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Chapitre III

Sur quelques questions de minimun relatives aux courbes
orbiformes et sur leurs rapports avec le Calcul des variations

Pour les problèmes irréguliers, la méthode directe s'impose.
On trouvera de tels problèmes dans le mémoire reproduit plus
bas, et en particulier la démonstration de ce théorème : de toutes les

orbiformes de même longueur, c'est Vorbiforme équilatérale qui a la
plus petite aire. J'avais énoncé ce théorème, sans le démontrer,
à la séance du 1er avril 1914 de la Société Mathématique de

France (voir Comptes rendus, année 1914, page 45); je l'avais
démontré à la séance du 24 juin 1914 et c'est le résumé de cette
démonstration qui constituait la fin de l'article précédemment
reproduit1). Ces publications ne parurent que pendant la guerre
et ne purent pénétrer en Allemagne que vers 1919; aussi c'est
tout à fait indépendamment que M. Blaschke s'était posé
pendant la guerre cette même question de minimum et qu'il avait
obtenu le même résultat, lequel a été quelquefois appelé théorème
de M. Blaschke2).

Dans l'article « Théorème sur les courbes et les surfaces

fermées», paru en 1914 dans les Nouvelles Annales de Mathématiques,

M. R. Bricard traitait la question suivante : « Quel est le plus
petit rayon R que l'on puisse choisir tel que tout ensemble,
formé de points d'un plan dont les distances mutuelles soient

au plus égales à un nombre donné D, puisse être enfermé dans

une circonférence de rayon R ». En d'autres termes, supposons

que, dans un morceau de carton, par exemple, nous découpions
un cercle, quel rayon faudra-t-il donner à ce cercle pour qu'avec
le « couvercle », ainsi obtenu, nous puissions recouvrir tous les

ensembles considérés, que l'on appelle les ensembles de largeur D.

1) Pages 233 à 236.
2) Le texte qui suit est paru sous le titre: Sur quelques questions de minimum

relatives aux courbes orbiformes et sur leurs rapports avec le calcul des variations
dans le Journal de mathématiques pures et appliquées, 8e série, t. IV, 1921, pp. 271-300.
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Cette question ainsi que son analogue relative à l'espace est

résolue très simplement par M. Bricard; elle avait été traitée
antérieurement par M. H. Jung dans deux articles du Journal
de Crelle, Bd 129 et 137. Elle a fait depuis l'objet d'une courte
Note de M. J. Pal (Nouvelles Annales, 1915).

L'article de M. Bricard appela mon attention sur la question,
qui me fournit la matière de la communication, sorte de petite
conférence, que je fis à la Société mathématique, le 1er avril 1914,
à l'occasion de la réunion à Paris de la Conférence internationale
de l'Enseignement mathématique1). La rédaction de cette conférence,

faite à l'époque, constitue les douze premiers numéros
de ce Mémoire2); ce qui explique le mode d'exposition de certains

paragraphes. J'y ai ajouté le développement d'une autre communication

faite peu après à la Société mathématique 3). J'avais
d'abord eu l'intention de réunir ces remarques avec d'autres
analogues concernant des questions qui présentent ce caractère
commun de relever du Calcul des variations et de n'appartenir
cependant pas aux types de problèmes étudiés dans ce calcul;
celles que je considère ici suffiront pour faire comprendre de

quels problèmes il s'agit. Les méthodes classiques, convenablement

modifiées, s'y appliquent beaucoup plus souvent qu'on ne
serait tenté de le croire 4) ; c'est un point qui ne ressortira pas
de ce Mémoire où je traite les questions surtout par des procédés
de géométrie élémentaire, mais que je tiens à indiquer pour que
le lecteur ne croie pas que l'analyse classique le laisse complètement

désarmé en face des problèmes que je vais indiquer.
Revenons au problème de M. Bricard et considérons un

ensemble E de largeur D ; le plus petit couvercle qui lui convienne
a un rayon R (E), fonction de l'ensemble E. C'est le maximum
de R (E) qu'il faut chercher; et il suffit évidemment de considérer
le cas où l'ensemble E est une courbe convexe C de largeur D.
Nous avons donc à rechercher le maximum d'une fonction de

ligne, R (C), d'une fonctionnelle comme on dit maintenant.

Comptes rendus des séances de la Société Mathématique de France, année 1914
pp. 249-250.

2) C'est-à-dire, l'article reproduit ici, pp. 246-276.
3) C'est la fin de la communication reproduite ici pages 233 à 236.
*) Ceci deviendra plus fréquent encore quand on utilisera les résultats du travail

fondamental de M. Tonelli: Sur une méthode directe du Calcul des variations (Rendi-
conti del Circolo Mathematico di Palermo, t. XXXIX).
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Seulement, cette fonctionnelle ne s'exprime pas à l'aide d'une
intégrale comme celles auxquelles on se borne dans le Calcul des

variations,
J l/[x' y(x)>

par exemple. Quelle que soit l'importance des fonctionnelles du
type J, on voit que des questions très simples conduisent à en
considérer d'autres.

Après les fonctionnelles du type /, celles qui se présentent de

suite à l'esprit sont celles qu'on obtiendrait en prenant une fonction

ordinaire composée à l'aide d'intégrales /; un produit ou
un quotient d'intégrales, par exemple. Je ne crois pas que les

problèmes de ce type aient été encore abordés, bien que M. Fré-
chet Q se soit occupé avec succès de la difîérentiation des

fonctionnelles les plus générales. La méthode que j'indique pour traiter

le problème des isopérimètres, traduite analytiquement, appa-
J2

raît comme la recherche du minimum d'une expression — ; elle
J î

s'appliquerait aussi à la recherche du minimum d'autres expressions,

très particulières à la vérité, formées à l'aide d'intégrales.
Dans le problème de M. Bricard, la fonction R (C) dont on a

à chercher le maximum ne s'exprime d'aucune manière à l'aide
d'intégrales /; je montre qu'elle n'est cependant pas nouvelle.
Si, en effet, p (9) est la distance de l'origine à la tangente à C de

indirection 9, R (C) — - est la meilleure approximation, au sens

de Tchebychefï, de p (9) par une expression

A cos cp+B sin <p+D.

Et la recherche du maximum de R (C) est celle de la limite
supérieure de la meilleure approximation pour la classe des

fonctions p (9) considérées. Il s'agit donc d'une question analogue à

celles qui ont fait récemment l'objet des études de MM. Dunham
Jackson, Serge Bernstein, de la Vallée Poussin.

i) Sur la notion de différentielle d'une fonction de lignes (Trans, of the Am. Math.
Sc., 1914).
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Seulement, nous avons à calculer ici une limite exacte de

l'approximation et non pas seulement l'ordre de grandeur de

cette approximation; cette question d'approximation conduit

donc à rechercher le minimum d'une fonctionnelle qui n'est pas

une intégrale J1).
Dans la recherche de ce maximum, on peut se borner à la

considération de certaines courbes convexes C, déjà rencontrées

par Euler, qui jouissent de la propriété curieuse d'avoir la même

largeur dans toute direction, c'est-à-dire que chacune de leurs

normales est normale double.
Ces orbiformes', comme on les appelle, ont toutes la même

longueur que la circonférence de même largeur. Les orbiformes
de largeur D ayant toutes la même longueur izD, on est

naturellement conduit à comparer les aires de ces orbiformes;
c'est, on le sait à l'avance, l'orbiforme circulaire qui a l'aire
maximum; mais quelle est l'orbiforme d'aire minimum Cette

fois nous avons à rechercher le minimum d'une fonctionnelle
de la forme /; mais, tandis qu'il s'agit d'une intégrale dont le

calcul des variations classique nous fournirait le maximum, c'est
du minimum dont nous nous occupons. On est donc certain à

l'avance que ce minimum sera obtenu pour une fonction frontière

du champ fonctionnel envisagé; mais cette remarque est

très insuffisante.
Quand il s'agit d'une fonction de points, de / (#, y, z), par

exemple, savoir que le minimum est obtenu sur la frontière du
domaine, c'est savoir que le problème est d'un degré moins difficile

puisqu'on se trouve ramené à la recherche du minimum
d'une fonction 9 (u1 v) des deux variables définissant un point de

la surface frontière.
Quand il s'agit d'une fonctionnelle J (C), définie dans les

champs que l'on considère ordinairement et auxquels s'applique
l'analyse classique, on a un résultat de même nature; car le
calcul de la variation de J montre que C ne peut être extrémale
que si, sur chacun de ses arcs, si petit qu'il soit, on aperçoit que
c'est une courbe frontière. Par exemple, si le champ fonctionnel

i) Comparer avec les questions d'approximation traitées dans mon article: Sur
la représentation trigonométrique approchée des fonctions satisfaisant à une condition
de LipSeilitz (Bull, de la Soc. math, de France, 1910).
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est défini par
f(x, y, y', y") ^ 0,

on devra avoir en tout point

f(x> y> y\ y") o;

et y est à choisir dans une famille de fonctions dépendant de

constantes arbitraires; nous avons affaire à un problème de

minimum d'une fonction de plusieurs variables.
Dans le cas actuel on a encore cette propriété que la courbe

extrémale C est frontière du champ fonctionnel, en chaque point
si je puis dire1). Et le minimum s'en déduit facilement; il est
donné par l'orbiforme équilatérale, c'est-à-dire par la courbe
formée par les trois arcs de circonférences décrits des trois
sommets d'un triangle équilatéral comme centres, chacun d'eux étant
sous-tendu par le côté opposé à son centre.

On voit que la géométrie conduit tout naturellement à la
recherche de maximum et minimum qui sont obtenus pour les

courbes ou fonctions qui sont, en tout point, à la frontière du
domaine fonctionnel considéré.

Sans sortir de l'ordre de questions considérées ici, voici
deux problèmes du même genre. Quelle est, parmi toutes les

orbiformes de largeur D qui admettent un couvercle circulaire
de rayon p, celle qui a la plus petite aire La solution du
problème de M. Bricard montre qu'il faut supposer p compris entre

DD- et —= ; la solution est alors donnée par l'orbiforme construite
2 V3
de la façoïi suivante: Prenons trois points A, O, A' en ligne
droite, AO D—p, OA' p, A A' D et, de A' comme centre,

décrivons un arc de cercle AB qui sera tel que OB OA',

vu de O sous un angle 9 inférieur à — Puis, de O comme centre,

traçons deux arcs de cercle aA, 56, vus de O sous l'angle

aABb formée de trois arcs de cercle est le

i) C'est là une propriété que l'on pourrait obtenir grâce à des modifications assez
profondes de l'analyse classique et que je démontrerai ici par des artifices géométriques.
Je compte revenir ailleurs sur ce point.
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sixième de l'orbiforme cherchée, laquelle admet Oa et Ob pour
axes de symétrie 1).

Guidé par ce qui suit, on démontrera facilement ce résultat;
voici une autre question dont, au contraire, j'ignore la solution.
On peut la formuler comme il suit. Dans le problème de M. Bri-
card, on se demande quel est le plus petit couvercle, parmi ceux

qui conviennent à la fois à tous les ensembles de largeur D, et

qui sont de forme donnée: la forme circulaire. Plus généralement
demandons-nous quel est, de tous les couvercles de forme
arbitraire qui conviennent pour tous les ensembles de largeur Z),

celui de plus petite aire ou de plus petit périmètre 2).

1. Considérons un ensemble E de points; si P et Q sont deux

points de E, l'ensemble des distances PQ a une borne supérieure:
cette borne s'appelle Vélongation ou le diamètre de l'ensemble E.
Quand ce diamètre est fini, E est dit borné.

Nous nous proposons de trouver la plus petite valeur de R,
telle que tout ensemble plan de diamètre D puisse être enfermé
dans une circonférence de rayon R. On entend par là que tous
les points de E doivent être, soit à l'intérieur de cette circonférence,

soit sur elle.

Pour éviter des précautions de langage, sans cela nécessaires,
nous supposerons que E est fermé, c'est-à-dire tel que tout
point limite de points de E appartienne aussi à E. Si l'ensemble
donné E n'était pas fermé, en lui ajoutant ses points limites, on
aurait un ensemble fermé de même diamètre que E.

Si l'on considère un nombre f (P) fonction de la position d'un
point P d'un ensemble fermé E, la continuité de cette fonction se

définit comme pour le cas où E est un segment fini de droite ou un
domaine borné du plan ou de l'espace. On démontre, comme dans
le cas classique, qu'une fonction continue des points d'un ensemble
fermé borné atteint sa limite supérieure et sa limite inférieure.

1) Dans une lettre qu'il m'écrivait peu de temps avant sa mort prématurée, le
regretté T. Bonnessen m'a signalé que cet énoncé était inexact; il ajoutait ne pas
savoir comment le corriger. Il m'a fait aussi des objections, parfaitement fondées, sur
le paragraphe 15, dont j'ai ici modifié entièrement la rédaction.

2) Sur cette question, on pourra consulter un article de M. Julius Pal: Ueber ein
elementares Variationsproblem (Det Kgl. Danske Vidensk. Selskab-Mat. lys., t. III, 2;
1920). Dans une très courte Note (Actes de la Société helvétique des Sciences naturelles,
t. II, 1914), M. le Dr Kollros traite aussi d'un problème en rapport avec les questions
étudiées ici.
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Soient E un ensemble plan, fermé et borné, A un point de son
plan, P un point quelconque de E. La distance AP est une fonction

continue du point P de E, elle atteint sa limite supérieure
p {A) pour une position P0 de P. Soit B un autre point du plan,
on a évidemment p (B) ^ BP0, donc

p(A)-p(B) S | AP0 -BP0 | ^AB.

Puisque A et B sont deux points quelconques du plan, nous

pouvons conclure

\p(A)-p(B)\ ^ AB,

et la fonction p (A) est continue. D'ailleurs, quand A s'éloigne à

l'infini, p (A) grandit indéfiniment, donc la fonction p (A)
atteint sa limite inférieure p pour une position au moins de A.

Cette limite inférieure ne peut d'ailleurs pas être atteinte pour
deux positions de A; si, en effet, elle était atteinte pour les
positions Ax et A2, E serait enfermé dans la partie commune aux
deux cercles égaux de rayon p et de centres A1 et A2, donc dans
le cercle décrit sur la corde commune à ces deux cercles comme
diamètres. Or, ce dernier cercle serait de rayon plus petit que p,
ce qui est impossible.

Donc, parmi toutes les circonférences qui entourent un ensemble

donné E, il y en a toujours une qui a un rayon plus petit que
toutes les autres. Nous l'appellerons circonférence circonscrite à E.

2. Relativement à cette circonférence circonscrite, je démontrerai,

avec M. Bricard, le théorème suivant:

Pour qu'une circonférence C, enfermant un ensemble fermé E,
soit la circonférence circonscrite, il faut et il suffit que les points
communs à E et à C n' appartiennent pas tous à un même arc
de cercle C' plus petit qu'une demi-circonférence.

La condition est suffisante : Si elle est remplie, en effet, toute
autre circonférence T, contenant E, doit contenir un arc C' au
moins égal à la moitié de C ; donc T a un rayon plus grand que C.

La condition est nécessaire: Supposons, en effet, que tous les

points communs à C et à E soient sur un arc aß y de C, inférieur
à la moitié de C, et soit a'ß'y' un arc de C, supérieur à la moitié
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de C, et n'ayant aucun point commun avec aßy. Faisons passer

par oc' et y' un cercle C voisin de C et de rayon un peu inférieur.
Les seuls points du plan qui soient intérieurs à C sans être
intérieurs à C' sont des points voisins de a'ß'y'. Comme il n'y a

pas de points de E voisins de a'ß'y', si C' est très peu différent
de C, C' contient E et C n'est pas la circonférence circonscrite
à E.

3. La proposition de M. Bricard étant obtenue, la recherche
du nombre R est presque achevée. Pour un ensemble E de

diamètre D, la circonférence circonscrite C, de rayon p, doit avoir
en commun avec D des points n'appartenant pas tous à la même

moitié de C. Soient a et ß deux points communs à £ et C,

soient a', ß' les points de C diamétralement opposés à oc et ß.

Si a' ou ß' appartient à E, alors 2p — D. S'il n'en est pas ainsi,
ou bien il y a sur l'arc oc'ß' au moins un point y de E et un tel
point forme avec a et ß un triangle acutangle, ou bien il y a des

points de E à la fois sur aß' et sur a'ß.
Dans ce dernier cas, soient X le dernier de ces points

rencontré en allant de a vers ß' et (x le dernier rencontré en allant
de ß vers a'. L'arc Xß'a'q est inférieur ou au plus égal à une demi-
circonférence, car il ne contient pas de points de E. Donc, ou
Xfx — 2p D, ou le triangle Xfxa est acutangle. Si donc on n'a
pas 2p D, on est certain de trouver un triangle acutangle
aßy, ou aXfx, formé de points de E et inscrit daiis C1). Un tel
triangle, s'il n'est pas équilatéral, a un de ses côtés au moins
supérieur au côté du triangle équilatéral inscrit; donc on a alorsd^pV3-Dans tous les cas on a donc

D
P ~t=#V 3

i) Je n'ai pas voulu admettre sans démonstration que si l'on a un ensemble de points
d'une circonférence, fermé et qui peut être enfermé dans une demi-circonférence,
il y a trois points de cet ensemble qui forment un triangle acutangle ou deux points
qui sont diamétralement opposés, parce que le fait analogue pour l'espace ne me paraît
nullement évident. Aussi, pour le cas de l'espace, le raisonnement de M. Bricard aurait
besoin, il me semble, d'être complété.
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Par suite on a

cette valeur minimum étant d'ailleurs atteinte, par exemple, pour
le cas où E est un triangle équilatéral de côté D.

4. Les définitions et les raisonnements des nos 1 et 2 s'appliquent

de suite, moyennant des modifications de mots évidentes,
au cas des ensembles de l'espace ordinaire. Si l'on appelle
« ensemble de l'espace à n dimensions » les ensembles de systèmes
de n nombres xv x2, xn, ces définitions et raisonnements
s'appliquent encore facilement. Il faudra naturellement y
remplacer la considération des circonférences par celle des hyper-
circonférences qui sont les variétés à n—1 dimensions définies

par des équations de la forme

(X1—x1)2+(X2—x2)2 + +(Xn— xn)2 R2

dans lesquelles les X sont les coordonnées courantes, les x les

coordonnées du centre; le premier membre est le carré de la
distance des deux points X, x; le second membre est le carré
du rayon.

Une telle variété est la frontière du domaine correspondant
au cercle; ce domaine, un hypercercle, est donc défini par
l'inégalité

(Xl —x2)2 + (X2 — x2)2 + +(Xn-xn)2 ^ R2.

Les théorèmes des nos 1 et 2 étant acquis pour le cas général,

pour achever la détermination du rayon Rn des plus petits
hypercercles égaux dans lesquels on puisse enfermer tous les

ensembles de diamètre D de l'espace à n dimensions, il va falloir
imiter le raisonnement du n° 3. Le triangle équilatéral ou régulier
sera remplacé par l'hypertriangle régulier, c'est-à-dire, si l'on
veut, la figure formée par n —1 points situés deux à deux
à la distance D. Si l'on désigne par hn la hauteur d'un hypertriangle
régulier et pn le rayon de l'hypercirconférence circonscrite, on
voit facilement que l'on a
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Pn
n + 1

hn> Pn-1 +^n — D2

d'où puisque

pi
D

pi

42

51

32

Ï2

l2
1

92
D

22 — 1

D

2
1 7

3

1 —

1 -
l2"

I2

D

D2

32 —22 + l2
D2

42

42 — 32 + 22 — l2
D

La sommation donne finalement

p\ D2
2 (n +1)

L'hypertriangle régulier étant un ensemble de largeur Z), on a

R„ â
2(n + l)

D-

Je vais démontrer que, pour w quelconque comme pour 2,
c^est le signe qui convient. Pour cela, il suffira de prouver,
ce qui a été fait au n° 3 pour n 2, que si Ton a sur une hyper-
circonférence un ensemble fermé de points qui ne peut être
enfermé dans une moitié de cette hypercirconférence, il y a deux
de ces points dont la distance est égale ou supérieure au côté
de fbypertriangle régulier inscrit. Le raisonnement est un
raisonnement de proche en proche, il suffira d'indiquer comment on
passe de n 2 à n 3.

Remarquons d'abord que, si l'on a sur une sphère un ensemble
fermé E de points, les théorèmes des nos 1 et 2 s'appliquent
à la recherche de la plus petite calotte sphérique contenant E.

Ceci étant, soit, sur une sphère S de rayon p, un ensemble
fermé e de points, ensemble qui ne peut être tout entier enfermé
dans une moitié de la sphère S. Soient a, b deux points de e
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dont la distance d ait la valeur la plus grande possible; on a

évidemment 2^d^lp. Le petit cercle de S, qui passe paré et

qui admet a pour pôle, a uïi rayon égal à

d V4p2 — d2

27-
'

Ce petit cercle partage S en deux zones, dont Yune Z, la
plus graïide, contient e, l'autre ne contenant aucun point de e.

Soit y la frontière de la plus petite zone contenant e, laquelle,
étant contenue dans Z et contenant une demi sphère, a un rayon
au moins égal à

d V4p2 — d2

2p

Sur -y, d'après 3, il y a deux points de e qui sont distants
au moins de

d^4p2—d2

m?-*
2p

et l'oïi doit avoir

d'où

Finalement on a donc

s'"-

-p^d^2p,

les limites extrêmes étant atteintes dans le cas où des points
de e sont sommets d'un tétraèdre régulier et dans le cas où
des points de e sont diamétralement opposés.

Finalement il est ainsi prouvé que

R3
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Le passage de n à n+l se fait exactement de même, Vinégalité

précédente devient

5. Nous bornant au cas des ensembles plans, nous allons
traiter la même question d'une façon moins simple et moins

rapide, mais qui nous montrera le lien intime qui lie le problème
posé à celui de la meilleure approximation avec laquelle on
peut représenter une fonction continue par une série limitée
de Fourier, problème considéré d'abord par Tchebychefï.

Notre point de départ sera une utilisation plus systématique
de cette remarque: il n'y a pas besoin de considérer le cas de

tous les ensembles de diamètre D, on peut se borner à certains
d'entre eux. Ceci nous a déjà permis de ne considérer que les

ensembles fermés.
Nous dirons qu'un ensemble E de diamètre D est complet

s'il est impossible de lui adjoindre des points tout en lui laissant
le même diamètre D. Nous allons démontrer que tout ensemble
de diamètre D fait partie d'un ensemble complet de diamètre D.

Soit E un ensemble fermé de diamètre D; s'il n'est pas
complet, nous pouvons, sans modifier son diamètre, lui ajouter
des points. Soient A l'un deux, B le point de E le plus voisin
de A, ou l'un des plus voisins. Soient C1 et C2 les points de
rencontre des cercles de rayon D décrits de A et B comme centres.
Soient enfin A MB, ANB les arcs de cercle de rayon D décrits
de Cj et C2 comme centres. Tous les points compris entre
A MB et ANB peuvent être ajoutés à E sans changer le
diamètre D de l'ensemble. Certains de ces points font peut-être
déjà partie de l'ensemble E, mais les points du segment AB
n'en font pas partie et comme E est fermé nous voyons que si
d'un point de AB comme centre, on décrit un cercle assez petit,

d'où
4p2 [2 (n + 1) - n~] A 2(n + 1) d2
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tous les points de ce cercle, dont aucun ne faisait partie de E,
peuvent être ajoutés à E.

Ceci étant, soit E un ensemble de diamètre D; je lui ajoute
ses points limites. Si F ensemble obtenu engest pas complet, je lui
ajoute le plus grand cercle X *) qu'il soit possible de lui ajouter
sans augmenter son diamètre; s'il y a plusieurs tels cercles,
j'ajoute l'un quelconque choisi d'après une loi que chacun prendra
à sa volonté et qu'il serait puéril de préciser une fois pour toutes.

Si l'ensemble e+X ainsi obtenu n'est pas complet, je lui
ajoute le plus grand cercle possible Xx, etc.

Si l'on est arrêté au bout d'un nombre fini d'opérations,
le théorème est démontré pour l'ensemble E considéré; sinon,
je dis que l'ensemble fermé obtenu en ajoutant à e + X+Xj_ +
ses points limites, qui est évidemment de diamètre D, est complet.
En effet, s'il ne l'était pas, on pourrait lui ajouter les points
d'un cercle A et X1? X2, devraient être tous au moins aussi

grands que A. Or cela est impossible, car ils sont sans points
communs deux à deux et tous intérieurs à une circonférence
de rayon D décrite d'un point quelconque de E comme centre.

6. Ainsi, pour trouver le maximum du rayon de la circonférence

circonscrite aux ensembles de largeur D, nous pouvons
nous borner à la considération des ensembles complets de largeur
D. Etudions ces ensembles.

La distance d'un point quelconque M à un point C d'un
segment AB étant plus petite que la plus grande des deux
distances MA, MB, si deux points A et B font partie d'un
ensemble complet, tous les points du segment AB en font aussi

partie. Donc les ensembles complets sont des domaines convexes,
c'est-à-dire l'ensemble des points d'un contour convexe et des

points intérieurs à un tel contour. Un contour convexe qui limite
un domaine constituant un ensemble complet, s'appelle une
courbe orbiforme.

Soit A un point d'une orbiforme E. E est tout entière à

l'intérieur de la circonférence de rayon D et de centre A. Je dis

i) Il peut y avoir des points frontière de À qui appartiennent à e, mais aucun
point intérieur à À ne doit appartenir à e. J'omets la preuve du fait que les rayons des
cercles qu'on peut ajouter à e atteignent leur limite supérieure.
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que cette circonférence a un point commun au moins avec T;

sans quoi, en effet, la plus grande distance de A aux points

de r serait inférieure à D, soit D—t. En ajoutant au domaine A

limité par r les points du cercle de rayon s et de centre A,_ et

certains de ces points sont extérieurs à A, on aurait encoie

un ensemble de largeur B; donc A ne formerait pas un ensemble

complet, r ne serait pas une orbiforme.
Ainsi la circonférence de rayon D et de centre A touche

l'orbiforme en un point B, la circonférence égale de centre B

passe par A. Ces deux circonférences se coupent en Cx, C2

et r est dans le fuseau limité par les arcs CXAC2, C2BCV

Soit M un autre point de r ; supposons-le situé dans le triangle
curviligne ABCV M ne peut être entre la corde AB et l'arc AB
de centre C2, car tous les points de cette région, étant distants
de moins de D de tous les points du fuseau, sont intérieurs à T.

Il résulte de là que la circonférence de rayon D décrite de M
coupe l'arc AC2 en un point a et l'arc BC2 en un point ß. T est

tout entière dans le triangle curviligne C^aß, aß contient d'ailleurs
des points de T, car M est distant de moins de D de tous les

points intérieurs au triangle Cxaß et des points des côtés

C^Aa, CvBß (a et ß exclus).
Traçons les arcs de rayon D et de centres a et ß joignant

respectivement BM et AM. Nous obtenons un pentagone II
limité par les arcs AM, MB, 5ß, 5a, aA.
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Si Tare aß fait tout entier partie de f, r ne peut pas avoir
de points extérieurs à II; d'ailleurs, II étant évidemment une
courbe orbiforme, T ne diffère pas de II. Si certains points de aß
ne font pas partie de r, l'ensemble complet limité par T pourra,
au voisinage de iff, sortir de II ; mais, en ce voisinage, il contiendra
tous les points de II et tous les points intérieurs à II.

Pour énoncer les résultats obtenus, rappelons que l'on
appelle tangente (ou droite d'appui) d'un contour convexe en

un point P toute droite passant par P et ne passant par aucun
point intérieur au contour. Une perpendiculaire en P à une
tangente en P est une normale en P.

Les tangentes en A et B aux arcs C^AC^ C-^BC^ sont des

tangentes à r ; AB est donc une normale double à r et sa longueur
est D. Les tangentes à T en M sont tout ou partie des tangentes
à II en ikf, de même pour les normales. C'est dire que les normales
en M h F rencontrent toutes l'arc aß. Donc aucune ne passera
par A, à moins que a ne soit en A, donc que M soit sur BCX.
Dans ce cas particulier, II devient un triangle curviligne U1

constitué par trois arcs égaux de rayon Z), décrits respectivement
des trois sommets, A, M, ß d'un triangle équilatéral pour centres,
et sous tendus par les côtés de ce triangle, r se réduit à si

tous les points de Aß font partie de T. Si tous n'en font pas partie,
r diffère de IIx; mais, en tout cas, r contient l'arc MB puisque
les points de MB ne sont pas à une distance supérieure à D
d'aucun des points du triangle C^Aß.

En résumé, si, de A, on abaisse une normale AB de pied P,
AB D et AB est aussi normale en A: Toute normale à une

orbiforme est normale double, la distance des deux points d'incidence
est la largeur de la courbe.

De A on peut toujours abaisser une telle normale puisque
la ou les normales en A répondent à la question. Si l'on a deux
normales AB et Aikf, toutes les droites intermédiaires sont aussi

normales et l'orbiforme se réduit, entre Bet M1 à un arc de cercle
de centre A.

A une courbe convexe quelconque on peut toujours mener
une tangente dirigée unique; pour une orbiforme on peut dire,
de plus, qu'elle a un seul point de contact. Si, en effet, elle

touchait la courbe en A et 5, les normales AA' et BB', de Ion-



— 261 —

gueur D, feraient connaître deux points A' et Br de l'orbiforme.
Ce qui est absurde, car AB' est plus grand que D. Les tangentes
et normales à une orbiforme sont donc déterminées par leur
inclinaison et varient de façon continue avec elle.

7. Considérons une orbiforme T analytique, ou à laquelle
du moins s'applique la théorie des développées. En chaque

point de T, le rayon de courbure compté vers l'intérieur de r
sera compris entre zéro et i), les valeurs extrêmes pouvant
être atteintes. La développée A de r sera une courbe à distance

finie, à laquelle, parallèlement à chaque droite, on ne pourra
mener qu'une tangente. En d'autres termes, les tangentes à A
de directions a et a+7r seront confondues, quel que soit a.
ylsera donc une courbe ayant un nombre impair de points de

rebroussements, trois au moins 1).

Prenons, par exemple, pour A, une hypocycloïde à trois
rebroussements; et soit F une de ses développantes. Soient co un
point décrivant A, cot la tangente en co affectée d'un sens variant
de façon continue avec co. Quand co a parcouru tout À, co t ne
revient pas à sa position primitive, mais dans le prolongement
de cette position primitive, le sens étant différent.

Quant au point M de co t qui décrit T, il vient, après cette
révolution, dans une position Mx\ un calcul immédiat montre
que M et M1 sont symétriques par rapport au point de co t qui
décrit celle des développantes de A qui est une hypocycloïde.

Quand co a décrit deux fois A, co t revient exactement à sa

position primitive et T se ferme. T a donc pour normale double
toute tangente à A, c'est une courbe parallèle à elle-même;
c'est une courbe doublement parallèle à l'hypocycloïde dont A est
la développée. Si donc r est convexe, r est une orbiforme.

On comprend ainsi qu'Euler ait été conduit à la notion
de courbe orbiforme par l'étude des développantes des courbes
triangulaires, c'est-à-dire des courbes, analogues à l'hypocycloïde
à trois rebroussements, formées par trois arcs de courbes convexes
raccordés par des points de rebroussement de première espèce.

i) J'omets les démonstrations rigoureuses; les faits énoncés dans les nos 7 et 8
ne seront pas utilisés, ils sont donnés pour familiariser avec la notion d'orbiforme.

L'Enseignement matliém., t. IX, fasc. 4. 5
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L'étude des courbes parallèles aux courbes triangulaires, ou
à 5, 7, points de rebroussement, y conduirait aussi.

Déformons une courbe triangulaire de façon que les trois
arcs qui la composent diffèrent de moins en moins des côtés
du triangle des rebroussements et prenons chaque fois la plus
petite développante orbiforme; si le triangle des rebroussements
est équilatéral, nous obtiendrons à la limite l'orbiforme équila-
térale, que nous avons déjà rencontrée et que nous avions désignée

par Il1. Pour II1? ce qui joue le rôle de la développée, c'est le

triangle AM$. Pour II, ce serait la figure, limite d'une courbe à

cinqs rebroussements, formée par les droites AB, Ba, aikT, ilfß, $A.
Si l'on imagine que, dans les déformations dont il vient d'être

parlé, les longueurs des arcs des courbes développées, triangulaire
par exemple, sont conservées, on peut établir une correspondance
entre les points co de ces différentes développées transformées.
Et si l'on imagine que, dans la déformation d'une développée
A, chaque tangente cùt emporte le segment cùM qui va du point co

de A au point M de sa développante T, on établit aussi une
correspondance précise entre les diverses développantes. En
particulier, dans le cas où A est triangulaire, les différentes
développantes triangulaires des A déformées se correspondent. Or,
transformons A en un triangle ABC, ce qui est toujours possible,
car entre les trois arcs a, à, c, on a évidemment des inégalités
telles que a<&+c. La développante triangulaire, dans le cas

du triangle ABC, est constituée par trois arcs de cercles de centres

A, B, C et tangents entre eux. Les points de contact de ces

cercles sont les points de contact avec AB, J5C, CA, du cercle

inscrit dans ABC. De sorte que les points de rebroussements
de cette développante partagent les arcs de la développée
en morceaux de longueurs connues p—a, p—6, p—c.

Ce que je veux faire remarquer surtout, c'est que l'orbiforme
équilatérale est la plus petite courbe convexe qui soit parallèle à la
courbe triangulaire formée de trois arcs de cercles égaux. De même,
II est la plus petite courbe convexe parallèle à une courbe à cinq
rebroussements formée par cinq arcs de cercle de rayons égaux.

8. Ce n'est pas seulement par la géométrie analytique que
la notion de courbe orbiforme s'est imposée aux mathématiciens;
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si les courbes parallèles aux courbes à 3, 5, points d'inflexions
et très voisines de ces courbes ont reçu une application mécanique,

car ce sont les formes de rails qu'on peut adopter pour qu'en

parcourant la voie ainsi construite, une locomotive se trouve
retournée bout pour bout1), les courbes convexes parallèles
à ces courbes-là sont aussi utiles industriellement.

Pour transformer un mouvement circulaire en mouvement

rectiligne, on emploie quelquefois une came agissant sur une

pièce -P, dont le mouvement rectiligne est guidé par l'un ou
l'autre des deux bords parallèles d'une entaille faite dans P,
entaille entre les bords de laquelle la came peut tourner. On voit
de suite que, si l'on veut que le mouvement puisse avoir lieu
dans les deux sens, auquel cas la came doit toucher constamment
les deux bords de l'entaille et si le mouvement de la came doit
être révolutif complet, il faut que cette came soit limitée par
une orbiforme.

C'est surtout à l'occasion de probabilités géométriques que
les orbiformes ont été étudiées. La plus simple des questions
de probabilités géométriques est celle de l'aiguillé de Bufïon:
On jette au hasard une aiguille sur un plancher, quelle est la
probabilité pour qu'elle rencontre une raie du plancher? Convenons

d'attribuer à un coup le poids n si l'aiguille rencontre
n fois les raies du plancher, soit parce que l'aiguille est très
longue par rapport à la largeur des lames du parquet, soit parce
que l'aiguille est courbe. Dans tous les cas on peut partager
l'aiguille en éléments de même longueur assez petite pour que
chaque élément puisse être regardé comme rectiligne et soit
moindre que l'écartement des raies du plancher. La probabilité
pour qu'un élément déterminé rencontre les raies est alors
la même pour tous les éléments et la probabilité pour tous les
éléments et la probabilité pour l'aiguille tout entière, étant la
somme de ces probabilités élémentaires, est proportionnelle a
la longueur de l'aiguille 2).

1) Et cela, parce que quand cù parcourt une fois A, co t ne revient à sa position
primitive qu'au sens près, n° 7.

2) Cette remarque capitale est due à Barbier qui a le premier établi la relation
entre les questions de probabilités et les propriétés des orbiformes Journal de Math.,
1860). Je tire cette référence d'un petit livre: Contribution à l'étude des courbes convexes
fermées, publié à la librairie Hermann par MM. Ch. Jordan et R. Fiedler, dans
lequel le lecteur trouvera des renseignements intéressants concernant les orbiformes
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D'autre part, la probabilité pour que l'aiguille, supposée
tombée dans une orientation déterminée, rencontre les raies ne

dépend que de l'écartement des tangentes à l'aiguille qui sont
parallèles aux raies.

Or, si l'aiguille est une orbiforme, cet écartement est
indépendant de l'orientation de l'aiguille, c'est le diamètre de l'orbi-
forme et par suite l'étude de cette forme d'aiguille s'imposait. Pour
une aiguille orbiforme, la probabilité ne dépend que du diamètre.

En rapprochant cela de ce qui précède, on voit que toutes
les orbiformes de même diamètre ont même longueur.

Nous retrouverons cela plus tard. Je reviens maintenant
à la question de M. Bricard.

9. Soit A un point du plan d'une orbiforme T de diamètre D.
Soit CA le plus petit cercle de centre A contenant T, soit RA

son rayon. CA a au moins un point commun avec T, sans quoi
on pourrait rapetisser CA ; soit B un point commun à CA et à T.
AB étant normale à f en B est aussi normale à f en un autre
point C, situé sur la demi-droite indéfinie BA d'origine B,
à la distance D de B.

Si A est intérieur à E, ces points ont la disposition BAC et

Ba<D; si A est extérieur, on a la disposition BCA et BA>D.
Plaçons-nous dans la première hypothèse, puisque nous voulons
chercher le minimum de BÀ, pour A variable. Dans ce cas,
le cercle cA de centre A et passant par C, dont le rayon rA égale

D—Ba est le plus grand cercle de centre A qui soit intérieur à T.
La recherche du plus petit cercle CA est équivalente à la recherche
du plus grand cercle cA ou encore, puisque BA+rA D, à la
recherche du minimum de BA—rA. Nous allons interpréter cette
différence.

Soit A la circonférence de centre A et de rayon p. Etablissons

sur A et r le même sens de parcours direct, les tangentes à A et

à T sont par là-même dirigées. Etablissons entre A et f une
correspondance par tangentes dirigées parallèles et soit s le

maximum de l'écartement des tangentes correspondantes de A
et de T. Si l'on a p> RA, on a évidemment s p—rA>RA—rA;
si l'on a p <rAl on a

s Ra-P >
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Enfin, pour RA> p>rA, la valeur de s est le plus grand des deux
nombres RA—p et p—rA. Il résulte de tout cela que le minimum

RA-rA • •
RA + rA D

de £ est qui est atteint pour p — -•
2 D

Si A est extérieur à T, le minimum de s est supérieur' à -
et il est obtenu encore pour p - s comme on le voit facilement.

Donc, trouver le minimum de RA revient à trouver le

minimum de s c'est-à-dire à trouver la circonférence qui diffère
le moins de r quand on établit une correspondance par
tangentes parallèles dirigées entre F et cette circonférence. C'est un
problème à la Tchebychefï.

Représentons la courbe r par ses tangentes, comme on le fait
toujours quand il s'agit d'une courbe convexe. Soit

x cos (p+y sin (p—p 0 (1)

i • • .71l'équation de la tangente dirigée à f de direction 9+^ • P est

une fonction / (9) bien déterminée et continue. Si l'origine des

coordonnées est intérieure à T, p est constamment positif. Dans
tous les cas, l'équation p /(9) peut être considérée comme
l'équation de T.

Dans le même système de coordonnées polaires tangentielles,
l'équation d'un cercle de rayon R est

p R + a cos (p+b sin (p, (2)

a et b étant deux constantes. Pour ce cercle A, la valeur de s est
le maximum de la différence

|/(9)-(R+a cos (p + b sin cp) \ | S(<p, R, a, b)\. (3)

Donc la recherche du minimum de s est exactement équivalente
à la recherche de la meilleure approximation avec laquelle la
fonction f(cp) peut être représentée par une expression de la forme (2).

C'est le problème même de Tchebychefï.

10. Tchebychefï a surtout considéré le cas de l'approximation
d'une fonction continue par un polynôme. Ses raisonnements ont
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été simplifiés et précisés par MM. Kircherberger et Borel1). Le
cas de l'approximation par des suites trigonométriques finies a été
considéré par M. J.-W. Young2) et par M. Fréchet3). Mais il
sera plus simple ici de prouver directement les quelques résultats
qu'on utilisera.

Remarquons d'abord que l'on a

f{(p+n)+f{cp) Ü, (4)

en supposant l'origine intérieure à F, ce que nous réaliserons
toujours. Donc

ô(cp, F, a, b) + ô((p+n, R, a, b) D—2R

Si donc, quand 9 varie, a, à, R étant fixes, S (9, F, a, b) atteint
la limite supérieure m, il a pour limite inférieure — n D — 2R — m.
Et par suite, en prenant 2R Z), nous rendons aussi petit que
possible le plus grand des deux nombres m et n. En d'autres
termes, pour a, b fixes, c'est-à-dire le centre A d'un cercle A étant
fixe, on obtient le minimum du maximum p de | S (9, F, a, b) |,

c'est-à-dire la circonférence A différant le moins de F au sens

D
précédemment indiqué, en prenant R - et alors S varie

entre — p et + p. Résultat déjà obtenu et, en somme, par le

même raisonnement.
Prenons ainsi i?, et faisons varier a et b. Si l'un d'eux, ou tous

deux, augmentent indéfiniment en valeur absolue, p augmente
indéfiniment. Donc le minimum de p, pour a, b variables,
s'obtient pour des valeurs finies de a et b.

Cette valeur minimum de p est positive, sans quoi / (9) serait
de la forme (2) et F serait une circonférence, cas que l'on peut
laisser de côté. Alors donc, pour les valeurs minimisantes de a

et à, S varie entre p et — p et l'on a

ô (cp +n) + ô (9) 0.

1) Voir l'exposition qu'en a donnée M. Borel dans ses Leçons sur les fonction-
de variables réelles et aussi la manière originale grâce à laquelle M. de la Vallées
Poussin retrouve et complète les résultats de Tcliebyclieff (Bulletin de VAcadémii
royale de Belgique, 1910, p. 809 et suiv.).

2) Transactions of the American mathematical Society, 1907
3) Annales de l'Ecole Normale supérieure, 1908.
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Soient deux valeurs, oc et oc+tt, de 9 annulant S. Dans

(a, a+7t) S atteint soit la valeur fji, soit la valeur — q, ceci est

évident; je dis qu'en réalité, il atteint les deux. Supposons en

effet que S varie entre q et —m, avec m <q, et modifions a et

b de façon à remplacer a cos 9 + fr sin 9 par a cos 9-\-b sin 9 +
X sin (9 —oc); S deviendra

ô —X sin (9 — a) ôf

et §' varie entre p/ et m' avec p/<q, m<mr <\±, si X est positif
et assez petit. Ainsi p, n'aurait pas sa valeur minimum pour les

valeurs considérées de a et &, ce qui-est contraire à l'hypothèse.
Traduisons le résultat en disant que, pour les valeurs minimisantes

a et &, S (9) atteint ses valeurs extrêmes + p. et —y dans

tout intervalle (0, 0 + tc) d'étendue n.
La réciproque est vraie: si S (9) atteint ses valeurs extrêmes

-\-m et —m dans tout intervalle (0, 0 + 7t), pour tout autre système
de valeurs de a et à, | S (9) | atteint des valeurs plus grandes que m.
En effet, modifier a et b revient toujours à remplacer S (9) par
une expression de la forme

<5 (9) +A sin (9— a) <T(9),

et puisque S (9) atteint -\-m et —m dans (a, a+7r), dans cet
intervalle S7 atteindra des valeurs supérieures km si X est positif,
des valeurs inférieures à —m si X est négatif.

Nous pouvons conclure: Il existe toujours une circonférence A
qui, dans la correspondance par tangentes parallèles dirigées,
diffère moins que toute autre d'une orbiforme donnée T. La
circonférence CA concentrique à A est la plus petite de toutes celles

qui enferment T, nous l'avons appelée la circonférence circonscrite ;
la circonférence cA concentrique à A est la plus grande des

circonférences intérieures à T, c'est la circonférence inscrite. Si l'on
considère deux moitiés correspondantes de CA et cA [c'est-à-dire
données par les mêmes valeurs (a, a+7r) de 9], il y a toujours
sur chacune de ces demi-circonférences des points de T.

11. Ces propositions correspondent exactement à celles des
nos 1 et 2; elles sont un peu plus complètes, mais s'appliquent
seulement aux orbiformes. Quant à la similitude des raisonne-
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ments, qui va souvent jusqu'à l'identité, il est inutile d'y insister
davantage.

Soit l'équation d'une tangente en A à une orbiforme r
x cos cp-hy sin cp— p — 0; (1)

soit

— x sin (p+y cos cp — q — 0, (5)

l'équation de la normale correspondante, p et q sont des fonctions
continues de 9 (n° 6). La tangente voisine est

x cos (cp + ôcp)+y sin (ç + ôcp) — p — ôp 0 (6)

le point commun à (1) et (6) est aussi sur la droite

1 — cos ôcp Sp
— x s m cp +y cos cp —p 0 (7)

sin ôcp sin ôcp

Faisons tendre Sep vers zéro, le point commun aux deux tangentes
ô pdoit tendre vers A, c'est-à-dire vérifier (5), donc — tend vers q.
ô cp

Ainsi: la fonction p—f(cp) définissant une courbe orbiforme est

continue et a une dérivée continue.
Cette fonction doit vérifier la condition

/o +7t) +/(<?)= D(4)

et une autre condition qui exprimera la convexité de l'enveloppe
de (1).

Les coordonnées du point A sont

x p cos cp— p' sin cp, y p sin cp+p' cos cp;

donc, le segment OA projeté sur la direction ^ donne

p cos {(p—^)—pr sin (cp—if/),

et, pour la convexité, on doit avoir

p(\ I/) >p(<p)cos(\l/-<p)+p'(<p) sin (i (8)

Pour la commodité, posons D 2r, p ft+r et représentons
h (9) par une courbe L comme si A et cp étaient deux coordonnées
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cartésiennes rectangulaires. Supposons, de plus, que 0 est le

centre du cercle circonscrit à T, alors h varie entre et—^x.

La condition (8) exprime alors que la courbe L est tout entière

au-dessus de chaque sinusoïde de la forme

h =A sin cp + B cos cp — r, (8')

qui lui est tangente. Et, comme conséquence de (4) et (8), on
voit que L est tout entière au-dessous de chaque sinusoïde de la

forme
h A sin cp +B cos (p+r, (8")

qui lui est tangente 1).

Soient a un point où h (9) 0, ß la plus petite valeur
supérieure à a où h (9) ±(jl et supposons que h (ß) + [x. L'arc
de L correspondant à oc^9^ß est au-dessus de la sinusoïde (8')
qui lui est tangente au point 9 ß, on a donc

h(cp) cos ((p—ß)—r,

d'où, en faisant 9 oc,

r
cos (ß — a) ^ •

r + fi

Appelons cos 6 le second membre, 9 étant aigu. On a ß — a^ 6.

Soit y la plus petite valeur supérieure à ß et telle que
9 (ï) ^ — [x. Quand on passe de ß à y, h passe de +(x à 0,
puis de 0 à — fx; en utilisant comme on vient de le faire la
sinusoïde (8') et de façon analogue (8"), on trouve que y— ß^20.
Nous savons que y est inférieur àa-f-7r. Je dis qu'entre y et
oc+Tz il y a encore un point S où h (S) + (x. Sans quoi en effet
il n'y aurait pas de tel point entre y—9 et y+Tc soit dans un
intervalle d'étendue supérieure à tc, ce qui est impossible. S existe
donc et l'on a

ô— Œ +71 ~ ô ^0 ;

d'où 71

OL+n — a > 69, 9 < - •

~ ~ 6

i) Ceci revient à dire que si l'on connaît un point A et une normale dirigée en A
d'une orbiforme r de diamètre D, on en déduit le second pied B de la normale AB et r
est située entre les tangentes en A et B et aussi entre les circonférences de rayon D
et de centres A et B. Comparer avec le n° 6.
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Donc
71 / 3

r ^ (r + p) cos — (r+p) -—
6 2

d'où pour le rayon r+p. du cercle circonscrit:

2r D
r+ii S —,= —

V 3 V3
D

Le plus grand cercle circonscrit est donc de rayon -j=
; mais

cette valeur n'est atteinte que si toutes les inégalités précédentes
se changent en égalité, auquel cas L est formée de sinusoïdes (8')
et (8//). Donc, en prenant a 0, on a

D -
p (cp) —— cos (p de 0 à — ;

V 3

D 71 271

p(<p) --ßsm cp +D,de- à ;

D 5n\ 2n
P(<P) ~-ßcos^ - -jj,deà ;

les valeurs non écrites de p (cp) résultant de suite de la condition

(4). Or on reconnaît la définition de p (9) pour Torbiforme
équilatérale. C'est donc pour elle et pour elle seule que le
maximum du cercle circonscrit est atteint.

12. On pourrait traiter de même le cas des ensembles de

l'espace, les modifications à apporter à ce qui précède sont banales.
Seules les considérations du numéro précédent doivent subir des

modifications assez notables. Mais je ne veux pas traiter à

nouveau la question de la sphère circonscrite, je dis seulement quel
sera ici le problème d'approximation de Tchebycheff.

L'équation (1) sera remplacée par

x cos cp sin 6+y sin cp sin 6 + z cos 9—p 0
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où p sera une fonction continue de 0, 9, à dérivées partielles du

premier ordre continues. Et nous aurons à représenter au mieux
cette fonction p (9, 0) par une expression de la forme

R — [A cos cp sin d+B sin cp sin 0 + C cos 0].

Je signale encore la nouvelle forme que prendra la relation (4):
si Ton suppose que p (9, 0) est définie pour 0^9^tc et quel que
soit 0,

p(cp, 0)+p(cp, 0 + 7i) D.

Cette relation montre que le contour apparent en projection
d'une surface orbiforme est une courbe orbiforme. De là il
résulte que ce contour apparent en projection est de longueur
indépendante de la direction des projetantes. Minkowski1),
dans un ingénieux petit Mémoire, a démontré la réciproque.
C'est le seul travail que je connaisse sur les surfaces orbiformes.
Au point de vue géométrique, celles de ces surfaces qui sont

analytiques doivent mériter d'être étudiées. Leur surface des

centres doit être bien curieuse; la correspondance qui existe entre
leurs lignes de courbure doit aussi être l'origine de faits géométriques

intéressants. J'ai dit que le problème du maximum du

rayon de la sphère enveloppante se traitait comme le problème
plan analogue; il y a cependant une différence à signaler:

Il existait une seule forme de courbe orbiforme donnant au
rayoïi du cercle circonscrit sa valeur maximum; dans l'espace,
il existe une infinité de surfaces orbiformes inégales donnant au
rayon de la sphère circonscrite sa valeur maximum. En voici la
raison: une courbe orbiforme de diamètre D est entièrement
déterminée quand on l'assujettit à passer par les trois sommets
d'un triangle équilatéral de côté D; au contraire une surface
orbiforme de diamètre D n'est pas définie par la seule condition
de passer par les sommets d'un tétraèdre régulier d'arête D.

13. Nous avons déjà remarqué que toutes les orbiformes de
même largeur D ont la même longueur. Comme parmi ces
orbiformes se trouve la circonférence de diamètre D, elles ont toutes

i) Œuvres, t. II, p. 277.
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une longueur égale à izD. Du théorème des isopérimètres, il
résulte alors que la circonférence de diamètre D est, de toutes les

7lD2
orbiformes de même largeur, celle qui a la plus grande aire,—— ;

cette remarque conduit naturellement à rechercher quelle est
l'orbiforme de largeur D qui a la plus petite aire.

Pour traiter ce problème, j'emploierai ici une méthode purement

géométrique qui nous permettra de démontrer à nouveau
que toutes les orbiformes D ont même longueur que celle de ces
orbiformes qui est circulaire et qu'elles ont une aire plus petite
qu'elle.

Soient ax 0, a2, oc3, un ensemble dénombrable de nombres,

positifs et inférieurs à n, partout dense dans (0, tu); je pose
oc'i af+7u. A chaque entier i, j'attache les deux tangentes Tu

Tu de directions af et <xh d'une orbiforme donnée. Cette orbi-
forme sera parfaitement déterminée par la connaissance de cette
infinité dénombrable de tangentes; sa longueur et son aire
peuvent être considérées comme des fonctions des nombres ocf.

Les problèmes de Calcul des Variations relatifs aux orbiformes
peuvent ainsi être considérés comme des questions de minimum
pour des fonctions des variables oct. Cette transformation banale
est ici avantageuse.

Nous allons, pour une orbiforme quelconque, calculer L et S

comme limites des nombres analogues relatifs au polygone
circonscrit IIp formé par les tangentes 7\, 7\, T2l T2, Tpl Tp.
On passe de IIpk np+1 en enlevant de IIp deux triangles; pour
préciser, supposons que ap+1soit compris entre les deux nombres

ctg et oik de la suite ocx, a2, a„, oc1.

Les tangentes Tg et T'g, distantes de la largeur D de l'orbi-
forme et les deux tangentes Tk et Tk, distantes aussi de D,
forment un losange dont les points A et A' de rencontre de Tg et

Tk. de Tg et de Tk sont deux sommets opposés. De sorte que AA'
est la bissectrice de Tg et de Tk, de Tg et de T'h dont la direction est

Vtgfc
2 .2/

Si Tp+1 rencontre Tg en M et Tk en N et si, de même, Tp + 1

rencontre Tg et T'k en M' et N\ MM' et NN' sont les bissec-
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trices extérieures des angles AMN, A'M'N'\ ANM, A'N'M'.
Les deux triangles AMN, A'M'N' sont donc homothétiques, le

centre d'homothétie étant le centre à la fois du cercle exinscrit
dans AMN, suivant le côté MN, et du cercle analogue relatif
à A'M'N'.

La longueur MN+M'N' est la
base N'm d'un triangle semblable
à la fois à OMN et à 0M'N' et

dont la hauteur est la somme D
des hauteurs de ces triangles.
MNN M'N* a donc une valeur

que l'on peut calculer dès que
l'on connaît ong, ocp+1, cck et qui
est indépendante de celle des

orbiformes de largeur D que l'on
considère.

De même AM+A'M' et AN+A'N' ont des valeurs connues,
celles des longueurs des côtés am, aN' d'un triangle 9p semblable
à AMN et de base MN+1MN'. Donc, quand on passe de Up
à IIp+1,on diminue le périmètre du polygone circonscrit d'une
longueur bien déterminée Dsp. La longueur de II p est donc égale à

Fig. 9

longueur de ïl2 —D (e2 +s3 + +ep_1);

elle est donc la même pour toutes les orbiformes de largeur D et,

par suite, celles-ci ont toutes même longueur; résultat déjà connu.

14. Evaluons de même la différence entre les aires de IIp+1
et IIp; c'est-à-dire la somme des aires des triangles AMN,
A'M'N'. Cette somme est égale à l'aire du triangle 9p déjà
considérée, semblable à AMN et de base MN+ M'N', multi-

2 9 MN
pliée par XD + (1 — AJ si An est le rapportr ^ P p p ^ MN+M'N'

Le triangle 9P est indépendant de l'orbiforme considérée;
c'est-à-dire de la forme particulière du polygone IIp; il en est de
même de son aire. La seule quantité- qui varie d'une orbiforme
à l'autre c'est la grandeur de la quantité Ap qui peut varier de 0
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àl. Or, le multiplicateur [X^-f(l—-Ap)2] est minimum pour \p =—,

c'est-à-dire MN — M'N' et maximum pour \v 0, ou 1, c'est-
à-dire MN ou M'N', égal à zéro. Les deux limites entre lesquelles
peut varier l'aire de ITp sont donc, en désignant par vjp l'aire
de 9P.

aire de Iî2 — — (rj2 + rj3 + + rjp_1)

et
aire de JI2 - (rj2 +rj3 + +rjp_t)

Et puisque l'aire de l'orbiforme est la limite de l'aire de IIp, les

maximum et minimum de cette aire seront

aire de 772 {rj2 + +
« 2

et
aire de n2- (rj2+fi3 + );

du moins s'il existe bien des orbiformes pour lesquelles ces limites
sont atteintes.

Le maximum est atteint pour une orbiforme telle que l'on ait
constamment MN — M'N'; alors les deux triangles AMN,
A'M'N' sont égaux et les deux circonférences de centre 0

exinscrites respectivement dans AMN et A'M'N' étant de

même rayon, sont confondues. Le point 0 est donc également
distant de Tg, T'g, Tk, Tk, Tp + 1, Tp+1 ; par suite, en raisonnant de

proche en proche, on voit qu'il existe un point 0 également distant
de toutes les tangentes à l'orbiforme qui est donc une circonférence.
Résultat connu.

15.1 Pour appliquer à la recherche du minimum de l'aire le

procédé qui vient de nous donner son maximum, il faut d'abord
qu'un choix convenable des premiers nombres de la suite oc3,

a2, a3, nous conduise à un polygone II, le même, à la position
près, pour toutes les orbiformes de longueur D; il faut ensuite

que, à partir du passage de II au polygone suivant, la condition
du minimum MN.M'N' 0 soit constamment remplie dans

chaque passage de 11^ à IIp+1.

i) La rédaction de ce paragraphe 15 n'est pas celle gui est parue dans le Journal
de mathématiques pures et appliquées, mais une rédaction nouvelle. Voir la note *) de
la page 251.



— 275 —

Prenons a4 (p, oc2 <p + ~, <*3 9 + -y ï n3 est un hexagone

ABCDEF dont tous les angles sont de 120° et qu'on obtient,

par exemple, en coupant le losange II2, formé de deux triangles
équilatéraux accolés par leurs bases AD, par des parallèles à AD.
De là résulte que AB CD, et, plus généralement, que les côtés

de rangs 1, 3, 5 de ÏI3 savoir AB, CD, EF sont égaux; de même
les côtés de rang pair sont égaux.

Si, pour cp <p0, n3 n'est pas un hexagone régulier, c'est,

par exemple, que les côtés de rang impair sont plus grands que
ceux de rang pair. Faisons varier cp de façon continue de cp0 à

n n A

9o+ —• Pourcp0 + —, nous retrouvons le meme n3, mais les

côtés qui étaient de rang impair sont devenus de rang pair, et

inversement; de sorte que ce sont maintenant les côtés de rang

pair qui sont les plus grands. Il y a donc entre cp0 et 9o + "^ une

valeur de cp pour laquelle n3 est l'hexagone régulier dont
l'apothème est la moitié de D. C'est cette valeur cp que nous choisissons;

le polygone II3 est alors le polygone II que nous cherchions.
Si, dans le passage de II3 Il à IT4, la condition MN.M'N'

0 est réalisée, c'est que l'une des tangentes T4 ou T4 passe par
l'un des sommets de II3; soit par A. Alors A appartient à l'orbi-
forme, AB et AF sont deux tangentes en i à cette courbe; les

normales correspondantes AE, AC nous fournissent deux autres
points F et C de l'orbiforme. Celle-ci est donc l'orbiforme équi-
latérale formée des arcs de cercle de centres A, C, E et sous-
tendus par CE, EA, AC. D'ailleurs, pour cette courbe, de deux
tangentes parallèles, l'une passe nécessairement par A, C, ou E,
donc la condition du minimum est remplie dans le passage de Ilp
à np+1 à partir de p — 3. C'est donc l'orbiforme équilatérale et
celle seule qui donne le minimum de l'aire 1).

i) Dans le texte publié dans le Journal de mathématiques pures et appliquées,
il était affirmé inexactement que la condition du minimum pouvait être remplie
dès le passage de II2 à II3. En se reportant à ce texte, on verra que la phrase qui le
résumait dans le Compte rendu de la Société mathématique de France du 24 juin 1914
ne m'avait pas parue claire. Mais les explications que j'avais ajoutées étaient inopérantes
et ne rendaient mon erreur que plus tangible. La correction que m'avait indiquée
Bonnessen était un peu moins simple, mais peu différente en somme de celle utilisée ici.
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Ainsi Vorbiforme d'aire minimum est Vorbiforme équilatérale;

16. Présenté sous la forme précédente, l'artifice paraît très
spécial et basé entièrement sur le fait que toute normale à une
orbiforme est une normale double. On peut lui donner une forme
qui le rend utilisable dans des cas assez variés.

Supposons que nous ayons à chercher le minimum d'une fonction

de contour F (c), qui conserve la même valeur pour deux
contours homothétiques et dont le minimum ne puisse être
atteint que par un contour convexe. Il sera alors tout naturel
de déterminer ces contours par leurs tangentes de direction
ocx, oc2, les ocp étant des nombres donnés partout denses dans
(0, 2tz). Les p premières tangentes forment un polygone IIp;
le passage à Hp+1 fera passer la fonction de F (IIP) à F (IIP+1) et,
grâce à la condition d'homothétie, il arrivera souvent que le

gain, F (11^)— F (IIP+1), le meilleur qui puisse se réaliser, soit
indépendant de 11^; on déterminera donc alors facilement les

tangentes successives, donc le contour minimisant.
Pour retrouver ce que nous avons fait précédemment, il

suffit de rechercher, pour les orbiformes, le maximum et le
L2

minimum du quotient—, du carré de la longueur à la surface;
S

dans ce cas, pour tenir compte de la définition de l'orbiforme,
on déterminera toujours simultanément les tangentes de directions

ocp et ocp-\-7z.

J'ai montré, dans la Note citée, qu'ainsi présenté, l'artifice
réussit très bien pour le problème des isopérimètres, problème
qu'il faut ici énoncer comme étant encore la recherche du mini-

L2
mum de — ; mais cette fois pour toutes les courbes possibles.

On voit, qu'en somme, on trouve avantage à ne pas raisonner
sur une intégrale, comme on le fait ordinairement dans le calcul
des variations, mais à raisonner sur une expression construite
à l'aide de plusieurs intégrales.

i) Le calcul effectif de s et tj fournit des identités intéressantes, mais qui ne diffèrent
pas de celles que donnent les calculs classiques de IL
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