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Chapitre IV

Sur la plus courte distance entre deux points

d'une surface développable

Le cas des problèmes réguliers semble le plus simple; remarquons

que, cependant, la méthode des dérivées ou son équivalent

pour le calcul des variations, ne fournit pas en général la solution
cherchée sans ambiguïté.

S'agit-il d'avoir le minimum de F (X) pour a^X^b. Si Ton

a trouvé X0 dans (a, b) et tel que F' (XQ) — 0, F" (X0) > 0,

on sera certain que X0 donne un minimum, mais ce ne sera

peut-être qu'un minimum local ou, comme l'on dit, relatif.
Il reste à comparer ces minima locaux. L'habitude est de considérer

les recherches nécessaires comme accessoires, encore qu'elles
soient parfois fort délicates; leur examen a conduit, dans le

calcul des variations, aux conditions de Legendre et de Jacobi,
ce qui montre bien qu'elles ont en réalité une importance qu'on
néglige.

Comme tout problème du calcul des variations peut être
simplifié jusqu'à prendre un aspect très élémentaire, j'avais,
il y a quelques années, bâti par une telle transformation, un
exercice destiné à montrer aux élèves de Sèvres la nature des
études complémentaires que réclame le traitement complet d'un
problème d'extremum. Voici cet énoncé débarrassé de certains
artifices destinés à guider les élèves et à donner à l'énoncé
l'aspect de leurs problèmes de concours.

Exercice relatif au plus court chemin tracé sur la surface Fun
cube et joignant deux points donnés M et iV, de cette surface.

1. Montrer que ce plus court chemin

a) vérifie à chaque traversée d'arête une condition que l'on
énoncera,

I/Enseignement mathém., t. IX, fasc. 4. 6
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b) ne passe par aucun sommet si ni M, ni N n'est sur une
arête,

c) ne passe pas deux fois dans la même face.

En conclure que le plus court chemin cherché est à choisir
parmi des chemins dont chacun est fourni par une des suites de
faces joignant M à N; suites qui sont en nombre fini. Montrer
qu'une construction simple permet, pour chaque suite de faces,
de reconnaître s'il lui correspond ou non un chemin utile à considérer

et de fournir ce chemin.
Quelles modifications devraient être apportées aux faits

constatés s'il s'était agi, au lieu d'un cube, d'un polyèdre convexe
quelconque, puis d'un polyèdre quelconque.

2. A. B, C, D, étant les sommets successifs d'une face,

A\B\C\D\ étant symétriques de A,B,C,D, par rapport
au centre du cube, on supposera M dans la face ABCD et, pour
fixer les idées, tel que les distances de M à AB et à AD soient
respectivement le 1/5 et les 2/5 du côté du cube.

Montrer que l'on peut effectuer les comparaisons exigées au
n° 1 d'un seul coup et quelle que soit la position de iV, en
opérant ainsi: on fend la surface du cube suivant les 8 plus courts
chemins de M aux 8 sommets du cube puis on développe la surface
ainsi fendue, par exemple sur le plan de la face A'B'C'D' laissée

fixe. Tous les chemins à considérer deviennent rectilignes.
Appliquer au cas où N est le symétrique de M par rapport au
centre du cube. Décrire le polygone développement II obtenu

pour le choix spécial du point ilf; indiquer en quelques mots
comment il varie quand M varie et à quels moments il subit
des variations importantes.

3. Démontrer que le polygone II peut être partagé en 8

polygones partiels dont chacun est constitué par les images des

points N dont les plus courts chemins à M sont représentés
sur II par des segments rectilignes aboutissant à l'un déterminé
des 8 transformés de M. Caractériser les côtés et les sommets
de ces polygones partiels par rapport aux transformés de M.

nEn déduire qu'il est possible de pratiquer dans la surface

du cube 8 coupures respectant cette fois la face ABCD et permettant,

en laissant cette face immobile, un développement sur lequel
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tous les plus courts chemins MN sont transformés en segments
issus de M. Tracer ce nouveau développement TL1 pour la position

spéciale indiquée pour M.
Le problème précédent est loin d'épuiser l'étude du plus

court chemin entre deux points d'un cube; c'est dire combien

on laisse de questions de côté quand on se borne, dans un
problème d'extremum, aux parties qui sont susceptibles d'un
traitement uniforme.

L'exemple du cube est cependant l'un des plus simples;
il n'y en a en réalité qu'un autre qui soit plus simple, celui
du tétraèdre à arêtes opposées égales. Si l'on pose un tel tétraèdre
sur un plan, puis qu'on le fasse pivoter autour de diverses arêtes

pour amener chaque fois une face en contact avec le plan support,
la correspondance ponctuelle réalisée entre la surface du tétraèdre
et le plan est univoque dans le sens plan-tétraèdre. Gela simplifie
bien des questions relatives aux tétraèdres à arêtes opposées
égales.

Le cas le plus simple après celui de la plus courte distance
entre deux points de la surface d'un polyèdre est celui de la
plus courte distance entre deux points d'une surface développable.
Nous entendons par là, suivant l'habitude en géométrie différentielle,

qu'il s'agit de surfaces enveloppes de plans dépendant
d'un seul paramètre et données par des fonctions dont toutes
les dérivées utilisées dans les calculs sont continues 1).

Ces surfaces se partagent naturellement suivant les propriétés
de leurs génératrices en cylindres, cônes et surfaces lieux des

tangentes à une courbe gauche. On a admis de très bonne heure
qu'elles sont applicables sur le plan comme les surfaces polyédriques

dont elles sont les limites. On rencontre encore dans les
géométries élémentaires un raisonnement de ce genre à l'occasion
de l'étude de l'hélice. Mais si une telle preuve est notoirement
insuffisante, il est facile de la transformer. Je le ferai en me
bornant aux surfaces lieux des tangentes à une courbe gauche; les
autres se traitent de façon analogue, mais plus simplement encore.

Repérons chaque point M d'une développable A par deux
coordonnées curvilignes. La première l est la mesure du seg-

i) Le texte cjui suit est extrait de notes préparatoires à un cours sur les applications
géométriques de l'analyse, professé à la Sorbonne de 1910 à 1921.
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ment mM porté sur la génératrice de A, m étant le point de contact
de cette génératrice avec l'arête de rebroussement T de A;
T et ses tangentes sont orientées, l a donc un signe. La seconde s

est l'abscisse curviligne de m sur T. Alors, en réservant les

notations x, y, z; a, ß, y, oc', ß', y'; r, s pour les coordonnées,
les cosinus directeurs des tangentes et normales principales,
le rayon de courbure de T en m et l'arc de cette courbe,
et en désignant par de grandes lettres ce qui est relatif à M.
on a trois relations du type

X x + oc/,

oc'

d'où dX oc (ds +dt) + l — ds,
r

l2
dS2 (ds + dï)2 + —jds2,

rz

Si donc entre les points M et Mx de deux développables A et Ax,

on établit une correspondance ponctuelle par l'emploi des mêmes
coordonnées curvilignes l et s, cette correspondance laissera
invariante la longueur des courbes pourvu que les deux arêtes
de rebroussement T et I\ aient la même équation intrinsèque
r 5= fonction de s. On vérifie d'ailleurs immédiatement que la
transformation conserve aussi les angles. On a donc réalisé

l'application de A sur A3.

Or, on peut prendre pour Aj la développable d'arête de

rebroussement rx donnée par:

s s s s

r rds,r r
xy cos —as, y ystn —as, z, 0;

Sq Sj SQ

c'est-à-dire le plan de x± yx\ nous avons donc réalisé l'application
de A sur ce plan, ou plus exactement sur la partie II1 de ce plan
balayée par les tangentes à la courbe convexe Tv

L'applicabilité sur le plan des surfaces développables est ainsi
démontrée, on sait même la réaliser et Von voit que, dans cette

application, la courbure de l'arête de rebroussement est conservée.
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Quant au problème du plus court chemin entre deux points de

À il devient, grâce à l'application, celui du plus court chemin
entre deux points de IIx, quand on n'a pas le droit de sortir
de n3, ou d'autres problèmes analogues, comme on va le voir.
Soient deux points M et M de A; supposons qu'ils appartiennent
à la même nappe de A; alors tout chemin allant de M à M, ou
ne change pas de nappe, ou en change un nombre pair de fois.
Son image joignant M± à M1? ou ne rencontre pas A3, ou rencontre
cette courbe et passe un nombre pair de fois de l'une à l'autre
des deux régions II1 et II '3 du plan x1y1 qui se recouvrent.

Fig. 10

Supposons que le segment Mx M1 ne rencontre pas F1 (fig. 10) ;

alors la courbe MM correspondante est le plus court chemin
de M k M; cette courbe est appelée une géodésique. Les droites
du plan xl7 y1 sont caractérisées par l'équation différentielle

d2 X± d2 Y 3

ds2 ds2

dX± dYx
ds ds

avec Xx x± + a3 /,

d'où

d2l
ds2 - - 0C1 +

"i d n
r ds\r

d2 l
ds2 "i+B+sÇ,

„ dl\ l
+ T r 1 ~ ßi~

asJ r

xn Vu aD ßi) ai) ßi étant relatifs à l'arête de rebroussement
plane Tj de Ax. En tenant compte des relations a'x — ßl7
ßi «x, ax + ßi 1) on a l'équation différentielle des géo-
désiques. Au lieu de simplifier cette équation, écrivons-la sous
une forme plus compliquée mais qui contiendra symétriquement
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les trois coordonnées; pour cela désignons par ol[ 0, ß'i 0,

Yi 1 les cosinus directeurs de la binormale de Fv Ceux de F
seront représentés par oc", ß", y" et le rayon de torsion par t. Alors
l'équation trouvée exprime qu'est nul le déterminant dont la
première ligne est:

d2X1

ds2

dX1
ds

OCi

Pour T l'équation analogue est:

/d2l l\
oc( —-Z + oc'

\dsÂ

"1 à a
r ds\r

a" l

0-

dï
(X J 1 — "I- X ' — CC

"

ds
0,

En décomposant celle-ci en colonnes partielles, on aura des

déterminants dont seuls seront différents de zéro ceux dont
les colonnes proviendront de termes multipliés respectivement
par a, a', a"; ß, ß', ß"; y, yr, y". Donc on a:

(d2 l

\ds2

l\ l

r J r

'1 d (ï
r ds \r

1 +
dl
ds

0;

c'est l'équation déjà trouvée des géodésiques, équation indépendante

de t; les géodésiques sont donc conservées dans les applications

des surfaces À, ce que nous savions déjà, mais nous avons
de plus une définition géométrique simple des géodésiques,
car notre déterminant exprime que la tangente à la géodésique,
la normale principale à cette courbe, la normale à la développable
sont dans un même plan. Les géodésiques sont done les courbes dont
les plans osculateurs sont en chaque point normaux à la développable.

Supposons maintenant que M et M étant toujours sur la
même nappe de A, le segment M1M1 rencontre F (fig. 11). Le

trajet le plus court de M1 à M1 dans U1 (ou 11^) doit envelopper
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le contour convexe formé par les deux tangentes lf3g3, M1jl1
menées de M1 et M1 à ri? et Tare p3fi3 de Tv C'est donc ce tracé
lui-même qui constitue le plus court chemin. Ainsi le plus court
chemin de M à M est constitué par les deux portions de géodé-

siques Mp et Mfi et par l'arc jifi de l'arête de rebroussement.
Mais il y a une grande différence à faire entre les deux arcs

géodésiques Afp et Mfi: la nappe de A contenant M et M est

formée de demi-tangentes à T; si \iM est une de ces demi-tangentes,

fiM n'en est pas une et inversement, de sorte que le plus
court chemin de M à M se compose d'un segment de génératrice,
d'un arc de F et d'une courbe géodésique (prises dans cet ordre
ou dans l'ordre inverse suivant les cas).

Dans ce qui précède, j'ai supposé que la courbe V ne se

fermait pas; si T avait été une courbe fermée, le raisonnement
précédent aurait donné deux chemins localement plus courts
entre lesquels il eût fallu choisir.

Si M et M appartiennent aux deux nappes différentes de A,
le segment M1M1 pourra ou non rencontrer Tlm S'il ne rencontre
pas r3, le chemin le plus court de Af3 à M1 sans sortir de Il1
(ou Iï'3)et rencontrant F3 est constitué de deux segments aboutissant

au même point de rx et constituant le trajet d'un rayon
lumineux qui irait de M1 à M3 en se réfléchissant sur T1 (fig. 12) ;

ceci résulte de l'emploi des dérivés, ou, ce qui est équivalent,
des raisonnements sur les coniques qui nous ont servi dans
la toute première question dont nous nous sommes occupés
dans ce volume. A ce plus court trajet, que je suppose déterminé,
correspond le plus court chemin cherché allant de M à M ;

il est constitué par deux portions de géodésiques situées respecti-

Fig. 12
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vement sur Y une et l'autre nappe de A et se réfléchissant sur A
à la façon des rayons lumineux.

Si M1M1 rencontre I\, nous avons déjà dit quel était le

plus court chemin de M1 à M± en restant dans II x (ou 11^);
il lui correspond, à condition de l'interpréter comme tracé sur les

régions Tl1 et IIconvenables, le plus court chemin de M à. M.
Celui-ci est par suite formé de deux arcs géodésiques tracés sur
deux nappes différentes de A et d'un arc de F; seulement cette
fois, les deux arcs géodésiques sont, ou tous deux des segments
de génératrices, ou tous deux des arcs de courbes géodésiques.

Naturellement le choix prévu précédemment pour le cas
où F est fermée est à considérer aussi, quand M et M sont
sur les deux nappes de A.
Nota: Je me suis borné suivant l'habitude à la considération
des courbes données par des fonctions plusieurs fois dérivables,
mais les résultats s'étendent à toutes les courbes tracées sur nos
développables.

La longueur d'une courbe est en effet, la limite de la somme de

segments MM petits; or, en posant Su ü—u, en désignant par
um une valeur voisine de u et n, d'ailleurs variable d'une ligne à

l'autre, et par s des infiniments petits, en employant les symboles
S de Lamé, (sommes relatives aux trois coordonnées), on a:

MM -J S (AX)2 V S (5c + ä/-x-a/)2 V S (c5x + 5<5/+ Z<5ce)2

V S? + ôï+ 25/ S âôx +2ISôxôa+21ôl Sâôa +Fs
avec

2ôl S ûôx 2ôlôs S âam 2SIôs+jlis,

où l'on peut prendre [i inférieur à ôlôs;

a 'm ôs2
21S öxöa 2lös S am — ^ étant inférieur à l— ;

rm r

_ a'm lôlôs
2lôl S ocÖQL 2lôlôs S a étant inférieur à

rm r

l2 S ôa2 l2ôs2 S ^ Z2^- + us, u étant inférieur à—
\rmJ r2 r2
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Donc on a:

—MM J(ôs + ôl)2 + l2— +vs,

le reste vs étant infiniment petit relativement à la partie
principale de l'expression si 8s et 81 sont infiniment petits; ainsi
la longueur d'une courbe quelconque se présente comme la
limite d'une somme d'expressions

J(5s +

qui ne diffèrent de celles qui nous avaient servi que par le remplacement

des différentielles par des différences.
Nous pouvons donc conclure, comme précédemment, que

la correspondance ponctuelle établie entre deux développables A
et Ax dont les arêtes de rebroussement ont la même première
équation intrinsèque, r fonction de s, conserve la longueur
des courbes, de toutes les courbes. Nos résultats sur le plus court
chemin entre deux points d'une développable restent valables
quand on envisage toutes les courbes de cette développable.

Nous voici ainsi arrivés à ce qui est le problème primordial
du calcul des variations: trouver le plus court chemin entre
deux points donnés d'une surface ou plus généralement d'une
variété.

En ce qui regarde ce problème, deux surfaces sont équivalentes

quand il existe entre leurs points une correspondance
conservant la longueur des courbes, c'est-à-dire quand les deux
surfaces sont applicables l'une sur l'autre. Ceci établit un lien
entre le problème d'extremum considéré et celui de l'applicabilité

des surfaces. Je me permets de profiter de ce lien, quelque
fragile qu'il soit, pour sortir des limites strictes de mon sujet
et donner un autre extrait de mon cours sur les applications
géométriques de l'Analyse. Celui-ci n'a pas eu l'heureuse fortune
échue à l'extrait précédent et dont les parties principales ont
trouvé place dans les écrits de mes élèves. Pourtant je lui
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attache une certaine importance que je vais d'abord expliquer.
Par souci d'élégance, mais aussi parfois pour éviter de longs
calculs pratiquement inexécutables, les géomètres ont pris
l'habitude d'user continuellement de procédés ingénieux; l'un
sert pour une équation, puis on l'abandonne et c'est un autre
qui permet d'aller au-delà. Regarder certains exposés de
géométrie supérieure, c'est assister au tirage d'un véritable feu
d'artifice. Il devient alors bien difficile au débutant émerveillé
de suivre une pensée; il lui arrive (du moins ce fut parfois mon
cas) de méconnaître qu'une analyse simple et méthodique — peut-
être fastidieuse et interminable — doive certainement conduire
aux mêmes résultats, car la puissance de pensée des hommes
ne peut aller au-delà de cette analyse simple. C'est pourquoi
il m'a semblé de quelque intérêt de tirer d'une même analyse,

presque enfantine, des faits qu'on n'obtient généralement pas
par un procédé unique.

Soient S et s deux surfaces applicables l'une sur l'autre,
c'est-à-dire telles qu'il existe entre elles une correspondance
ponctuelle conservant la longueur des courbes. Nous supposons
que ces surfaces sont analytiques ainsi que la correspondance
qui définit l'application, ou que, tout au moins, les fonctions
intervenant dans la question ont assez de dérivées continues

pour que nous puissions utiliser les développements en série

illimités ou limités.
Soient 0 et o deux points homologues de S et s; rapportons

nos deux surfaces respectivement à des axes rectangulaires
dont les axes (9Z, oz sont les normales à. S et s. Nos deux surfaces

ont pour équations

S Z ^(RX2+2SXY + TY2) +

s z ^ (rx2 + 2sxy + ty2) +

et la transformation est définie par

1 1

X ax+bx + — (ex2 +2exy +fy2) + — (gx3 +3hx2 y + 3kxy2

+ iy3) +
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Y a'x + b'x + — {c'x2 + 2e'xy +fy2) + — (g'x3 + 3h'x2 y

+ 3k'xy2 + Vy3) +...

Nous avons à écrire l'identité

dX2+dY2+dZ2 dx2+dy2+dz2,

identité en dx, dy, x, y ; car, grâce à nos formules, tout s'exprime
à l'aide de ces quatres variables.

L'expression de dx2jrdy2jrdz2 est la plus simple; c'est

dx2 +dy2 +(pdx +qdy)2

dx2 +dy2 + [dx (rx + sy + +dy(sx + ty + ...)]2-

Mais pour dX24-d72-f dZ2, il faut, dans l'expression analogue,
remplacer dX, d 7, X, 7, en fonction de dx, dz/, x, y. Pour avoir
des calculs simples, nous identifierons séparément les termes
en dx2, dxdz/, dz/2, en nous bornant d'abord aux termes de degré 0

en x, z/, puis à ceux de degré 1, etc...
Les expressions de p et q contiennent x et y au degré 1 au

moins, donc aussi celles de P,Q] quand nous nous occupons
de termes de degré 0 ou 1, il suffit de considérer dx2 + dz/2

et dX2jr dY2, puisque dz2 et dZ2 donneraient des termes de degré 2.

Des expressions

dX dx
1 1

a + — (ex + ey) + — (gx + 2hxy + ky +

+ dy
1 1

b+ —(ex+fy)+ — (hx2

dY dx a' + 3(c'x+e»+ ~{g'x

+ dy b' + ~(e'x+f'y)+ f (h'x2
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nous devons pour le degré 0 ne conserver que les multiplicateurs
constants a, 6, a', b' de dx et dy; donc cela nous donne comme
identification :

1 a2 + a'2,

0 2ab +2a'b',
1 b2+b'2.

pour dx2

pour dxdy

pour dy2

Cela exprime que a, a', b, b', sont les cosinus directeurs de
deux directions rectangulaires; donc si l'on choisit convenablement

les directions de OX, OY dans leur plan et l'orientation
de l'angle XOY, nous aurons

a 1, a' 0, b 0, b* 1;

c'est ce que nous supposerons dorénavant.
La possibilité de ce choix montre que Y application conserve

les angles ; en transportant XOF sur xoy, on fait, en effet,
coïncider deux angles en 0 et o correspondants quelconques.

Pour le degré 1 nous prendrons:

à la place de dX

à la place de dY

1

1+ -(cx+ey) dx+\— (ex +fy)

— (c'x+e'y) dx +

[\
[1 + Î!(e'

dy,

x +f'y) dy;

mais, bien entendu, dans dX2, et rfF2 on ne tiendra compte que
des termes du premier degré; donc cela nous donne comme
identification:

pour dx2 0 — 2c 0 2e

pour dxdy 0 2e+ 2c' 0 2f+2e'

pour dy2 0 2e' 0 2f
Ou encore: c — e / c' e' — f 0; ainsi:

X — x + — (qx? H- 3hx2 y -f- 3kxy2 + ly2^

Y }>+ - (g'x3 +3h'x2 y + 3k'xy2 + l'y3) +...

i) Ce résultat était évident, puisqu'on devait avoir dx2 + dy2 dX2 + dY2 aux
termes du second degré près.
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Si donc on considère une courbe quelconque issue de o

x — at + ßt2 +.. •, y — cjl't -f- ß't2 +...,

il lui correspond la courbe:

X at + ßt2 +..., Y a't + ß't2 +

c'est-à-dire que les courbes x, ?/, X, Y correspondantes ont
respectivement en o et O la même courbure.
Comme on appelle courbure géodésique en un de ses points o

d'une courbe de s la courbure en o de la projection de cette
courbe sur le plan tangent en o à la surface s, le résultat précédent
s'exprime ainsi: l 'applicabilité conserve la courbure géodésique.

Pour le second degré, il faut prendre

dX dx

-f- dy

dY dx

1 + — (gx2 + 2hxy + ky2) +...

— (hx2 + 2kxy + ly2)

— (g'x2 +2h'xy +k'y2) +

+ dy 1 -f- ~ (/z x2 -j- 2k'xy -f- Vy2>) -j~ -1
De plus il y a lieu de tenir compte de dz et dZ. On prendra:

à la place de dz, (rx + sy) dx+(sx+ ty) dy,
à la place de dZ, (RX + SY) dX+(SX + TY) dY,

c'est-à-dire en réalité:

(Rx + Sy) dx + (Sx + Ty) dy.

L'identification des termes du second degré donne par conséquent :

pour dx2

pour dxdy

pour dy2

R2 +g, 2rs 2RS + 2h, S2+k,
2rs 2RS + 2H +g', + 2s2

2st 2 ST+l + k'
2 S2+h', 2 st 2ST +t2
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Ce tableau nous donne, quant aux formules de transformation,
les conditions

g' h, h' k, k' /,

conditions du troisième ordre dont nous ne nous occupons pas
davantage; d'autre part il nous donne pour la première fois
une condition relative à s et S. La comparaison des trois
formules de la seconde diagonale du tableau fournit en effet la
relation :

que nous allons interpréter. Il suffit pour cela de se rappeler
que les rayons de courbure principaux de s en o sont les racines
de l'équation:

rt—s2 est donc le produit des inverses des rayons de courbure

principaux en o. Ce produit a été appelé par Gauss la courbure
totale de s en o; donc Vapplicabilité conserve la courbure totale 2).

1) On l'obtiendra, par exemple, par l'emploi de la méthode que j'ai dite être la
plus directe et naturelle au début de cette suite de remarques et de citations sur les
maxima et minima.

2) Ceci était complété par l'examen de conditions suffisantes pour que deux
surfaces soient applicables; mais cela m'entraînerait ici tout à fait hors du cadre de notre
étude. Au reste, dans les cours élémentaires sur les applications de l'Analyse à la
Géométrie, on se contente le plus souvent d'établir les résultats partiels que je viens de
donner.

rt-s2 RT-S2

1

OU
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