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Chapitre V

La méthode classique du calcul des variations

Avant de donner une idée plus précise de la méthode directe
dans le calcul des variations (Chap. VI), je dois, puisqu'il s'agit de

comparer deux procédés, parler du calcul des variations classique.
C'est par lui que je commence parce qu'il a été le point de départ et
le procédé unique tant qu'on n'en avait pas reconnu les lacunes.

L'exposé que je vais en donner, peu différent de celui des traités,
est extrait des notes préliminaires d'un cours que j'ai fait au
Collège de France « sur les problèmes en marge du calcul des

variations». Certains,étudiants, frappés des difficultés rencontrées

dans les applications en apparence les plus simples du calcul
des variations, déclaraient alors, avec la belle intransigeance de

la jeunesse: «Le calcul des variations classique n'existe pas».
C'est pourquoi j'ai tenu à exposer tout d'abord la méthode de

Lagrange et Euler afin de montrer que, malgré ses lacunes
logiques et toutes ses imperfections, elle joue dans les problèmes
de son ressort le même rôle que la méthode de Fermât pour les

problèmes d'extremum algébrique. Certes une méthode complète
reste à trouver, mais ni le procédé classique, ni le procédé direct
ne la donne; il paraît probable qu'ils interviendront conjointement

dans la constitution de la méthode désirée.

a et b étant deux nombres fixes donnés, F (x, u, v) une fonction

donnée, on considère l'intégrale

b

!{y)J F(x,y,y')dx,
a

dans laquelle y est une fonction à trouver, définie de à b,
continue ainsi que sa dérivée première. Pour on suppose que c'est
une fonction à dérivées première et seconde continues, définies
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pour toutes les valeurs de x, u1 v, nécessaires à considérer.
Il faut trouver y (x) de façon que I (y) atteigne Pun de ses

extrema, disons son minimum pour fixer le langage.

L'idée mise en oeuvre est remarquablement simple. Soit y0(x)
la fonction, supposée existante, donnant le minimum; pour toute
fonction de deux variables y (x, t) telle que l'on ait y (x, 0)

y0(x),t 0 donnera le minimum de la fonction I [y (x, £)] dépendant

de la seule variable t. La méthode de Fermât appliquée à la
recherche de ce minimum donnera une relation que devra vérifier
y0(x) et qui jouera le rôle de l'équation dérivée ordinaire.

Cette relation contient la fonction y (x, t) à laquelle il convient
de laisser, sinon toute sa généralité, du moins une grande généralité,

car il est clair que y0(x) peut donner le minimum cherché

pour I [y (x, £)] sans le donner pour I [y (x)]. Peut-on du moins
espérer qu'il suffira d'envisager une famille restreinte de y (x, t)

Non, car supposons seulement qu'il s'agisse du minimum de la
fonction de deux variables 9 (t, t±) I[y(%, t, £3)], y (x, t, 1q) étant
donnée. La méthode classique revient à écrire d'abord que
t 0, par exemple, donne le minimum pour y (x, t, 0) et

y (x, 0, <q). Mais supposons même que le point 0, t ^ O,
donne le minimum pour toute droite issue de O, donc pour toute
fonction y (x, t, kt), k fixe quelconque; il n'en résulte nullement
que 0 donnera le minimum de cp (t, 1q). Prenons en effet deux
circonférences tangentes intérieurement en 0; à l'extérieur de la
circonférence extérieure C1 et sur cette circonférence, prenons
pour 9 (t, tj) une fonction continue ayant son minimum en 0,

9 (£, t±) — -\/t2jrtl par exemple; à l'intérieur de la circonférence
intérieure C2 et sur elle, faisons de même, les deux fonctions

étant égales en 0, par exemple, encore 9 ; entre C1 et
C2l prenons pour 9 Une fonction continue se raccordant avec les

deux autres sur Cx et C2l mais n'ayant pas l'origine pour
minimum, par exemple, sur chaque droite issue de 0 et coupant C1

et C2 en Ax et A2, 9 linéaire de A1 et de A2 jusqu'au milieu B
de A± A2 et égale en B à —OB. Ainsi, la considération de droites

passant par 0 ne suffit pas; ni celle des coniques, il suffirait en
effet de remplacer C± et C2 par deux courbes entre lesquelles
ne passe aucune conique; ni celle des courbes analytiques, car
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il suffirait de remplacer C1 et C2 par deux courbes qui, au voisinage

de <9, soient

y
y e x2, y 2e x2' 1)

On reconnaîtra facilement qu'il suffirait de se borner à la
considération des courbes x (0), y (6) données par deux fonctions

monotones, mais c'est là une famille très vaste de courbes et il
faudrait définir cp(£, pour toutes ces courbes.

Ainsi, la méthode des dérivées qui ne suffit pas pour obtenir le

minimum d'une fonction d'une seule variable à coup sûr, qui
ne fournit que des conditions nécessaires, est encore moins
satisfaisante quand le nombre des variables augmente. Mais le
problème devenant alors plus compliqué, les renseignements qu'elle
fournit conservent à peu près la même valeur relative. Quand
nous passons au calcul des variations, il en est de même, l'emploi
des dérivées ne fournit que des conditions nécessaires, les compléments

indispensables s'accroissent, mais vu la difficulté accrue
des questions, l'intérêt des résultats fournis par l'emploi des

dérivées reste du même ordre.
Il faut donc conserver à y (x, t) sa généralité; mais alors la

relation que donne la dérivée de I (t) contient y (x, t) et l'on ne
sait l'utiliser. Au contraire, chaque fonction y(x, t) construite
algébriquement à partir de y0(x) et de t donnera une relation
intégro-différentielle en y0(x) que l'on peut espérer employer. Le
cas le plus favorable serait naturellement celui où l'on aurait
une équation différentielle; c'est précisément ce à quoi Lagrange
était parvenu dans des cas particuliers et Euler dans le cas
général.

On choisit y (x, t) linéaire en t:

y(x,t) y0(x) + tAy(x),

A y (x) étant une fonction ayant les mêmes continuité et
dérivabilité que y0(x); les fonctions de x données par y (x, t)

i) Cet artifice peut de même servir à prouver qu'une fonction peut être en un
point 0 continue sur chaque droite ou sur chaque courbe analytique passant par O
sans être continue par rapport à l'ensemble des variables dont elle dépend.

L'Enseignement mathém., t. IX, fasc. 4. 7
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pour les diverses valeurs de t constituent en somme une droite
de l'espace fonctionnel y (x).

L'analogie avec le cas des fonctions de variables se poursuit
donc. Avec ce choix, on aura une relation intégro-difîérentielle;
pour avoir une équation différentielle, il faut ne faire intervenir
qu'une valeur de x, d'où l'idée de prendre Ay (x) 0 sauf au
voisinage de cette valeur de x. (Je m'écarterai quelque peu ici
des considérations classiques. Cette modification comme toutes
celles de cet article a pour but, en utilisant des considérations
particulières élémentaires, de permettre de mieux suivre
l'ensemble des idées, depuis les principes jusqu'aux résultats, tandis
que des considérations plus générales, obligeant à recourir à des

résultats techniques, masquent quelque peu la suite des raisonnements,

précisément parce que les résultats techniques proviennent

eux-mêmes d'un raisonnement. Par contre, cela permet des

démonstrations plus brèves. Comme le disait Bouquet: «Les
démonstrations courtes ont un avantage: être courtes; les

démonstrations longues ont un avantage: être longues. »)

Nous prendrons Ay (x) comme ayant la forme indiquée par la
figure:

«Ê * x

Fig. 13

d
Cette forme entraîne pour — A y {x) A y' (x) des points

de discontinuité de première espèce; cela n'est nullement gênant.
Soit S y A y en dehors d'un petit intervalle a— oc0, a+a0 et
à l'intérieur de cet intervalle tel que S y et by' soient continus

partout et uniformément bornés. Alors:

I(y+Ay)
a + a0

m + <5>')+ J [F(x,y+Ay,y' +Ay')-F(x,y + ôy,y' +ôy')~\dx
a - a0

I (y + ôy) + 20&Q | 6 | < 1,



M étant facilement majorable; ainsi I (y-\-ky) et /(y+Sy)
peuvent se remplacer dans la recherche du minimum.

On peut faire tendre Ay vers zéro de bien des manières.

1. Prenons d;abord H th, oc ß —A, y ß +A, A étant fixe.

dl (y0 + Ay)
Pour A 0,

ôt
0, et pour A ^ 0, on doit avoir

cette même égalité pour t 0. Or:

ß-h

l(y0+Ay)= J F(x, y0, y'0) dx+ J F[x,y0 +t(x-ß + h),y'0 +t] dx

ß + h b

+ J F[x, y0+t(ß+h-x), y'0-t]dx+J

ß ß + h

dt
I (y0 + Ay) -fJ

3-h

dF ÔF'

<x-ß+i)^+v_

ß + h

+

dx

dF dF~
(ß + h — x) h —7dy dy

dx.

Dans la première intégrale, les variables sont:

X, yo+t(x-ß + h)9 y'o+t,
dans la seconde

yo + t(ß + h-x), y0~t,

y et y' étant naturellement prises pour la valeur de x considérée.

Pour t 0, ces valeurs sont x, y0l y'0; donc on doit avoir pour
ces valeurs:

ß + h

'dF dF'
—~(x—ß + h) + ——
dy dy

dx +
dF dF'
-(ß + h-x)- —
dy dy

dx 0,

ß-h

quel que soit h. La dérivée du premier membre par rapport à h

est donc aussi identiquement nulle. Or, grâce aux hypothèses
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faites sur la continuité et la dérivabilité de la fonction donnée F,
elle s'écrit:

ß + h

f ÔF dF(ß-h9y0,y0) ÔF (ß +h, y0, y0)
F~dx~ ^ + r-7 °'

J oyo ôyo dy0
p-h

ou
ß + h

ÔF ÔF (ß+h,y0, y0)ÇdF
dx H 7 dx +l dy0 Sy'0 J dy'0

D'où la condition nécessaire:

ÔF ^SF(x,y0,y0)— dx-\ 7 constante,
dy0 dy0

OU

ÔF_ d dF(x,y0, y0)
q

ôy0dx ôy'0

ÔF „car existant et la dérivée d une constante étant nulle, r
dy0 dx dy0

existe bien.
Nous venons d'obtenir l'équation différentielle d'Euler, pour

pouvoir la développer, supposons que la fonction donnée F
admette des dérivées secondes continues. Alors

ôy[%+ h,y0(x + h), yp (x+ h)]
_

[x, y0(x), y0 (x)]
_

dy'o dy'o

ô2F ô2F Ay
— + -=—irr -r +

dxdy0 ôy0ôy0 h ôy02 h

le second membre étant pris pour une valeur x + Oh comprise
entre x et x-\-h.Faisonstendre h vers zéro; tous les termes du
second membre, sauf peut-être le dernier, tendent vers des limi-

ô2 FAy'
tes. Donc celui-ci —rr — a aussi une limite. Ceci peut se

ôyo2hproduire de deux façons:
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d2F Ay'
ou bien —est nulle pour la valeur x, ou bien — a une limite

8y°

qui est i/o- Donc: en toutpoint,quin'est pus à lu frontière

du champ de variation des variables x, y, y', de la courbe y ,yo(x)

donnant le minimum, on a soit:

d2F
— — 0, soit l'équation d'Euler développée
Sy0

d2F ô2F,7~ + T V9 ~f~ yyr Vn — Ü.
ôxdy0 dy0 dy0

2. Conservons les mêmes notations, mais intervertissons les

rôles de tet de A; tsera fixe et h variable; h ne pouvant devenir

.3/négatif, nous aurons seulement à écrire que — est positif ou

nul pour h0. Or

81
— - F(ß-h, y0, J>o)
on

f

+ \F (ß — h,y0, y0 + t) +
I

*

t
d-F[x, y0 + pc -ß + fo +dx |

Sy0 |

[ ß — h J

f ß + h 1

|„/0|, ' f „ ^j+ \F(ß + h, y0, y0 — t)+ t - dx}
J

l ß J

- F (ß + h,y0,y'Q).
D'où, en faisant h 0, on a, quel que soit £,

F(ß, yo9tyo + t)+F(ß, y'o-t)-2F(ß, Jo, Jo) > 0.

Ainsi j en tout point, qui ny est pas à la frontière du champ de

variation des variables, de la courbe y y0 (x) donnant le minimum,

la fonction F (x, y0, y') de la variable y' est une fonction
concave.

En particulier, si F est analytique ou possède assez de déri-
ôpF

vées, la première des dérivées —7- non nulle doit être positive
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et fournie par une valeur paire de Si l'on se borne aux dérivées

secondes, on ne peut conclure à l'existence du minimum que si
d2F

—7-r est positif ou nul; c'est la condition de Legendre.
Sy0

Par une extension du qualificatif extrémal, on appelle toute
solution de l'équation d'Euler une courbe extrémale. Lorsque le

d2F

dy'o2

d2F

dy'o2

est positif ou nul, on ne peut plus affirmer que cette courbe est
la seule pouvant donner localement le minimum. C'est le cas du

d2F

long d'une telle courbe —rv est positif, la courbe est la seule
3V0

pouvant donner le minimum strict. Si le long de rextrémale

minimum large. Legendre appelle réguliers les problèmes où
2

garde un signe constant. Il y a les problèmes réguliers positifs
où l'équation d'Euler sert à la recherche des minima et les
problèmes réguliers négatifs où elle sert à la recherche des maxima.
On voit à quel point se poursuit l'analogie avec le cas des fonctions

de variables.

3. Combinons les deux modes précédents de choix en posant
ht

a ß—ft, H ht, y ß-| ; t et q devront être de même
q

signe, supposons-les positifs pour fixer les idées, le cas où ils
seraient négatifs se traiterait de même.

dl
Il nous faut écrire que — est positif ou nul, pour t 0, à

ôt

droite; il suffira donc d'écrire que cette quantité est positive ou
nulle pour t tendant vers zéro en décroissant. Or

ß~h ß

I J F{x, y0, y'o)dx+J F [
a ß~h

i + -4
+ y0+t[ ß+ j -x y'o-q dx -f" F(x, y0>

ht
ß + 7
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dl
ôt

(x-ß+h)
dF [v, y0 +t(x-ß+ h), + <]

dy0
dx

ß-h

+
8F [x, y0+ t (x-ß + K), y0 +

dyo
dx

ß +

+

ß-h
ht

« dF
2ht

ß + — —x

htru 1

yo+t Iß + ——x J, j0

8y0
dx

h f ht \ h
h—F ß h—, j0, jo F (ß> yo? J>o);

q \ q J q

d'où, pour t 0,

]ix~ dF(x,y0,y'o)
ß+h) r dx+ | — dx

dy0 dy o

p-h ß-h

+ -F(ß, y0, yo-q)F(ß, y0, j>0) Ï* 0.
q q

Pour h0, ceci est identiquement nul, nous pouvons donc écrire
d2I

que, pour t h 0,
~dtdh

est positif ou nul. Or

d2I
dtdh

ÇdF(x,y0,y'0) ÔF (ß-h, y0, y'0)
: dx -i -

dyo o
ß-h

+ - F(ß, y0,y'o -q)-y0,y0),
q q

donc

dF 1 ,1-r-r(ß> yo> yo)+-F(ß, y0, y)y0, >>0) > 0,
dyO q q

ou, en multipliant par q, en posant et ß

F (x,y0,y'o,P) =F(x, y0,p) —F(x,y0) -( -^)F'y, (x,yo,y'o)>0.
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C'est la condition de Weierstrass; elle doit être remplie dans les
mêmes conditions que les deux autres. Le nombre p qui y figure
est quelconque.

Je ne puis continuer à donner ici l'exposé du calcul des variations

en somme fort complet qui était le début de mon cours;
bien que bref, il nous entraînerait trop loin. Ce qui suit est la
réunion de fragments dispersés dans ce cours et relatifs à ce

qu'on appelle les conditions suffisantes.
Les A y qui nous ont servi sont très particuliers. Quelle est

la portée des conditions qu'ils nous ont fournies La condition
de Legendre étant une conséquence de celle de Weierstrass,
nous ne nous occuperons que de 1 et 3. Dans 1, Ay et Ay'
tendent simultanément vers zéro, on a affaire à une continuité
d'ordre 1; dans 3, Ay' ne tend pas vers zéro, on a affaire à une
continuité d'ordre 0. Or, toute fonction continue dy à dérivée
continue à laquelle on fera jouer le rôle de Ay est infiniment approchée

par une somme de Ay à continuité d'ordre 0; donc les conditions

d'Euler et de Weierstrass entraînent bien le minimum de

yoQO + ASy, c'est-à-dire ce qu'on appelle le minimum de Lagrange.
C'est le minimum sur toute droite issue de y$(x) de l'espace
fonctionnel y[x); mais nous avons vu que ce minimum n'entraîne
pas nécessairement celui que nous cherchons.

Lorsqu'il s'agit de fonctions algébriques, nous savons que les

conditions suffisantes pour le minimum sont obtenues en supposant

que les conditions nécessaires sont vérifiées aussi au voisinage
des points où elles sont indispensables; ainsi, pour le minimum
d'une fonction d'une variable, on suppose F"x2 ^ 0 dans tout le

voisinage du point pouvant donner le minimum. Nous allons
retrouver le fait analogue dans le calcul des variations.

Supposons qu'entre les deux points donnés, il y ait une solution

de l'équation d'Euler, et pour qu'il n'y ait aucune ambiguïté

relativement à l'extrémale pouvant donner le minimum,
supposons qu'il n'y ait qu'une extrémale joignant les deux

points 1). Pour qu'il ne s'agisse pas seulement d'une heureuse

chance, supposons que nous soyions dans un champ d'extré-

i) La condition de Jacobi à laquelle il a été fait allusion et qui ne trouvera pas
place dans cet exposé est relative à cette ambiguïté.
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males, c'est-à-dire dans une région du plan telle que par deux
de ses points il passe toujours une solution de l'équation d'Euler
et une seule.

Soit y — yq (x) l'extrémale du champ joignant les deux
points donnés. Nous voulons comparer I (yQ) à / (7), y Y (x)
étant une autre courbe joignant les deux points donnés. Soit
la famille d'extrémales y (x, t) telle que y0(x) y (x, 0); quels

que soient x1 et x2 sur y (x, £), on a:

dF [x,y (x, t),y (x, «)] dy(x, t)dF [x, y (x, y (x, 0] ôy (x,
1 £

dy ôt ôy j

f d ôF[x,y(x,t), y' (x, 0] dy(x, t) ÔF [x, y (x, t), y' (x, 0] ;)]
J \dx dy' dt

+
dy' dt I *

Partageons (a, b) en intervalles partiels (x{, et désignons
par tt la valeur telle que y (xh t{) Y (x{).
On aura:

I(J)~I(yo) z J iF(*>Y>Y')-F[x,y(x,td>y'(x, q)]}dx

dF [x, y (x, t), y' (x, )] dy (x, f)T2
ôT~JXi

xi+1+ E J {F[x>y(x,ti),y'(x,ti)]-F(x,y0,y'0)}dx
Xi
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D'après ce qui précède, le dernier terme s'écrit encore

H
~8F[x, y(x,y' (x 0] y{x,

dy' dt

8F[xi+1,y(xi+i,t),y'(xi+1,t)]8y(xi+I,t)
dy' ôt

dt

11

-d ÔF [xh y (xht),y'(xhf)] dy t)

dy' dt
dt

y (*i + i,u)

-z I 8F [xi+1, y(Xj+1, Q, / (xl+1, Q]

Ar'
dy

y (xi + 1,o)

y (xî, ti)

-s \ 8_F_ [*;, J? (*<,*)>/(*i. Q]

dy'
dy;

y (xi, o>

t étant cette fois la fonction implicite de x et de y telle que
dy (x, t)

y (x, t) y; nous poserons — u (x, y). Alors, en dési-
dx

gnant par s la contribution de termes extrêmes des sommes
précédentes et groupant autrement les termes, les sommes précédentes
s'écrivent

y (xi, ti—!)

s + s I dF Çxi9y,u)

du
dy.

y (xi,

Or, l'intervalle d'intégration est:

y(xt,tt-1) - y( xi,ti) =[y(xi,ti„1)+

rw],
d'où par le théorème des accroissements finis, avec un nouvel s

[m (xt,-Y'(X;)+ fi]
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Quand on augmente indéfiniment le nombre des intervalles
xj) en les faisant tendre uniformément vers zéro, la limite

de l'expression est:
b

f dF (x, Y ,u)
~ (y -w) ^ àx

a

et l'on a

dF(x,Y,u)}
I(Y)— I(y0) | \F(x,Y, Y')—F(x,—— \dx

J E(x,Y, u,Y') dx.
a

Ainsi, si dans le voisinage de l'extrémale y — yQ (x), on a

constamment E (x, 7, u, p) ^ 0, c'est-à-dire si la condition de

Weierstrass est remplie dans tout ce voisinage, Vextrémale donne
bien un minimum, qui est strict si Von a toujours affaire à Vinégalité

E (x, 7, w, p) > 0 1).

i) Il existe de très élégantes démonstrations de cette condition suffisante, celle
de M. Hilbert, par exemple. J'ai voulu montrer que les conditions suffisantes peuvent,
comme les nécessaires, être déduites d'un calcul patient de I (Y) et 1 (y0). Ici, il aurait
été plus élégant de se servir de la décomposition de Y déjà utilisée pour les conditions
nécessaires; cela est possible, mais je n'ai pas su le faire brièvement.


	Chapitre V La méthode classique du calcul des variations

