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CHAPITRE IV

Sur la plus eourte distanee entre deux points
d’une surface développable

Le cas des problémes réguliers semble le plus simple; remar-
quons que, cependant, la méthode des dérivées ou son équivalent
pour le calcul des variations, ne fournit pas en général la solution
cherchée sans ambiguité.

S’agit-il d’avoir le minimum de F (X) pour a=X=b. Si I'on
a trouvé X, dans (a, b) et tel que F' (X,) = 0, F" (Xy) > 0,
on sera certain que X, donne un minimum, mals ce ne sera
peut-6tre qu'un minimum local ou, comme l'on dit, relatif.
I1 reste & comparer ces minima locaux. I’habitude est de consi-
dérer les recherches nécessaires comme accessoires, encore qu’elles
soient parfois fort délicates; leur examen a conduit, dans le
calcul des variations, aux conditions de Legendre et de Jacobi,
ce qul montre bien qu’elles ont en réalité une importance qu’on
néglige.

Comme tout probléme du calcul des variations peut étre
simplifié jusqu’d prendre un aspect tres élémentaire, j’avais,
il y a quelques années, bati par une telle transformation, un
exercice destiné & montrer aux éléves de Sévres la nature des
études complémentaires que réclame le traitement complet d’un
probleme d’extremum. Voici cet énoncé débarrassé de certains
artifices destinés & guider les éleves et & donner & 1’énoncé
I'aspect de leurs problémes de concours.

Exercice relatif au plus court chemin iracé sur la surface d’un
cube et joignant deux points donnés M et N, de cette surface.

1. Montrer que ce plus court chemin

a) vérifie & chaque traversée d’aréte une condition que I’on
énoncera,

I’Enseignement mathém., t. IX, fasc. 4. 6
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b) ne passe par aucun sommet si ni M, ni N n’est sur une
aréte,

¢) ne passe pas deux fois dans la méme face.

En conclure que le plus court chemin cherché est a choisir
parmi des chemins dont chacun est fourni par une des suites de
faces joignant M & N; suites qui sont en nombre fini. Montrer
qu’'une construction simple permet, pour chaque suite de faces,
de reconnaitre §’il lui correspond ounon un chemin utile & consi-
dérer et de fournir ce chemin.

Quelles modifications devraient étre apportées aux faits
constatés s’1l s’était agi, au lieu d’un cube, d’un polyeédre convexe
quelconque, puis d’un polyédre quelconque.

2. A.B,C, D, étant les sommets successifs d’une face,
A’ B, C’, D', étant symétriques de A, B, C, D, par rapport
au centre du cube, on supposera M dans la face ABCD et, pour
fixer les 1dées, tel que les distances de M a AB et & AD soient
respectivement le 1/5 et les 2/5 du coté du cube.

Montrer que ’on peut effectuer les comparaisons exigées au
n° 1 d’un seul coup et quelle que soit la position de /V, en opé-
rant ainsi: on fend la surface du cube suivant les 8 plus courts
chemins de M aux 8 sommets du cube puis on développe la surface
ainsi fendue, par exemple sur le plan de la face A’B'C’D’ laissée
fixe. Tous les chemins & considérer deviennent rectilignes.
Appliquer au cas ou [V est le symétrique de M par rapport au
centre du cube. Décrire le polygone développement II obtenu
pour le choix spécial du point M; indiquer en quelques mots
comment il varie quand M varie et & quels moments il subit
des variations importantes.

3. Démontrer que le polygone Il peut étre partagé en 8
polygones partiels dont chacun est constitué par les images des
points N dont les plus courts chemins & M sont représentés
sur II par des segments rectilignes aboutissant & 'un déterminé
des 8 transformés de M. Caractériser les cotés et les sommets
de ces polygones partiels par rapport aux transformés de /M.

En déduire qu’il est possible de pratiquer dans la surface
du cube 8 coupures respectant cette fois la face ABCD et permet-
tant, en laissant cette face immobile, un développement sur lequel
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tous les plus courts chemins MV sont transformés en segments
issus de M. Tracer ce nouveau développement II; pour la posi-
tion spéciale indiquée pour M.

Le probléeme précédent est loin d’épuiser I’étude du plus
court chemin entre deux points d’un cube; c¢’est dire combien
on laisse de questions de cOté quand on se borne, dans un
probléme d’extremum, aux parties qui sont susceptibles d’un
traitement uniforme.

L’exemple du cube est cependant l'un des plus simples;
il 'y en a en réalité qu'un autre qui soit plus simple, celui
du tétraédre & arétes opposées égales. Sil’on pose un tel tétraédre
sur un plan, puis qu'on le fasse pivoter autour de diverses arétes
pour amener chaque fois une face en contact avec le plan support,
la correspondance ponctuelle réalisée entre la surface du tétraédre
et le plan est univoque dans le sens plan-tétraedre. Cela simplifie
bien des questions relatives aux tétraedres a arétes opposées
égales.

Le cas le plus simple apres celul de la plus courte distance
entre deux points de la surface d’un polyedre est celui de la
plus courte distance entre deux points d’une surface développable.
Nous entendons par 14, suivant ’habitude en géométrie différen-
tielle, qu’il s’agit de surfaces enveloppes de plans dépendant
d’un seul parameétre et données par des fonctions dont toutes
les dérivées utilisées dans les calculs sont continues 1).

Ces surfaces se partagent naturellement suivant les propriétés
de leurs génératrices en cylindres, cones et surfaces lieux des
tangentes & une courbe gauche. On a admis de trés bonne heure
qu’elles sont applicables sur le plan comme les surfaces polyédri-
ques dont elles sont les limites. On rencontre encore dans les
géométries élémentaires un raisonnement de ce genre 4 ’occasion
de I’étude de I’hélice. Mais si une telle preuve est notoirement
insuffisante, il est facile de la transformer. Je le ferai en me bor-
nant aux surfaces lieux des tangentes & une courbe gauche; les
autres se traitent de fagon analogue, mais plus simplement encore.

Repérons chaque point M d’une développable A par deux
coordonnées curvilignes. Ta premiére [ est la mesure du seg-

1) Le texte qui suitf est extrait de notes préparatoires a un cours sur les applications
géométriques de ’analyse, professé 4 la Sorbonne de 1910 4 1921.
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ment m M porté sur la génératrice de A, m étant le point de contact
de cette génératrice avec l'aréte de rebroussement I' de A;
I' et ses tangentes sont orientées, [ a donc un signe. La seconde s
est l'abscisse curviligne de m sur I'. Alors, en réservant les
notations z,y,z; «, B, v, o', B', v'; r, s pour les coordonnées,
les cosinus directeurs des tangentes et normales principales,
le rayon de courbure de I' en m et larc de cette courbe,
et en désignant par de grandes lettres ce qui est relatif a M.
on a trois relations du type

X =x+al,
d’ou dX = o(ds+dl) + 1= ds,
: r

12

1
2 = (ds + dI)® + — ds*
r

Sidonc entre les points M et M, de deux développables A et A,
on établit une correspondance ponctuelle par ’emploi des mémes
coordonnées curvilignes [ et s, cette correspondance laissera
invariante la longueur des courbes pourvu que les deux arétes
de rebroussement I'" et I'; aient la méme équation intrinséque
r = fonction de s. On vérifie d’ailleurs immédiatement que la
transformation conserve aussi les angles. On a donc réalisé
Iapplication de A sur A,.

Or, on peut prendre pour A; la developpable d’aréte de
rebroussement I'; donnée par:

S

ds ,
Xy =J cos | —ds, Y1 —f sin J —ds, z, = 0;
r

So Sq

¢’est-a-dire le plan de z,; y,; nous avons done réalisé I’application
de A sur ce plan, ou plus exactement sur la partie II; de ce plan
balayée par les tangentes & la courbe convexe I';.

L’ applicabilité sur le plan des surfaces développables est ainst
démontrée, on sait méme la réaliser et Uon voit que, dans cette
application, la courbure de Uaréte de rebroussement est conseroée.
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Quant au probléme du plus court chemin entre deux points de |
A il devient, grice & I'application, celui du plus court chemin |
entre deux points de II;, quand on n’a pas le droit de sortir |
de II,, ou d’autres problémes analogues, comme on va le voir.
Soient deux points M et M de A; supposons quils appartiennent
4 la méme nappe de A; alors tout chemin allant de M & M, ou
ne change pas de nappe, ou en change un nombre pair de fois.
Son image joignant M, & M,, ou ne rencontre pas A, ou rencontre .
cette courbe et passe un nombre pair de fois de 'une & I'autre
des deux régions 1I, et IlI’; du plan x,y; qui se recouvrent.

—

My

m/ﬂ
/\

Fig. 10

Supposons que le segment M, M, ne rencontre pas I'; (fig.10);
alors la courbe MM correspondante est le plus court chemin
de M & M; cette courbe est appelée une géodésique. Les droites
du plan z,;, y; sont caractérisées par ’équation différentielle

d*X, d*vY,

ds* ds®

ix, = iy, avec X{ = xq + o, [,

ds ds
d’ou :
21 7 L d/IN], (&1 1N 1 d/I I
@ =) (@ - 20

<1+ﬂ>oc1—oc'1—l <1+ﬂﬁ —ﬁ'l |
ds r ds) ' Tty

Ty, Yy, g, By, o1, By 6étant relatifs a laréte de rebroussement
plane I', de A;. En tenant compte des relations o', = —8,,
By = ay, a7 + P2 =1, on a Iéquation différentielle des géo-
désiques. Au lieu de sunphﬁer cette équation, écrivons-la sous
une forme plus compliquée mais qui contiendra symétriquement
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les trois coordonnées; pour cela désignons par «; = 0, B; = 0,
v1 = 1 les cosinus directeurs de la binormale de I',. Ceux de T’
seront représentés par o”, £”, v” et le rayon de torsion par . Alors

Iéquation trouvée exprime qu’est nul le déterminant dont la
premiere ligne est:

2X, dX,
ds®*> °  ds

oq

= 0-

Pour I' I’équation analogue est: | ‘

Iadzl l+/1+d [ o 1 1+dl+/l ;
[ ds® r 8 r ds\r T’a ds oc;,oc

En décomposant celle-ci en colonnes partielles, on aura des
déterminants dont seuls seront différents de zéro ceux dont
les colonnes proviendront de termes multipliés respectivement
par o, o', o"; B, B, B"; v, v', ¥'- Donc on a:

a1 I\1 AN [ORRELA N
ds> r)r |r  ds\r Tas) T

¢’est I’équation déja trouvée des géodésiques, équation indépen-
dante de 7; les géodésiques sont donc conservées dans les applica-
tions des surfaces A, ce que nous savions déja, mais nous avons i
de plus une définition géométrique simple des géodésiques,
car notre déterminant exprime que la tangente & la géodésique,
la normale principale & cette courbe, la normale a la développable
sont dans un méme plan. Les géodésiques sont donc les courbes dont
les plans osculateurs sont en chaque point normaux a la développable.

=0,

)
|

Fig. 11

Supposons maintenant que M et M étant toujours sur la
méme nappe de A, le segment M;M,; rencontre I' (fig. 11). Le
trajet le plus court de M, & M, dans II; (ou II’,) doit envelopper
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le contour convexe formé par les deux tangentes M, u;, M i,
menées de M, et M, & 'y, et arc p,ii; de I';. Cest donc ce tracé
lui-méme qui constitue le plus court chemin. Ainsi le plus court
chemin de M a M est constitué par les deux portions de géodé-
siques My et Mji et par Parc pji de Paréte de rebroussement.
Mais 1l y a une grande différence a faire entre les deux arcs
géodésiques My, et Mp: la nappe de A contenant M et M est
formée de demi-tangentes & I'; si uM est une de ces demi-tan-
gentes, fM n’en est pas une et inversement, de sorte que le plus
court chemin de M & M se compose d’un segment de génératrice,
d’un arc de I' et d’une courbe géodésique (prises dans cet ordre
ou dans I’ordre inverse suivant les cas).

Dans ce qui précede, j’al supposé que la courbe I' ne se
fermait pas; si I' avait été une courbe fermée, le raisonnement
précédent aurait donné deux chemins localement plus courts
entre lesquels 1l eht fallu choisir.

A

Si M et M appartiennent aux deux nappes différentes de A,
le segment M, M, pourra ou non rencontrer I';. S’il ne rencontre
pas 1'y, le chemin le plus court de M; & M, sans sortir de II,
(oull’;) et rencontrant I'y est constitué de deux segments aboutis-
sant au méme point de I'; et constituant le trajet d’un rayon
lumineux qui irait de M, & M, en seréfléchissant sur I'; (fig. 12);
ceci résulte de I'emploi des dérivés, ou, ce qui est équivalent,
des raisonnements sur les coniques qui nous ont servi dans
la toute premiére question dont nous nous sommes OCCupes
dans ce volume. A ce plus court trajet, que je suppose déterminé,
correspond le plus court chemin cherché allant de M a M;
il est constitué par deux portions de géodésiques situées respecti-

Fig. 12
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vement sur 'une et 'autre nappe de A et se réfléchissant sur A
a la facon des rayons lumineux.

Si M,M,; rencontre I',, nous avons déja dit quel était le
plus court chemin de M; & M, en restant dans II; (ou IT’;);
il lui correspond, & condition de 'interpréter comme tracé sur les
régions I, et II’; convenables, le plus court chemin de M a M.
Celui-c1 est par suite formé de deux arcs géodésiques tracés sur
deux nappes différentes de A et d’un arc de I'; seulement cette
fois, les deux arcs géodésiques sont, ou tous deux des segments
de génératrices, ou tous deux des arcs de courbes géodésiques.

Naturellement le choix prévu précédemment pour le cas

ou I' est fermée est & considérer aussi, quand M et M sont
sur les deux nappes de A.
Nota: Je me suis borné suivant 'habitude & la considération
des courbes données par des fonctions plusieurs fois dérivables,
mais les résultats s’étendent & toutes les courbes tracées sur nos
développables.

Lalongueur d’une courbe est en effet, la limite de la somme de
segments M M petits; or, en posant Su = ii—u, en désignant par
u, une valeur voisine de u et i, d’ailleurs variable d’une ligne &
Pautre, et par e des infiniments petits, en employant les symboles
S de Lamé, (sommes relatives aux trois coordonnées), on a:

MM = SUXP? =~ SE+al—x—al)? =~ S(6x + &5l +15a)?

= ) 552+ 612 +251 S adx +21 S 6xd0 + 2151 S @S +12 S Sar

avec 4
201 S aox = 2016s S aa,, = 2610s + e,

ou 'on peut prendre p inférieur & 616s;

’ 582
21 S 6xd0 = 216s* S «,, . = e, p étant inférieur & |—
Fm r
o, . o . 161s
2161 S ada = 216165 S & —— = ue, p étant inférieur a ,
- r

o’ \? 5s? . . 12652
> S 6a? = I?55% S(———) = I’—- + ps, u étant inférieur a 5
r r

m
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Donc on a:

2

_ 0s
MM = \/(53+5l)2 +12—2 +ve,
r

le reste ve étant infiniment petit relativement & la partie prin-
cipale de l'expression si ds et 3l sont infiniment petits; ainsi
la longueur d’une courbe quelconque se présente comme la
limite d’une somme d’expressions

5s5\?
\/(5$+5l)2 +12<7>

qui ne différent de celles qui nous avaient servi que par le rempla-
cement des différentielles par des différences.

Nous pouvons donc conclure, comme précédemment, que
la correspondance ponctuelle établie entre deux développables A
et A; dont les arétes de rebroussement ont la méme premiére
équation intrinseque, r = fonction de s, conserve la longueur
des courbes, de toutes les courbes. Nos résultats sur le plus court
chemin entre deux points d’une développable restent valables
quand on envisage toutes les courbes de cette développable.

Nous voicl ainsi arrivés & ce qui est le probleme primordial
du calcul des wvariations: trouver le plus court chemin entre
deux points donnés d’une surface ou plus généralement d’ une
variété.

En ce qui regarde ce probleme, deux surfaces sont équiva-
lentes quand il existe entre leurs points une correspondance
conservant la longueur des courbes, c’est-a-dire quand les deux
surfaces sont applicables I'une sur I'autre. Ceci établit un lien
entre le probléme d’extremum considéré et celui de Papplica-
~ bilité des surfaces. Je me permets de profiter de ce lien, quelque
fragile qu’il soit, pour sortir des limites strictes de mon sujet
et donner un aufre extrait de mon cours sur les applications
géométriques de I’Analyse. Celui-ci n’a pas eu ’heureuse fortune
échue & lextrait précédent et dont les parties principales ont
trouvé place dans les écrits de mes éléves. Pourtant je lui
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attache une certaine importance que je vais d’abord expliquer.
Par souci d’élégance, mais aussi parfois pour éviter de longs
calculs pratiquement inexécutables, les géomeétres ont pris
I’habitude d’user continuellement de procédés ingénieux; 1'un
sert pour une équation, puis on 'abandonne et ¢’est un autre
qui permet d’aller au-dela. Regarder certains exposés de géo-
métrie supérieure, c’est assister au tirage d’un véritable feu
d’artifice. Il devient alors bien difficile au débutant émerveillé
de suivre une pensée; il lui arrive (du moins ce fut parfois mon
cas) de méconnaitre qu'une analyse simple et méthodique — peut-
étre fastidieuse et interminable — doive certainement conduire
aux meémes résultats, car la puissance de pensée des hommes
ne peut aller au-dela de cette analyse simple. C’est pourquoi
il m’a semblé de quelque intérét de tirer d’une meme analyse,
presque enfantine, des faits qu’on n’obtient généralement pas
par un procédé unique.

Soient § et s deux surfaces applicables I'une sur l'autre,
c’est-a-dire telles qu’il existe entre elles une correspondance
ponctuelle conservant la longueur des courbes. Nous supposons
que ces surfaces sont analytiques ainsi que la correspondance
qui définit Papplication, ou que, tout au moins, les fonctions
intervenant dans la question ont assez de dérivées continues
pour que nous puissions utiliser les développements en série
ilimités ou limités.

Soient O et o deux points homologues de § et s; rapportons
nos deux surfaces respectivement & des axes rectangulaires
dont les axes OZ, oz sont les normales & S et s. Nos deux surfaces
ont pour équations

1

S Z =5(RX2+2SXY+TY2)+ ..... ,
1 2 2

S z =E(rx +2sxy +ty“) +.....,

et la transformation est définie par

1 2 2 1 3 2 ;
X = ax+bx+ E(CX +2exy +fy°) + 5—,(gx +3hx“y + 3kxy
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Y =a'x+b'x+ %(c’x2 +2e'xy +fy%) + glz(g’x3 +3h'x%y
| +3k'xy* +1'y°) +...
Nous avons a écrire I'identité
dX? +dY?+dZ? = dx* +dy* +dz?,

identité en dz, dy, x, y; car, grace & nos formules, tout s’exprime
a l'aide de ces quatres variables.
[’expression de da?+dy®+dz? est la plus simple; c’est

dx? +dy* +(pdx +qdy)* =
dx* +dy* +[dx (rx +sy +...)+dy(sx +ty +..)]>

Mais pour d X2+4-d Y2+d 72, il faut, dans ’expression analogue,
remplacer d X, dY, X, Y, en fonction de dz, dy, z, y. Pour avoir
des calculs simples, nous identifierons séparément les termes
en da?, dzdy, dy?, en nous bornant d’abord aux termes de degré O
en z, y, puis a ceux de degré 1, etec...

Les expressions de p et ¢ contiennent x et y au degré 1 au
moins, donc aussi celles de P,Q; quand nous nous occupons
de termes de degré O ou 1, il suffit de considérer da?-4-dy?
et d X2+ d Y2 puisque dz? et dZ2 donneraient des termes de degré 2.
Des expressions

1 , 1
dX = dx l:a+ i—'(cx +ey) + 5(gx2+2hxy +ky2)+...:l

0 1 1
+ dy | b+ T‘(ex +fy) + E(hx2+2kxy+ly2)+...,],

1 1
dY =dx|a' + F(c’x +e'y) + —2—‘(g’x2+2h’xy +k’y2)+...:l

' 1 1
+ dy {b’ + I'-(e’x +f'y)+ E(h'x2 +2k’xy+l'y2)+...],
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nous devons pour le degré O ne conserver que les multiplicateurs
constants a, b, a’, b’ de dx et dy; donc cela nous donne comme
1dentification:

pour dx? 1 =a*+a’?,
pour dxdy | 0 = 2ab+2a’'b’,
pour dy* 1 = b>+b"

Cela exprime que a, a’, b, b’, sont les cosinus directeurs de
deux directions rectangulaires; donc si ’on choisit convena-
blement les directions de OX, OY dans leur plan et I’orientation
de 'angle XOY, nous aurons

a =1, a’ =0, b=0, b’ = 1;

c’est ce que nous supposerons dorénavant.

La possibilité de ce choix montre que Uapplication conserye
les angles; en transportant XOY sur zoy, on fait, en effet,
coincider deux angles en O et o correspondants quelconques.

Pour le degré 1 nous prendrons:

[ 1 1
a la place de dX 1+ i—'(cx +ey)] dx + [F (ex —{—fy)] dy,

1 1
a la place de dY L—l—' (c'x +e’y)] dx + [1 + F(e’x +f’y)] dy;

mais, bien entendu, dans d X2 et d Y2 on ne tiendra compte que
des termes du premier degré; donc cela nous donne comme
~ identification:

pour dx? 0 = 2¢ 0 = 2e

pour dxdy 0 = 2e+2c¢ 0 = 2f+2e

pour dy? 0 = 2¢ 0 = 2f

Ou encore: c=e=f=¢ =¢ =f =0 ainsi:

1
X = x+ a(ng+3hx2y+3kxy2+ly3)+...

1
Y =y+ a(g’x3+3h'x2y+3k’xy2+l’y3)+... 1

1) Ce résultat était évident, puisqu’on devait avoir dx2+dy2 = dX24 dY2 aux
termes du second degré pres.
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Si donc on considére une courbe quelconque issue de o
x = at+pt*+..., y = a't+p't*+...,
il lui correspond la courbe:
X=at+pt*+..., Y=o't+B't*+...

¢’est-a-dire que les courbes =z, y, X, Y correspondantes ont

respectivement en o et O la méme courbure.

Comme on appelle courbure géodésigue en un de ses points o

d’une courbe de s la courbure en o de la projection de cette

courbe sur le plan tangent en o a la surface s, le résultat précédent

s’exprime ainsi: [ ’applicabilité conserve la courbure géodésique.
Pour le second degré, il faut prendre

1
dX =dx|1+ 5(gx2+2hxy+ky2)+...]

S |
+ dy ~2—‘(hx +2kxy +1y*) + ... |,

1
dY = dx i—'(g’x2+2h’xy +k’y2)+...]

1 )
+ dy 1+§(h’x +2k'xy +1U'y*) +... |.

De plus il y a lieu de tenir compte de dz et dZ. On prendra:

a la place de dz, (rx +sy)dx +(sx +ty) dy,
a la place de dZ, (RX+SY)dX+(SX+TY)dY,

c¢’est-a-dire en réalité:
(Rx +Sy)dx +(Sx+ Ty)dy.
L’identification des termes du second degré donne par conséquent:

pour dx? r* = R*+g,  2rs = 2RS+2h, s> = S*+k,

pour dxdy  2rs = 2RS+2h+g’, 2rt +2s* = 2RT + 282,
2st = 28T +1+k’

pour dy®* s* = SZ4+h, 2st = 28T +2k’, 12 = T? 4/,
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Ce tableau nous donne, quant aux formules de transformation,
les conditions
g =h, h' =k, k' =1

conditions du troisieme ordre dont nous ne nous occupons pas
davantage; d’autre part il nous donne pour la premiére fois
une condition relative a s et §. La comparaison des trois for-
mules de la seconde diagonale du tableau fournit en effet la
relation:

rt—s’> = RT —§?

que nous allons interpréter. Il suffit pour cela de se rappeler
que les rayons de courbure principaux de s en o sont les racines

de 1’équation:
1 1
SR
R R

11 ,
T R(i'+t)+rt—s = 0;

ou

rt—s? est done le produit des inverses des rayons de courbure
principaux en o. Ce produit a été appelé par Gauss la courbure
totale de s en o; donc Papplicabilité conserve la courbure totale ?).

1) On l’obtiendra, par exemple, par 'emploi de la méthode que j’ai dite étre la
plus directe et naturelle an début de cette suite de remarques et de citations sur les
maxima et minima.

2) Ceci était complété par I’examen de conditions suflisantes pour que deux sur-
faces soient applicables; mais cela m’entrainerait ici tout & fait hors du cadre de notre
étude. Au reste, dans les cours élémentaires sur les applications de I’Analyse & la Géo-
métrie, on se contente le plus souvent d’établir les résultats partiels que je viens de
donner. .
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