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CHAPITRE V

La méthode classique du calcul des variations

Avant de donner une idée plus précise de la méthode directe
dans le calcul des variations (Chap. V1), je dois, puisqu’il s’agit de
comparer deux procédés, parler du calcul des variations classique.
C’est par lui que je commence parce qu’il a été le point de départ et
le procédé unique tant qu’on n’en avait pas reconnu les lacunes.
L’exposé que je vais en donner, peu différent de celui des traités,
est extrait des notes préliminaires d’'un cours que j’ai fait au
College de France «sur les problemes en marge du calcul des
variations ». Certains.étudiants, frappés des difficultés rencon-
trées dans les applications en apparence les plus simples du calcul
des variations, déclaraient alors, avec la belle intransigeance de
la jeunesse: « Le calcul des variations classique n’existe pas ».
C’est pourquol j’al tenu & exposer tout d’abord la méthode de
Lagrange et Euler afin de montrer que, malgré ses lacunes
logiques et toutes ses imperfections, elle joue dans les problémes
de son ressort le méme role que la méthode de Fermat pour les
problémes d’extremum algébrique. Certes une méthode compléte
reste a trouver, mais ni le procédé classique, ni le procédé direct
ne la donne; il parait probable qu’ils interviendront conjointe-
ment dans la constitution de la méthode désirée.

a et b étant deux nombres fixes donnés, F (z, u, ¢) une fonc-
tion donnée, on considére lintégrale

I(y) = [ F(x,y,y")dx,

dans laquelle y est une fonction a trouver, définie de a a b, con-
tinue ainsi que sa dérivée premiére. Pour F, on suppose que ¢’est
une fonction & dérivées premiére et seconde continues, définies
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pour toutes les valeurs de z, u, ¢, nécessaires & considérer.
Il faut trouver y (z) de facon que I (y) atteigne 'un de ses
extrema, disons son minimum pour fixer le langage.

L’idée mise en ceuvre est remarquablement simple. Soit y, ()
la fonction, supposée existante, donnant le minimum ; pour toute
fonction de deux variables y (z, ¢) telle que 'on ait y (z, 0) =
Yo(x), = 0 donnera le minimum de la fonction 7 [y («, t)] dépen-
dant de la seule variable ¢. LLa méthode de Fermat appliquée a la
recherche de ce minimum donnera une relation que devra vérifier
Yo(x) et qui jouera le role de 'équation dérivée ordinaire.

Cette relation contient la fonction y (z, t) & laquelle il convient
de laisser, sinon toute sa généralité, du moins une grande généra-
lité, car 1l est clair que y,(z) peut donner le minimum cherché
pour I[y (z,t)] sans le donner pour I[y (z)]. Peut-on du moins
espérer qu’il suffira d’envisager une famille restreinte de ¥ (z, ) ?
Non, car supposons seulement qu’il s’agisse du minimum de la
fonction de deux variables o (¢, t;) = I[y(x, t, t,)], ¥ (x, £, ¢;) étant
donnée. La méthode classique revient & écrire d’abord que
t =t = 0, par exemple, donne le minimum pour y (z, t, 0) et
y (z, 0, ¢). Mais supposons méme que le point 0, = ¢, = O,
donne le minimum pour toute droite issue de O, donc pour toute
fonction y (z, t, kt), k fixe quelconque; il n’en résulte nullement
que 0 donnera le minimum de ¢ (¢, ¢;). Prenons en effet deux cir-
conférences tangentes intérieurement en O; & l'extérieur de la
circonférence extérieure C; et sur cette circonférence, prenons
pour ¢ (¢, ¢;) une fonction continue ayant son minimum en O,
o (L t;) = \/tz—{—tf par exemple; & 'intérieur de la circonférence
intérieure C, et sur elle, faisons de méme, les deux fonctions
étant égales en O, par exemple, encore ¢ = \/t2+t‘z‘ ; entre C, et
C,, prenons pour ¢ une fonction continue se raccordant avec les
deux autres sur C; et C,, mais n’ayant pas l’origine pour mini-
mum, par exemple, sur chaque droite issue de O et coupant C,
et Cy en A; et A,, ¢ linéaire de 4, et de A, jusqu’au milieu B
de A; A, et égale en B & —OB. Ainsi, la considération de droites
passant par O ne suffit pas; ni celle des coniques, il suffirait en
effet de remplacer C; et C, par deux courbes entre lesquelles
ne passe aucune conique; ni celle des courbes analytiques, car
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il suffirait de remplacer C; et C, par deux courbes qui, au voisi-
nage de O, soient

1 1

y=ex2, y=2€ x2 . 1)

On reconnaitra facilement qu’il suffirait de se borner a la
considération des courbes z (0), v (6) données par deux fonctions
monotones, mais ¢’est 14 une famille trés vaste de courbes et il
faudrait définir o(z, t;) pour toutes ces courbes.

Ainsi, la méthode des dérivées quine suffit pas pour obtenir le
minimum d’une fonction d’une seule variable & coup str, qui
ne fournit que des conditions nécessaires, est encore moins satis-
faisante quand le nombre des variables augmente. Mais le pro-
bleme devenant alors plus compliqué, les renseignements qu’elle
fournit conservent & peu prés la méme valeur relative. Quand
nous passons au calcul des variations, il en est de méme, I’emploi
des dérivées ne fournit que des conditions nécessaires, les complé-
ments indispensables s’accroissent, mais vu la difficulté accrue
des questions, I'intérét des résultats fournis par I’emploi des
dérivées reste du méme ordre.

Il faut donc conserver a y (x, t) sa généralité; mais alors la
relation que donne la dérivée de 7 (¢) contient y (x, t) et 'on ne
sait l'utiliser. Au contraire, chaque fonction y(x,t) construite
algébriquement a partir de y,(x) et de ¢ donnera une relation
intégro-différentielle en yy(x) que I’on peut espérer employer. Le
cas le plus favorable serait naturellement celui ou I'on aurait
une équation différentielle; ¢’est précisément ce & quoi Lagrange
était parvenu dans des cas particuliers et Euler dans le cas
général.

On choisit y (z, t) linéaire en ¢:

y(x,0) = yo(x) +1dy (x),

Ay (x) étant une fonction ayant les mémes continuité et
dérivabilité que y, (x); les fonctions de z données par y (z, 1)

. 1) Cet aytiﬁce peut de méme servir & prouver qu’une fonction peut étre en un
pom'tAO continue sur chaque droite ou sur chaque courbe analytique passant par O
sans &tre continue par rapport & I’ensemble des variables dont elle dépend.

L’Enseignement mathém., t. IX, fasc. 4. 7
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pour les diverses valeurs de ¢ constituent en somme une droite
de l’espace fonctionnel y (x).

L’analogie avec le cas des fonctions de variables se poursuit
donc. Avec ce choix, on aura une relation intégro-différentielle;
pour avoir une équation différentielle, il faut ne faire intervenir
quune valeur de z, d’ou I'idée de prendre Ay (z) = 0 sauf au
voisinage de cette valeur de x. (Je m’écarterai quelque peu ici
des considérations classiques. Cette modification comme toutes
celles de cet article a pour but, en utilisant des considérations
particuliéres élémentaires, de permettre de mieux suivre len-
semble des idées, depuis les principes jusqu’aux résultats, tandis
que des considérations plus générales, obligeant a recourir a des
résultats techniques, masquent quelque peu la suite des raisonne-
ments, précisément parce que les résultats techniques provien-
nent eux-meémes d’un raisonnement. Par contre, cela permet des
démonstrations plus bréves. Comme le disait Bouquet: « Les
démonstrations courtes ont un avantage: &tre courtes; les dé-
monstrations longues ont un avantage: étre longues. »)

Nous prendrons 4y () comme ayant la forme indiquée par la

figure:
/J\

o p x"l?

Fig. 13

Cette forme entraine pour . Ay (x) = Ay’ (x) des points
X

de discontinuité de premiere espéce; cela n’est nullement génant.
Soit 3y = Ay en dehors d’un petit intervalle a—o, a-taqg et
a 'intérieur de cet intervalle tel que dy et dy’ soient continus
partout et uniformément bornés. Alors:

I(y+4y) =

ac+tx0

I(y+oy)+ | [F(x,y+dy,y +4y)—F(x,y+3y,y' +y")]dx

x— Xy

= I(y+0y)+200, 4, |60]| <1,
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A étant facilement majorable; ainsi [ (y+Ay) et [ (y+9dy)
peuvent se remplacer dans la recherche du minimum.
On peut faire tendre Ay vers zéro de bien des maniéres.

1. Prenons d’abord H = th, « = B—h, y = B-+h, hétant fixe.

ol (yo + 4
Pour A = O, (yoat ) = 0, et pour & # 0, on doit avoir
cette méme égalité pour ¢t = 0. Or:
B—h B )
I(y(J+Ay) = 5 F(xayODy/O)dx_l— j F[xa.Vo‘f‘t(x—.B‘l‘h),J’O +t]d~x
a B—h
B+h b
+ j F[x, yo+t(B+h—x), yo—t]dx+ [ F(x, Vo, Vo) dx.
B+h
B
9 oF OF
-—f(yo +dy) = (x—p dx
J dy ay’
B—h
B+h
oF OF
+ ( dx.
oy’
;

Dans la premiére intégrale, les variables sont:

X, Yo+t (x—B+h), yo+t,
dans la seconde

X, y0+t(:8+h—x)> y’O—t:

y et y’ étant naturellement prises pour la valeur de x considérée.
Pour ¢t = 0, ces valeurs sont z, y,, ¥o; donc on doit avoir pour
ces valeurs:

B B+h
OF OF OF
J[E(X"‘ y’]dx_l_ J‘[——(ﬂJrh x)—aTF:Idx = 0,

B—h B

quel que soit . La dérivée du premier membre par rapport a &
est donc aussi identiquement nulle. Or, grace aux hypotheéses
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faites sur la continuité et la dérivabilité de la fonction donnée F
elle s’écrit:

?

B+h '
—aidx— aF(ﬁ—hsly0> yO) + aF(ﬁ_i_ha, Yoo yé)) _ O,
0y 0yo 0yo
B—h
ou
B+h ’ B—h '
oF OF (B+h, y,, oF OF (B—h, vy, Ve
ot Bth yo,y0) _ [ OF o OFB—h, Yo, yo)
9o Yo 0yo Yo
D’ou la condition nécessaire:
OF OF (X, Vo, V.
—dx + ( y’o Yo) = constante,
0y 0y
ou
0F d oF '
il (xa y'Oa y0)= O,
dy, dx 3y,
d OF

F
car — existant et la dérivée d’une constante étant nulle, — —
Yo dx 0y,

existe bien.

Nous venons d’obtenir I’équation différentielle d’ Euler, pour
pouvoir la développer, supposons que la fonction donnée F
admette des dérivées secondes continues. Alors

OF [x +h, yo(x +h), yo (x +1)] _OF [x, yo (%), yo (%] _
Yo Yo
0> F 0?F Ay 0 *F Ay’
-+ , o,
dxdyo 0y 0yo h  0ye~ h

le second membre étant pris pour une valeur x + 0k comprise

entre x et x-+h. Faisons tendre A vers zéro; tous les termes du

second membre, sauf peut-étre le dernier, tendent vers des limi-
. . O*F 4y’ . . .

tes. Donc celui-c1 E h a ausst une limite. Ceci peut se

produire de deux facons:
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’

0’F . Ay .
est nulle pour la valeur z, ou bien -2 une limite

‘2
Yo '
qui est yo. Donc: en tout point, qui nest pas d la frontiére
du champ de variation des variables X, y,y’, de la courbe y = yo(x)

donnant le minimum, on a Soit:

ou bien

0°F _ ) )
P 0, soit U'équation &’ Euler développée
Yo
> F N 0’ F - 0*F "
’ ’ 4 y = -
3x370  0¥ooy0 1 yo’

2. Conservons les mémes notations, mais intervertissons les
roles de ¢ et de & ¢ sera fixe et h variable; 2 ne pouvant devenir

I .
négatif, nous aurons seulement & écrire que %est positif ou

nul pour 2 = 0. Or

L o F—h, yor v
oh » Yo» Yo
p , 1
, OF[x,yo+t(x—p+h),yo+t
+ F(ﬁ—h>y03y0+t)+ Jt [ Yo ( ﬁ ) ° ]dxf
9Yo
L B—h
( B+h X
, OF[x,yo+t(B+h—x), yo—t
+1F (B+h, yo, yo—1) + Jt Lx, Yo ([;y 0 ]dx>
‘ 0

L B

D’ou, en faisant A = 0, on a, quel que soit ¢,

F (B, yos Yo +D +F (B, yo, yo—1) —2F (B, yo, ¥o) = 0.

Ainst, en tout point, qui rn’est pas a la frontiére du champ de

vartation des variables, de la courbe y = y, (x) donnant le mint-
mum, la fonction F (X,y,, V') de la variable v’ est une fonction
concave.

En particulier, si I est analytique ou posséde assez de déri-
ap
vées, la premiére des dérivées

3575 2R nulle doit étre positive
Yo
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et fournie par une valeur paire de p. Si 'on se borne aux déri-

vées secondes, on ne peut conclure a I'existence du minimum que si
0°F
"2
9o
Par une extension du qualificatif extrémal, on appelle toute

solution de I’équation d’Euler une courbe extrémale. Lorsque le
2

est positif ou nul; c’est la condition de Legendre.

long d’une telle courbe est positif, la courbe est la seule

0yo”
. e . , 0*F
pouvant donner le minimum strict. Si le long de I’extrémale 5072
Yo
est positif ou nul, on ne peut plus affirmer que cette courbe est
la seule pouvant donner localement le minimum. C’est le cas du
| 0*F
Yo

garde un signe constant. Il y a les problemes réguliers positifs
ou ’équation d’Euler sert a la recherche des minima et les pro-
blémes réguliers négatifs ou elle sert a la recherche des maxima,
On voit a quel point se poursuit I’analogie avec le cas des fonc-
tions de variables.

minimum large. Legendre appelle réguliers les problemes ot

3. Combinons les deux modes précédents de choix en posant
ht

o= f—h, H=ht vy=B+—; et g devront étre de méme
q

signe, supposons-les positifs pour fixer les idées, le cas ou 1ls
seraient négatifs se traiterait de méme.

ol . .
Il nous faut écrire que 3 est positif ou nul, pour t = 0, a

droite; il suffira donc d’écrire que cette quantité est positive ou
nulle pour ¢ tendant vers zéro en décroissant. Or

B—h B
I = | F(x,y0, yo)dx+ [ F[x, yo+t(x—B+h), yo+1t]dx
a B—h

h
ﬁ+;t ,
ht , ,
: fF[x,yo+t(ﬁ+—q——x),yo—q]dx+ fﬂx,yo,yo)dx,
B ht

p+—
q
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B ,
ol J‘ (x—ﬁ—{-h)aF[x’ Yo+t(x—p+h), y°+t]dx

ct Yo
B—h
ﬁ ’
N J'@F[x,yo-kt(xjﬁ-l"h)a J’O‘H]dx
0Yo
B—h
g+ ht :
q 2ht 6F X, y0+t ﬁ"i‘a"—x 9y0_q
+ +— —x dx
J (ﬁ q ) 0o
B

h ht , h ,
+—F ﬁ‘i“‘—,yo,yo—‘q _—F(ﬁa yanO);
q q q
d’ou, pour ¢ = 0,

x B 7
OF (X, Vo, V. OF (x, Yo,

(X, Yo yO)dx—I- J‘ ( J”o yO)dx

9y Yo

B
j (x—=p+h)
B—h

B—h
h , h ,
+ EF(ﬁ’ Vo> Yo —4q) — gF(ﬂ, Yos Yo) = 0.

Pour 2 = 0, cecl est identiquement nul, nous pouvons donc écrire
N |

it =h=20
que, pour ' 310k

est positif ou nul. Or

B
621 J aF(xa J’o, yO)d 5F (ﬁ—h’ Yoo yO)

otoh Vo 8V
B—h "

1 , 1 ,
-+ ZI_F(BJ Yo yO—Q)_ ;F(ﬁa Yoo yO),
done

oF o1 : 1 ;
“'_'"(.Ba Yo y0)+ —F(ﬁ: Yos Yo _q)_ '—F(ﬁ: Yo yO) = 09
0Yo q q

ou, en multipliant par ¢, en posant yo—q = p et 8 = z,

E (%, Y0, Y0, P) =F (X, 70, D) =F (X, Yo, y0) — (P — y0) F, (X, Yo, yo) >0.
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C’est la condition de Weierstrass; elle doit étre remplie dans les
memes conditions que les deux autres. Le nombre p qui y figure
est quelconque.

Je ne puis continuer & donner ici ’exposé du calcul des varia-
tions en somme fort complet qui était le début de mon cours;
bien que bref, il nous entrainerait trop loin. Ce qui suit est la
réunion de fragments dispersés dans ce cours et relatifs a ce
quon appelle les conditions suffisantes.

Les Ay qui nous ont servi sont trés particuliers. Quelle est

la portée des conditions qu’ils nous ont fournies ? La condition

de Legendre étant une conséquence de celle de Weierstrass,
nous ne nous occuperons que de 1 et 3. Dans 1, Ay et Ay’ ten-
dent simultanément vers zéro, on a affaire & une continuité
d’ordre 1; dans 3, 4y’ ne tend pas vers zéro, on a affaire a une
continuité d’ordre 0. Or, toute fonction continue dy a dérivée
continue a laquelle on fera jouer le réle de Ay est infiniment appro-
chée par une somme de 4y a continuité d’ordre 0; done les condi-
tions d’Euler et de Weierstrass entrainent bien le minimum de
Yo(z)+ 3y, c’est-a-dire ce qu’on appelle le minimum de Lagrange.
(’est le minimum sur toute droite issue de y4(x) de ’espace fonc-
tionnel y(x); mais nous avons vu que ce minimum n’entraine
pas nécessairement celul que nous cherchons.

Lorsqu’il s’agit de fonctions algébriques, nous savons que les
conditions suffisantes pour le minimum sont obtenues en suppo-
sant que les conditions nécessaires sont vérifiées aussi au voisinage
des points ou elles sont indispensables; ainsi, pour le minimum
d’une fonction d’une variable, on suppose F;z > 0 dans tout le
voisinage du point pouvant donner le minimum. Nous allons
retrouver le fait analogue dans le calcul des variations.

Supposons qu’entre les deux points donnés, il y ait une solu-
tion de I'équation d’Euler, et pour qu’il n’y ait aucune ambi-
guité relativement a l’extrémale pouvant donner le minimum,
supposons qu’il n’y ait qu'une extrémale joignant les deux
points 1). Pour qu’il ne s’agisse pas seulement d’une heureuse
chance, supposons que nous soylons dans un champ d’extré-

1) La condition de Jacobi & laquelle il a été fait allusion et qui ne trouvera pas
place dans cet exposé est relative . a cette ambiguité.
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males, c¢’est-d-dire dans une région du plan telle que par deux
de ses points il passe toujours une solution de I’équation d’Euler
et une seule.

Soit y = y, (x) Vextrémale du champ joignant les -deux
points donnés. Nous voulons comparer / (y,) a [ (YY), y =Y (x)
étant une autre courbe joignant les deux points donnés. Soit
la famille d’extrémales y (z, t) telle que y,(z) = y (z, 0); quels
que solent z, et x, sur y («, ), on a:

X9

3 |
gy JF[x, y(x, 0,y (x, )] dx=

X1

Xg

H OF [x,y(x, 1),y (x,0] 0y (x,1)  0F [x,y(x,1),y" (x,0)]dy" (x, ) }
- A dx
dy ot oy’ Ot

Xy

Xa

_ JJi@F [x,y(x, 0,y (x, )]0y (x, 1) N OF [x, y (x,1), y’ (x, )]0y’ (x, 1) 1
[dx ay’ ot ay’ ot } ¥

Xy

_ [51? [x, y (%, 0, (x, 0] 0y (x, )"

xq

Partageons (a, b) en intervalles partiels (z;, z;,,) et désignons
par f; la valeur telle que y (2, ;) = Y (z;,).

On aura:
I(Y)‘“I(J’o) = Z lji {F(x: Ya Y/)_F[x>y(x> ti)s y,(xa ti)]} dx

+ 2 ] {F [y (1), v (%, )] —F (x, o, yo)} dx

X3
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D’aprés ce qui précéde, le dernier terme s’écrit encore

dy ot

xi

Zj l:aF [x,y(x, 0,y (x,0)] 3 y(x, t)inH

ti
v [ 9F [Xi15 Y s 1505 Y (i1, D] 0y Kips 1)
=L di
ay’ ot
0

3 Zj‘ OF [x;, y (x5, 1), y' (x;, 1)] 9y (x;, 1) "

ay’ ot
Y (xipq1sti)
oF [xi+1aJ’(xi+1,t): yl(xi+1,t)]
=2 ™ dy
y
Y (Xi4150)

y (xi, t7)
5 f OF [xi,y(xg, 0,y (0],
y

2

Y (xi, 0)

t étant cette fois la fonction implicite de x et de y telle que

dy (x,t :
yg; ): u(x,y). Alors, en dési-

gnant par ¢ la contribution de termes extrémes des sommes précé-
dentes et groupant autrement les termes, les sommes précédentes
s’écrivent

Yy (z,t) = y; nous poserons

Yy (xiti_q)

aF'(xi) ya u)
e + Z J P dy.

y(xit5)
Or, I'intervalle d’intégration est:

Yy (X timg) — y(x,t) = [y (%, ti—g) - (Xi—1> tim) ] +
[Y(xi-) = Y(x)],

d’ou par le théoréme des accroissements finis, avec un nouvel ¢

[ (e =) = Y7 (%) + 8] (x; —x;-4).
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Quand on augmente indéfiniment le nombre des intervalles
(z;_4, ;) en les faisant tendre uniformément vers zéro, la limite
de I'expression est:

b
OF (x,Y,u
_ J(Y’—u) Y1)

ou

et 'on a

b

OF(x, Y, u)
I(Y)—1(y,) = f F(x,Y,Y)=-F(x, Y,u)—(Y'—u) ————d

ou

%

a

b

= [ E(x, Y,u, Y')dx.

Ainsi, s1 dans le voisinage de I'extrémale y = y, (x), on a
constamment £ (z, Y, u, p) = 0, c’est-a-dire st la condition de
Wezterstrass est remplie dans tout ce voisinage, 'extrémale donne
bien un minimum, quu est strict st 'on a toujours affaire a I'inéga-
lite E (x, Y, u, p) > 01).

1) II existe de trés élégantes démonstrations de cette condition suffisante, celle
de M. Hilbert, par exemple. J’ai voulu montrer que les conditions suffisantes peuvent,
comme les nécessaires, étre déduites d’un calcul patient de I (Y) et I (yo). Ici, il aurait
€té plus élégant de se servir de la décomposition de Y déja utilisée pour les conditions
nécessaires; cela est possible, mais je n’ai pas su le faire brievement.
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