est inférieur a;f .
v F - ]
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de 'angle sous lequel on voit V (£), ou %4,, d’un point quelconque
P frontiére de # et de %, lequel angle est une fonction continue
de P. Donc le lemme est prouvé dans tous les cas.

La fonction, harmonique dans un domaine convexe et se rédut-
sant sur sa frontiére a une fonction continue donnée, est donc fournte
par la série de Neumann qui converge a la facon d’une progression
géométrique ; dans tous les cas, sans aucune restriction 1).

6. J’ai dit, & plusieurs reprises, que pour atteindre tous les
cas 1l fallait utiliser des généralisations de I'intégrale mais que
le lecteur pouvait cependant se borner a I’examen de domaines
simples et & 'emploi d’intégrales ordinaires. Cela demande des
explications: on peut n’utiliser que les intégrales ordinaires et
constater, comme au paragraphe 2, I’existence d’une lacune dans
le raisonnement de Neumann, comme au paragraphe 3 I'inexac-
titude du lemme avec certains énoncés, ou comprendre la marche
des démonstrations des paragraphes 4 et 5. Mais ces démonstra-
tions exigent, méme pour les domaines les plus simples et les
fonctions a la frontiére les plus simples, 'emploi d’intégrales
étendues aux parties A4; et B; de la frontiére et nous avons dit
que tout ce qu’on savait sur ces ensembles c¢’était que A; est
fermé et B; ouvert. Ainsi, supposons que le domaine soit un
cercle, B; pourra étre formé d’une infinité dénombrable d’arcs
de circonférence. Si I'on veut, avec Neumann, n’utiliser que les
intégrales ordinaires, le raisonnement présente une lacune grave
qui a été signalée depuis longtemps par M. Volterra (« Sul prin-
cipio di Dirichlet », Rend. del Circ. di Pal., t. XI, 1897). M. Vol-
terra a indiqué comment lever cette difficulté qui se rencontrait
aussi dans d’autres problemes.

On voit combien ces questions simples sont délicates et que
I’objection examinée ici n’est pas la seule qu'on puisse faire au
raisonnement de Neumann. [’objection de Weierstrass n’est pas
non plus la seule qu’on puisse faire au raisonnement de Riemann:

1) Les cing premiers paragraphes de ce Mémoire ont paru dans le Journal de
mathématigues pures et appliquées (9¢ série, t. X'VI, 1937, pp. 205-217). Par suite d’une
malencontreuse erreur de transmission il n’a pu étre tenu compte que d’une partie des
corrections et additions faites par I’auteur sur les épreuves. En particulier, ont été
omises des indications bibliographiques et des observations qui, légérement dévelop-
pées, ont été réunies dans le paragraphe supplémentaire qui swit, paru dans le méme
tome du Journal de mathémaliques pures et appliquées pp. 421 & 423.
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M. Hadamard a montré qu’il existait des cas ou les données sont
telles que le probléme de Dirichlet ait une solution et que, pour-
tant, le probléme de minimum envisagé par Riemann n’ait méme
aucun sens; toutes les intégrales intervenant dans ce probléme
étant infinies (Bull. de la Soc. Math. de France, t. XXXIV, 1906).
Et l'exemple de M. Hadamard est aussi simple que possible;
le domaine est un cercle sur la frontiere duquel est donnée
une fonction continue convenablement choisie. Il n’'y a donc
pas équivalence entre le probléme de Dirichlet et le probléme de
Riemann. |

On peut préciser la relation entre ces deux problémes en
disant que toutes les fois que le probléeme de Riemann a une solu-
tion, celle-ci fournit aussi la solution du probléme de Dirichlet.
Mais, pour démontrer ce fait, il ne faut pas compter sur le
raisonnement classique de Riemann basé sur la formule de Green
et ses généralisations, car celui-c1 suppose qu'on puisse parler
d’intégrales étendues a la frontiere, — done que celle-ci soit assez
simple —, et qu’on ne rencontre que des fonctions dérivables
encore & la frontiere — ce qui n’a pas lieu en général méme pour
un domaine circulaire. Il m’a fallu pour arriver au résultat
(¢« Sur le probléeme de Dirichlet », Rend. del Circ. Mat. di Pal.,
t. XXIV, 1907) faire un assez long détour. M. Zaremba (« Sur
le principe du minimum », Bull. de I’ Ac. de Cracovie, juillet 1909)
a obtenu ce résultat tout autrement.

Peut-1l arriver que le probleme de Riemann ait un sens mais
n’ait pas de solution et que le probléme de Dirichlet en ait une ?
Non, cela découle facilement des travaux cités et d’autres au
sujet desquels on se reportera avec fruit & un Mémoire de
M. F. Vasilesco, couronné récemment par ’Académie de Belgique
(Mémoires de U’ Ac. roy. de Belgique, t. XVI, 1937). L’hypothése
que le probleme de Riemann ait un sens et pas de solution que
Je viens d’envisager, donc de cas tels que le probléme de Dirichlet
n’ait pas non plus de solution, se présente effectivement comme
Je I’al montré (Comptes rendus des séances de la Soc. Math. de
France, t. XXXXI, 1912). En d’autres termes, ’objection de
Weierstrass n’est pas relative seulement & la forme du raisonne-
ment, la circonstance prévue par Weiersirass : une quantité variable
n’atteignant pas son minimum, se renconire effectivement pour
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Uintégrale de Riemann, comme nous avons vu au paragraphe 3
qu’elle se rencontre effectivement pour la quantité A de Neumann.

La contribution de M. Hadamard au probléme de Dirichlet,
rappelée ci-dessus occupe certes peu de place dans ’ccuvre con-
sidérable de M. Hadamard, son intérét n’en est pas moins fort
grand; elle m’a été trés utile mathématiquement jadis, aujour-
d’hui elle sera pour moi prétexte a lui dédier cette petitz étude
critique.
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