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CuapriTre II1

Sur quelques questions de minimun relatives aux courbes
orbiformes et sur leurs rapports avec le Calcul des variations

Pour les problémes irréguliers, la méthode directe s’impose.
On trouvera de tels problémes dans le mémoire reproduit plus
bas, et en particulier la démonstration de ce théoréme: de toutes les
orbiformes de méme longueur, c’est orbiforme équilatérale qui a la
plus petite aire. J’avais énoncé ce théoréme, sans le démontrer,
a la séance du 1er avril 1914 de la Société Mathématique de
France (voir Comptes rendus, année 1914, page 45); je l'avais
démontré & la séance du 24 juin 1914 et ¢’est le résumé de cette
démonstration qui constituait la fin de Iarticle précédemment
reproduit!). Ces publications ne parurent que pendant la guerre
et ne purent pénétrer en Allemagne que vers 1919; aussi c¢’est
tout a fait indépendamment que M. Blaschke s’était posé pen-
dant la guerre cette méme question de minimum et qu’il avait
obtenu le méme résultat, lequel a été quelquefois appelé théoréme
de M. Blaschke?).

Dans larticle « Théoreme sur les courbes et les surfaces
fermées», paru en 1914 dans les Nouvelles Annales de Mathémati-
ques, M. R. Bricard traitait la question suivante: « Quel est le plus
petit rayon R que l'on puisse choisir tel que tout ensemble,
formé de points d’un plan dont les distances mutuelles soient
au plus égales & un nombre donné D, puisse étre enfermé dans
une circonférence de rayon R». En d’autres termes, supposons
que, dans un morceau de carton, par exemple, nous découpions
un cercle, quel rayon faudra-t-il donner & ce cercle pour qu’avec
le «couvercle », ainsi obtenu, nous puissions recouvrir tous les
ensembles considérés, que 'on appelle les ensembles de largeur D.

1) Pages 233 a 236. ;
2) Le texte qui suit est paru sous le titre: Sur quelques questions de minimum

relatives aux courbes orbiformes et sur leurs rapports avec le calcul des variations
dans le Journal de mathématiques pures et appliquées, 8¢série, t. IV, 1921, pp. 271-300.
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Cette question ainsi que son analogue relative & I'espace est
résolue trés simplement par M. Bricard; elle avait été traitée
antérieurement par M. H. Jung dans deux articles du Journal
de Crelle, Bd 129 et 137. Elle a fait depuis I'objet d’une courte
Note de M. J. Pal (Nouvelles Annales, 1915).

[’article de M. Bricard appela mon attention sur la question,
qui me fournit la matiére de la communication, sorte de petite
conférence, que je fis & la Société mathématique, le 1¢* avril 1914,
a Toccasion de la réunion & Paris de la Conférence internationale
de I’Enseignement mathématique?l). La rédaction de cette confé-
rence, faite & I'époque, constitue les douze premiers numéros
de ce Mémoire?2); ce quiexplique le mode d’exposition de certains
paragraphes. J'y ai ajouté le développement d’une autre commu-
nication faite peu aprés a la Société mathématique ). Javais
d’abord eu l'intention de réunir ces remarques avec d’autres
analogues concernant des questions qui présentent ce caractere
commun de relever du Calcul des variations et de n’appartenir
cependant pas aux types de problémes étudiés dans ce calcul;
celles que je considére ici suffiront pour faire comprendre de
quels problémes 1l s’agit. Les méthodes classiques, convenable-
ment modifiées, s’y appliquent beaucoup plus souvent qu’'on ne
serait tenté de le croire 4); c’est un point qui ne ressortira pas
de ce Mémoire ou je traite les questions surtout par des procédés
de géométrie élémentaire, mais que je tiens & indiquer pour que
le lecteur ne croie pas que I’analyse classique le laisse compléte-
ment désarmé en face des problemes que je vais indiquer.

Revenons au probléme de M. Bricard et considérons un
ensemble £ de largeur D; le plus petit couverele qui lui convienne
a un rayon R (F), fonction de I'ensemble E. C’est le maximum
de R (E) qu’il faut chercher; et il suffit évidemment de considérer
le cas ou 'ensemble £ est une courbe convexe € de largeur D.
Nous avons donc a rechercher le maximum d’une fonction de
ligne, R (C), d’une fonctionnelle comme on dit maintenant.

1) Comples rendus des séances de la Sociélé Mathématique de France, année 1914,
PP. 249-250.

2) C’est-a-dire, I’article reproduit ici, pp. 246-276.

3) C’est la fin de la communication reproduite ici pages 233 a 236.

4) Ceci deviendra plus fréquent encore quand on utilisera les résultats du travail
fondamental de M. ToNELLI: Sur une méthode directe du Calcul des variations ( Rendi~
conti del Circolo Mathematico di Palermo, t. XXXIX).
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Seulement, cette fonctionnelle ne s’exprime pas a I'aide d’une
intégrale comme celles auxquelles on se borne dans le Calcul des
variations, |

J = [f[x, y(), y'(x)]dx,

par exemple. Quelle que soit 'importance des fonctionnelles du
type J, on voit que des questions trés simples conduisent & en
considérer d’autres.

Aprés les fonctionnelles du type J, celles qui se présentent de
suite & I'esprit sont celles qu'on obtiendrait en prenant une fonc-
tion ordinaire composée a l'aide d’intégrales J; un produit ou
un quotient d’intégrales, par exemple. Je ne crois pas que les
problémes de ce type aient été encore abordés, bien que M. Fré-
- chet 1) se soit occupé avec succes de la différentiation des fone-
tionnelles les plus générales. La méthode que j’indique pour trai-

ter le probléme des isopérimetres, traduite analytiquement, appa-
. . J?

rait comme la recherche du minimum d’une expression 7 elle
1

sappliquerait aussi & la recherche du minimum d’autres expres-
sions, trés particuliéres & la vérité, formées & I'aide d’intégrales.

Dans le probléme de M. Bricard, la fonction R (C) dont on a
4 chercher le maximum ne s’exprime d’aucune maniére a I'aide
d’intégrales J; je montre qu’elle n’est cependant pas nouvelle.
Si, en effet, p (o) est la distance de I'origine a la tangente a C de

D - : .
direction ¢, R (C) — 5 est la meilleure approximation, au sens

de Tchebycheff, de p (¢) par une expression
A cos ¢ +B sin ¢ +D.

Et la recherche du maximum de R (C) est celle de la limite
supérieure de la meilleure approximation pour la classe des fonc-
tions p (@) considérées. Il s’agit donc d’une question analogue &
celles qui ont fait récemment 'objet des études de MM. Dunham
Jackson, Serge Bernstein, de la Vallée Poussin.

1) Sur la notion de différentielle d’une fonction de lignes (Trans. of the Am. Madth.
“Sec., 1914).
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Seulement, nous avons & calculer ici une limite exacte de
Papproximation et non pas seulement l'ordre de grandeur de
cette approximation; cette question d’approximation conduit
donc a rechercher le minimum d’une fonctionnelle qui n’est pas
une intégrale J1).

Dans la recherche de ce maximum, on peut se borner & la
considération de certaines courbes convexes C, déja rencontrées
par Euler, qui jouissent de la propriété curieuse d’avoir la méme
largeur dans toute direction, c¢’est-a-dire que chacune de leurs
normales est normale double.

Ces orbiformes, comme on les appelle, ont toutes la méme
longueur que la circonférence de méme largeur. Les orbiformes
de largeur D ayant toutes la méme longueur w0, on est
naturellement conduit & comparer les aires de ces orbiformes;
¢’est, on le sait & I'avance, Iorbiforme circulaire qui a l'aire
maximum ; mais quelle est I'orbiforme d’aire minimum ? Cette
fois nous avons a rechercher le minimum d’une fonctionnelle
de la forme J; mais, tandis qu’il s’agit d’une intégrale dont le
calcul des variations classique nous fournirait le maximum, c¢’est
du minimum dont nous nous occupons. On est donc certain &
'avance que ce minimum sera obtenu pour une fonction fron-
tiére du champ fonctionnel envisagé; mais cette remarque est
trés insuffisante.

Quand il s’agit d’une fonction de points, de f (z, vy, 2z), par
exemple, savoir que le minimum est obtenu sur la frontiére du
domaine, ¢’est savoir que le probléme est d’un degré moins diffi-
cile puisqu’on se trouve ramené a la recherche du minimum
d’une fonction ¢ (u, ¢) des deux variables définissant un point de
la surface frontiere. |

Quand il s’agit d’une fonctionnelle J (C), définie dans les
champs que 'on considere ordinairement et auxquels s’applique
I'analyse classique, on a un résultat de méme nature; car le
calcul de la variation de J montre que C ne peut étre extrémale
que s1, sur chacun de ses arcs, si petit qu’il soit, on apercoit que
c¢’est une courbe frontiere. Par exemple, si le champ fonctionnel

1) Comparer avec les questions d’approximation traitées dans mon article: Sur
la représentation trigonométrique approchée des fonctions satisfaisant 4 une condition
de Lipschitz (Bull. de la Soc. math. de France, 1910).
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est défini par

v
=~

S,y ¥, ¥

on devra avoir en tout point

fl, vy, v, y) = 0;

et y est & choisir dans une famille de fonctions dépendant de
constantes arbitraires; nous avons affaire & un probléme de
minimum d’une fonction de plusieurs variables.

Dans le cas actuel on a encore cette propriété que la courbe
extrémale C est frontiére du champ fonctionnel, en chaque point
si je puis dire !). Et le minimum s’en déduit facilement; il est
donné par Vorbiforme équilatérale, c’est-a-dire par la courbe
formée par les trois arcs de circonférences décrits des trois som-
mets d’un triangle équilatéral comme centres, chacun d’eux étant
sous-tendu par le cOté opposé & son centre.

On voit que la géométrie conduit tout naturellement a la
recherche de maximum et minimum qui sont obtenus pour les
courbes ou fonctions qui sont, en tout point, a la frontiere du
domaine fonctionnel considéré.

Sans sortir de lordre de questions considérées ici, voici
deux probléemes du méme genre. Quelle est, parmi toutes les
orbiformes de largeur D qui admettent un couvercle circulaire
de rayon p, celle qui a la plus petite aire ? La solution du pro-
bléme de M. Bricard montre qu’il faut supposer p compris entre

D
— et la solution est alors donnée par I'orbiforme construite

\/_ 7
de la facon suivante: Prenons trois points A, O, A’ en ligne
droite, AO = D—p, OA"' = p, AA" = D et, de A’ conme cen-

tre, décrivons un arc de cercle AB qui sera tel que OB = OA’,
T ;

vu de O sous un angle ¢ inférieur a S . Puis, de O comme centre,

tracons deux arcs de cercle aA, Bb, vus de O sous l'angle

1 o
> <§ — ) La courbe aABb formée de trois arcs de cercle est le

1) C’est 14 une propriété que I’on pourrait obtenir grace & des modifications assez
profondes de T’analyse classique et que je démontrerai ici par des artifices géométriques,
Je compte revenir ailleurs sur ce point.
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sixitme de Porbiforme cherchée, laquelle admet Oa et Ob pour
axes de symétrie !).

Guidé par ce qui suit, on démontrera facilement ce résultat;
voici une autre question dont, au contraire, j’ignore la solution.
On peut la formuler comme il suit. Dans le probléme de M. Bri-
card, on se demande quel est le plus petit couvercle, parmi ceux
qui conviennent & la fois a tous les ensembles de largeur D, et
qui sont de forme donnée: la forme circulaire. Plus généralement
demandons-nous quel est, de tous les couvercles de forme arbi-
traire qui conviennent pour tous les ensembles de largeur D,
celui de plus petite aire ou de plus petit périmetre 2).

1. Considérons un ensemble £ de points; si P et Q sont deux
points de E, 'ensemble des distances PQ a une borne supérieure:
cette borne s’appelle I'élongation ou le diamétre de I’ensemble FE.
Quand ce diameétre est fini, £ est dit borné.

Nous nous proposons de trouver la plus petite valeur de R,
telle que tout ensemble plan de diamétre D puisse étre enfermé
dans une circonférence de rayon R. On entend par la que tous
les points de E doivent étre, soit a 'intérieur de cette circonfé-
rence, soit sur elle.

Pour éviter des précautions de langage, sans cela nécessaires,
nous supposerons que [ est fermé, c’est-a-dire tel que tout
point limite de points de E appartienne aussi & £. Si 'ensemble
donné I n’était pas fermé, en lui ajoutant ses points limites, on
aurait un ensemble fermé de méme diametre que E.

Si 'on considere un nombre f (P) fonction de la position d’un
point P d’un ensemble fermé E, la continuité de cette fonction se
définit comme pour le cas ol £ est un segment fini de droite ou un
domaine borné du plan ou de 'espace. On démontre, comme dans
le cas classique, qu'une fonction continue des points d’un ensemble
fermé borné atteint sa limite supérieure et sa limite inférieure.

1) Dans une lettre qu’il m’écrivait peu de temps avant sa mort prématurée, le
regretté T. Bonnessen m’a signalé que cet énoncé était inexact; il ajoutait ne pas
savoir comment le corrlger Il m’a fait aussi des objections, parfaltement fondées, sur
le paragraphe 15, dont j’ai ici modifié entiérement la rédaction.

2) Sur cette question, on pourra consulter un article de M. Julius PAL: Ueber ein
elementares Variationsproblem (Det Kgl. Danske Vidensh. Selskab- Mat. fys., t. 111, 2;
1920). Dans une trés courte Note (Actes de la Société helvétique des Sciences naturelles

t. II, 1914), M. le D* KorLLros traite aussi d’un probléme en rapport avec les questmnq
étudiées ici.
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Solent £ un ensemble plan, fermé et borné, A un point de son
plan, P un point quelconque de E. La distance AP est une fonc-
tion continue du point P de E, elle atteint sa limite supérieure
p (A) pour une position P, de P. Soit B un autre point du plan,
on a évidemment p (B) = BP,, donc

p(A)—p(B) = | AP, —BP, | < AB.

Puisque A et B sont deux points quelconques du plan, nous
pouvons conclure

|p(4)—p(B)| = 4B,

et la fonction p (A4) est continue. D’ailleurs, quand A s’éloigne a
I'infini, p (A4) grandit indéfiniment, donc la fonction ¢ (A4)
atteint sa limite inférieure p pour une position au moins de A.

Cette limite inférieure ne peut d’ailleurs pas étre atteinte pour
deux positions de A; si, en effet, elle était atteinte pour les posi-
tions A, et A,, E serait enfermé dans la partie commune aux
deux cercles égaux de rayon p et de centres A; et 4,, donc dans
le cercle décrit sur la corde commune a ces deux cereles comme
diametres. Or, ce dernier cercle serait de rayon plus petit que p,
ce qul est impossible.

‘Done, parmi toutes les circonférences qui entourent un ensemble
donné E, il y en a toujours une qui a un rayon plus petit que
toutes les autres. Nous ’appellerons circonférence circonscrite a E.

2. Relativement a cette circonférence circonscrite, je démon-
trerai, avec M. Bricard, le théoréme suivant:

Pour qu’une circonférence C, enfermant un ensemble fermé E,
soit la circonférence circonscrite, il faut et il suffit que les points
communs & E et a G n’appartiennent pas tous 4 un méme arc
de cercle C plus petit qu’'une demi-circonférence.

La condition est suffisante: Si elle est remplie, en effet, toute
autre circonférence I', contenant £, doit contenir un arc C’ au
moins égal & la moitié de C'; done I' a un rayon plus grand que C.

La condition est nécessaire: Supposons, en effet, que tous les
points communs & C et & F solent sur un arc «@+y de C, inférieur
a la moitié de C, et soit o’B’y’ un arc de C, supérieur a la moitié
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de C, et n’ayant aucun point commun avec «@3+y. Faisons passer
par «’ et v’ un cercle C’ voisin de C et de rayon un peu inférieur.
Les seuls points du plan qui soient intérieurs & C sans étre inté-
rieurs & C’ sont des points voisins de o’B’y’. Comme il n’y a
pas de points de E voisins de «'R’y’, si C’ est tres peu différent
de C, C’ contient E et C n’est pas la circonférence circonscrite
a E.

8. La proposition de M. Bricard étant obtenue, la recherche
du nombre R est presque achevée. Pour un ensemble £ de dia-
meétre D, la circonférence circonscrite C, de rayon p, doit avoir
en commun avec D des points n’appartenant pas tous & la méme
moitié de C. Soient o et B deux points communs & £ et C,
solent a’, B’ les points de C diamétralement opposés & o et B.
Si o’ ou B’ appartient & E, alors 2p = D. S’il n’en est pas ainsi,
ou bien il y a sur arc «’B’ au moins un point vy de £ et un tel
point forme avec « et B un triangle acutangle, ou bien il y a des
points de £ & la fois sur «f’ et sur «'f.

Dans ce dernier cas, soient A le dernier de ces points ren-
contré en allant de « vers B’ et p le dernier rencontré en allant
de B vers a’. L’arc AR’ p est inférieur ou au plus égal & une demi-
circonférence, car il ne contient pas de points de E. Donc, ou
A = 2p = D, ou le triangle Apo est acutangle. Si donc on n’a
pas 2p = D, on est certain de trouver un triangle acutangle
aBy, ou arw, formé de points de E et inscrit dans C'1). Un tel
triangle, s’il n’est pas équilatéral, a un de ses cOtés au moins
supérieur au coté du triangle équilatéral inscrit; donc on a alors

Dzp.3.
Dans tous les cas on a done

< D
p = T =
J3

1) Jen’aipas voulu admettre sans démonstration que si ’on a un ensemble de points
d’une circonférence, fermé et qui peut é&tre enfermé dans une demi-circonférence,
il y a trois points de cet ensemble qui forment un triangle acutangle ou deux points
qui sont diamétralement opposés, parce que le fait analogue pour I’espace ne me parait
nullement évident. Aussi, pour le cas de l’espace, le raisonnement de M. Bricard aurait
besoin, il me semble, d’étre complété.
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Par suite on a
D

= —,

V3
cette valeur minimum étant d’ailleurs atteinte, par exemple, pour
le cas ou E est un triangle équilatéral de coté D.

R

4. Les définitions et les raisonnements des n% 1 et 2 s’appli-
quent de suite, moyennant des modifications de mots évidentes,
au cas des ensembles de l’espace ordinaire. Si l'on appelle
~«ensemble de 'espace & n dimensions » les ensembles de systémes
de n nombres xy, z,, ..., x,, ces définitions et raisonnements
s’appliquent encore facilement. Il faudra naturellement y rem-
placer la considération des circonférences par celle des hyper-
circonférences qui sont les variétés & n—1 dimensions définies
par des équations de la forme

(Xl —X1)2 +(X2 —x2)2 +-l. « e +(Xn—xn)2 — R2

dans lesquelles les X sont les coordonnées courantes, les z les
coordonnées du centre; le premier membre est le carré de la
distance des deux points X, z; le second membre est le carré
du rayon.

Une telle variété est la frontiére du domaine correspondant
au cercle; ce domaine, un hypercercle, est donc défini par
- Pinégalité

(XI_XZ)2+(X2_X2)2+ ..... +(Xn_xn)2 § RZ.

Les théorémes des n% 1 et 2 étant acquis pour le cas général,
pour achever la détermination du rayon R, des plus petits
hypercercles égaux dans lesquels on puisse enfermer tous les
ensembles de diameétre D de 'espace & n dimensions, il va falloir
imiter le raisonnement du n° 3. Le triangle équilatéral ou régulier
sera remplacé par I'hypertriangle régulier, c¢’est-a-dire, si 'on
veut, la figure formée par n —1 points situés deux a deux
a la distance D. Sil’on désigne par A, la hauteur d’un hypertriangle
régulier et p, le rayon de I'hypercirconférence circonscrite, on
voit facilement que l'on a



= D?

32 22+12
=55 >
4? 3 —32422-1%
e e R 1L s

La sommation donne finalement

n
2(n+1)

2 2,
pn""

L’hypertriangle régulier étant un ensemble de largeur D, on a

\/ n
= — D
"TN 2n+1)

Je vais démontrer que, pour n quelconque comme pour n = 2,
¢’est le signe = qui convient. Pour cela, il suffira de prouver,
ce qui a été fait au n® 3 pour n = 2, que st 'on a sur une hyper-
circonférence un ensemble fermé de points qui ne peut étre
enfermé dans une moitié de cette hypercirconférence, il y a deux
de ces points dont la distance est égale ou supérieure au coté
de 'hypertriangle régulier inscrit. Le raisonnement est un raison-
nement de proche en proche, il suffira d’indiquer comment on
passe de n =2 & n = 3.

Remarquons d’abord que, si’on a sur une sphére un ensemble
fermé E de points, les théoremes des n% 1 et 2 s’appliquent
a la recherche de la plus petite calotte sphérique contenant E.

Cecl étant, soit, sur une sphére § de rayon p, un ensemble
fermé e de points, ensemble qui ne peut étre tout entier enfermé
dans une moitié de la sphére S. Soient @, b deux points de e
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dont la distance d ait la valeur la plus grande possible; on a
évidemment p,/2=d=2p. Le petit cercle de S, qui passe par b et
qui admet @ pour podle, a un rayon égal a

d/4p* —d*
2p -

Ce petit cercle partage S en deux zones, dont 'une Z, la
plus grande, contient e, ’autre ne contenant aucun point de e.
Soit y la frontiére de la plus petite zone contenant e, laquelle,
étant contenue dans Z et contenant une demi sphére, a un rayon
au moins égal & |

d~4p* —d?
2p

Sur y, d’aprés 3, il y a deux points de e qui sont distants
au moins de

d \/4,02 —d?
2p \/3
‘et I'on doit avoir
d~4p? —d* _
v gp J3=d,
d’ou
8
—p <d
\/ So s
Finalement on a donc
\/gp =d = 2p,

les limites extrémes étant atteintes dans le cas ou des points
de e sont sommets d’un tétraédre régulier et dans le cas ou
des points de e sont diamétralement opposés.

Finalement il est ainsi prouvé que

3
R3 = '§D.
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Le passage de n & n-1 se fait exactement de méme, I'inégalité
précédente devient

d~4p? —d? \/2(n+1)
2p n

lIA

d,

d’ou
4p*[2(n+1)—n] £ 2(n+1) d?,

<J_n_ll_d
p= 2(n+2)

5. Nous bornant au cas des ensembles plans, nous allons
traiter la méme question d’une facon moins simple et moins
rapide, mais qui nous montrera le lien intime qui lie le probléme
posé & celui de la meilleure approximation avec laquelle on
peut représenter une fonction continue par une série limitée
de Fourier, probléeme considéré d’abord par Tchebycheft.

Notre point de départ sera une utilisation plus systématique
de cette remarque: il n’y a pas besoin de considérer le cas de
tous les ensembles de diametre D, on peut se borner & certains
d’entre eux. Ceci nous a déja permis de ne considérer que les
ensembles fermés.

Nous dirons qu’'un ensemble £ de diametre D est complet
s’1l est impossible de lui adjoindre des points tout en lui laissant
le méme diametre D. Nous allons démontrer que tout ensemble
de diamétre D fait partie d’un ensemble complet de diamétre D.

Soit £ un ensemble fermé de diameétre D; §’1l n’est pas
complet, nous pouvons, sans modifier son diamétre, lui ajouter
des points. Soient A l'un deux, B le point de E le plus voisin
de A, ou l'un des plus voisins. Soient C; et C, les points de ren-
contre des cercles de rayon D décrits de A et B comme centres.
Soient enfin AMB, ANB les arcs de cercle de rayon D décrits
de C; et C, comme centres. Tous les points compris entre
AMB et ANB peuvent étre ajoutés & E sans changer le dia-
metre D de I'ensemble. Certains de ces points font peut-étre
déja partie de I'ensemble E, mais les points du segment AB
n’en font pas partie et comme £ est fermé nous voyons que si
d’un point de AB comme centre, on décrit un cercle assez petit,
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tous les points de ce cercle, dont aucun ne faisait partie de E,
peuvent étre ajoutés a F.

Cecl étant, soit £ un ensemble de diamétre D; je lui ajoute
ses points limites. Si ’ensemble obtenu e n’est pas complet, je lui
ajoute le plus grand cercle » ') qu’il soit possible de lui ajouter
sans augmenter son diameétre; s’il y a plusieurs tels cercles,
Jajoute I'un quelconque choisi d’apreés une loi que chacun prendra
a sa volonté et qu’il serait puéril de préciser une fois pour toutes.

Si I'ensemble e+ ainsi obtenu n’est pas complet, je lui
ajoute le plus grand cercle possible 2;, etc.

Si Pon est arrété au bout d’un nombre fini d’opérations,
le théoréme est démontré pour ’ensemble £ considéré; sinon,
je dis que 'ensemble fermé obtenu en ajoutantae +r+2x; + ...
ses points limites, qui est évidemment de diameétre D, est complet.
En effet, s’il ne 1’était pas, on pourrait lui ajouter les points
d’un cercle 4 et A, A,, ... devraient étre tous au moins aussl
grands que A. Or cela est impossible, car ils sont sans points
communs deux a deux et tous intérieurs & une circonférence
de rayon D décrite d’un point quelconque de £ comme centre.

8. Ainsi, pour trouver le maximum du rayon de la circonfé-
rence circonscrite aux ensembles de largeur D, nous pouvons
nous borner & la considération des ensembles complets de largeur
D. Etudions ces ensembles.

La distance d’un point quelconque M & un point C d’un
segment AB étant plus petite que la plus grande des deux
distances MA, MB, si deux points A et B font partie d’un
ensemble complet, tous les points du segment AB en font aussi
partie. Donc les ensembles complets sont des domaines convexes,
¢’est-a-dire I’ensemble des points d’un contour convexe et des
points intérieurs & un tel contour. Un contour convexe qui limite
un domaine constituant un ensemble complet, s’appelle une
courbe orbiforme.

Soit A un point d’une orbiforme I'. I' est tout entiére & I'in-
térieur de la circonférence de rayon D et de centre A. Je dis

1) I1 peut y avoir des points frontiére de A qui appartiennent & e, mais aucun
point intérieur & A ne doit appartenir & e. J’omets la preuve du fait que les rayons des
cercles qu’on peut ajouter & e atteignent leur limite supérieure.
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que cette circonférence a un point commun au moins avec I';
sans quoi, en effet, la plus grande distance de A aux points
de I serait inférieure & D, soit D—e. En ajoutant au domaineA
limité par I' les points du cercle de rayon e et de centre A, et
certains de ces points sont extérieurs a A, on aurait encore
un ensemble de largeur D; done A ne formerait pas un ensemble
complet, I' ne serait pas une orbiforme.

Ainsi la circonférence de rayon D et de centre A touche
Vorbiforme en un point B, la circonférence égale de centre B
passe par A. Ces deux circonférences se coupent en C,, C,
et I' est dans le fuseau limité par les ares C,AC,, C,BC,.

Cq C

Ca Co

Fig. 7 Fig. 8

Soit M un autre point de I'; supposons-le situé dans le triangle
curviligne ABC,. M ne peut étre entre la corde AD et 'arc AB
de centre C,, car tous les points de cette région, étant distants
de moins de D de tous les points du fuseau, sont intérieurs a I'.
Il résulte de 14 que la circonférence de rayon D décrite de M
coupe 'arc AC, en un point « et I’arc BC, en un point B. I' est
tout entiére dans le triangle curviligne C,«f3, «f contient d’ailleurs
des points de I', car M est distant de moins de D de tous les
points intérieurs au triangle Ci«f et des points des coOtés
CiAa, C.BBE (« et B exclus).

Tracons les ares de rayon D et de centres « et $ joignant
respectivement BM et AM. Nous obtenons un pentagone II
limité par les arcs AM, MB, BB, Bax, «A.
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Si I'arc of} fait tout entier partie de I', I' ne peut pas avoir
de points extérieurs a II; d’ailleurs, II étant évidemment une
courbe orbiforme, I" ne différe pas de II. Si certains points de «f
ne font pas partie de I', 'ensemble complet limité par I" pourra,
auvoisinage de M, sortir de IT; mais, en ce voisinage, il contiendra
tous les points de II et tous les points intérieurs a II.

Pour énoncer les résultats obtenus, rappelons que lon
appelle tangente (ou droite d’appui) d’un contour convexe en
un point P toute droite passant par P et ne passant par aucun
point intérieur au contour. Une perpendiculaire en P & une
tangente en P est une normale en P.

Les tangentes en A et B aux arcs C,AC,, C,BC, sont des
tangentes & I'; AB est donc une normale double & I' et sa longueur
est D. Les tangentes & I' en M sont tout ou partie des tangentes
a Il en M, de méme pour les normales. C’est dire que les normales
en M a I’ rencontrent toutes ’arc af3. Donc aucune ne passera
par A, & moins que « ne soit en A, donc que M soit sur BC;.
Dans ce cas particulier, II devient un triangle curviligne II,
constitué par trois arcs égaux de rayon D, décrits respectivement
des trois sommets, A, M, 8 d’un triangle équilatéral pour centres,
et sous tendus par les cOtés de ce triangle. I' se réduit & 11, si
tous les points de AP font partie de I'. Si tous n’en font pas partie,
I’ différe de IT;; mais, en tout cas, I' contient ’arc M B puisque
les points de MB ne sont pas & une distance supérieure a D
d’aucun des points du triangle C,AR.

En résumé, si, de A, on abaisse une normale AB de pied B,
AB = D et AB est aussi normale en A: Toute normale a une
orbiforme est normale double, la distance des deux points d’ tncidence
est la largeur de la courbe.

De A on peut toujours abaisser une telle normale puisque
la ou les normales en A répondent & la question. Silon a deux
normales AB et AM, toutes les droites intermédiaires sont aussi
normales et I’orbiforme se réduit, entre B et M, & un arc de cercle
de centre A.

A une courbe convexe quelconque on peut toujours mener
une tangente dirigée unique; pour une orbiforme on peut dire,
de plus, qu'elle a un seul point de contact. Si, en effet, elle
touchait la courbe en A et B, les normales AA’ et BB’, de lon-
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gueur D, feraient connaitre deux points A" et B’ de 'orbiforme.
Ce qui est absurde, car AB’ est plus grand que D. Les tangentes
et normales & une orbiforme sont donc déterminées par leur incli-
natson et varient de facon continue avec elle.

7. Considérons une orbiforme I' analytique, ou & laquelle
du moins s’applique la théorie des développées. En chaque
point de I'; le rayon de courbure compté vers l'intérieur de I’
sera compris entre zéro et D, les valeurs extrémes pouvant
étre atteintes. La développée A de I' sera une courbe a distance
finie, & laquelle, parallellement & chaque droite, on ne pourra
mener qu'une tangente. En d’autres termes, les tangentes a 4
de directions « et a-+m seront confondues, quel que soit «.
Asera done une courbe ayant un nombre impair de points de
rebroussements, trois au moins ).

Prenons, par exemple, pour A4, une hypocycloide a trois
rebroussements; et soit I' une de ses développantes. Soient » un
point décrivant 4, wt la tangente en w affectée d’un sens variant
de facon continue avec w. Quand » a parcouru tout A, wt ne
revient pas & sa position primitive, mais dans le prolongement
de cette position primitive, le sens étant différent.

Quant au point M de ot qui décrit I', il vient, aprés cette
révolution, dans une position M;; un calcul immédiat montre
que M et M, sont symétriques par rapport au point de wt qui
décrit celle des développantes de A qui est une hypocyeloide.

Quand w a décrit deux fois A, ot revient exactement & sa
position primitive et I se ferme. I' a donc pour normale double
toute tangente & 4, c’est une courbe parallele & elle-méme;
c¢’est une courbe doublement paralléle & 'hypocycloide dont 4 est
la développée. S1 done I' est convexe, I' est une orbiforme.

On comprend ainsi qu’ Euler ait été conduit a la notion
de courbe orbiforme par I'étude des développantes des courbes
triangulaires, ¢’est-d-dire des courbes, analogues a’hypocycloide
a trois rebroussements, formées par trois arcs de courbes convexes
raccordés par des points de rebroussement de premiére espéce.

1) J'omets les démonstrations rigoureuses; les faits énoncés dans les nos 7 et 8
ne seront pas utilisés, ils sont donnés pour familiariser avec la notion d’orbiforme.

L’Enseignement mathém., t. IX, fasc. 4. 5
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I’étude des courbes paralléles aux courbes triangulaires, ou
& 9, 7, ... points de rebroussement, y conduirait aussi.

Déformons une courbe triangulaire de fagon que les trois
arcs qui la composent différent de moins en moins des cOtés
du triangle des rebroussements et prenons chaque fois la plus
petite développante orbiforme; si le triangle des rebroussements
est équilatéral, nous obtiendrons a la limite Porbiforme équila-
térale, que nous avons déja rencontrée et que nous avions désignée
par I1,. Pour II,, ce qui joue le rdle de la développée, c’est le
triangle A MB. Pour II, ce serait la figure, limite d’une courbe a
cings rebroussements, formée par les droites AB, Bo, o M, M8, BA.

Silon imagine que, dans les déformations dont il vient d’étre
parlé, les longueurs des arcs des courbes développées, triangulaire
par exemple, sont conservées, on peut établir une correspondance
entre les points o de ces différentes développées transformées.
Et si 'on imagine que, dans la déformation d’une développée
A4, chaque tangente wt emporte le segment wM qui va du point w
de A au point M de sa développante I', on établit aussi une
correspondance précise entre les diverses développantes. En
particulier, dans le cas ou 4 est triangulaire, les différentes
développantes triangulaires des A4 déformées se correspondent. Or,
transformons A4 en un triangle ABC, ce qui est toujours possible,
car entre les trois arcs a, b, ¢, on a évidemment des inégalités
telles que a<<b-+c. La développante triangulaire, dans le cas
du triangle ABC, est constituée par trois arcs de cercles de centres
A, B, C et tangents entre eux. Les points de contact de ces
cercles sont les points de contact avec AB, BC, CA, du cercle
inscrit dans ABC. De sorte que les points de rebroussements
de cette développante partagent les arcs de la développée
en morceaux de longueurs connues p—a, p—b, p—c.

Ce que je veux faire remarquer surtout, c¢’est que 'orbiforme
équilatérale est la plus petite courbe convexe qui soit parallele & la
courbe triangulaire formée de trois arcs de cercles égaux. De méme,
IT est la plus petite courbe convexe paralléle & une courbe & cing
rebroussements formée par cing arcs de cercle de rayons égaux.

8. Ce n’est pas seulement par la géométrie analytique que
la notion de courbe orbiforme s’est imposée aux mathématiciens;
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si les courbes paralléles aux courbes & 3, 5, ... points d’inflexions
et trés voisines de ces courbes ontre¢cu une application mécanique,
car ce sont les formes de rails qu'on peut adopter pour qu’en
parcourant la voie ainsi construite, une locomotive se trouve
retournée bout pour bout'), les courbes convexes paralléles
a ces courbes-la sont aussi utiles industriellement.

Pour transformer un mouvement circulaire en mouvement
rectiligne, on emploie quelquefois une came agissant sur une
piece P, dont le mouvement rectiligne est guidé par l'un ou
Pautre des deux bords paralléeles d’une entaille faite dans P,
entaille entre les bords de laquelle la came peut tourner. On voit
de suite que, si 'on veut que le mouvement puisse avoir lieu
dans les deux sens, auquel cas la came doit toucher constamment
les deux bords de I’entaille et si le mouvement de la came doit
dtre révolutif complet, 11 faut que cette came soit limitée par
une orbiforme. |

(Vest surtout & l'occasion de probabilités géométriques que
les orbiformes ont été étudiées. La plus simple des questions
de probabilités géométriques est celle de Iaiguille de Buffon:
On jette au hasard une aiguille sur un plancher, quelle est la
probabilité pour qu’elle rencontre une raie du plancher? Conve-
nons d’attribuer & un coup le poids n si Paiguille rencontre

- n fois les raies du plancher, soit parce que laiguille est trés

longue par rapport a la largeur des lames du parquet, soit parce
que l'aiguille est courbe. Dans tous les cas on peut partager
I'aiguille en éléments de méme longueur assez petite pour que
chaque élément puisse étre regardé comme rectiligne et soit
moindre que I'écartement des raies du plancher. La probabilité
pour quun élément déterminé rencontre les raies est alors
la méme pour tous les éléments et la probabilité pour tous les
éléments et la probabilité pour l'aiguille tout entiére, étant la
somme de ces probabilités élémentaires, est proportionnelle a
la longueur de aiguille ).

1) Et cela, parce que quand o parcourt une fois A, ot ne revient 4 sa position
primitive qu’au sens prés, n° 7.

2) Cette remarque capitale est due a4 Barbier qui a le premier établi la relation
entre les questions de probabilités et les propriétés des orbiformes (Journal de Math.,
1860). Je tire cette référence d’un petit livre: Coniribution & Udlude des courbes convexes
fermées, publié & la librairie Hermann par MM. Ch. JorRDAN et R. FieEpLER, dans
lequel le lecteur trouvera des renseignements intéressants concernant les orblformes
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D’autre part, la probabilité pour que laiguille, supposée
tombée dans une orientation déterminée, rencontre les raies ne
dépend que de I’écartement des tangentes a l'aiguille qui sont
paralleles aux raies.

Or, si l'aiguille est une orbiforme, cet écartement est indé-
pendant de orientation de Paiguille, ¢’est le diametre de ’orbi-
forme et par suite I’étude de cette forme d’aiguille s’imposait. Pour
une aiguille orbiforme, la probabilité ne dépend que du diameétre.

En rapprochant cela de ce qui précéde, on voit que toutes
les orbiformes de méme diamétre ont méme longueur.

Nous retrouverons cela plus tard. Je reviens maintenant
a la question de M. Bricard.

9. Soit A un point du plan d’une orbiforme I' de diametre D.
Soit C4 le plus petit cercle de centre A contenant I', soit R,
son rayon. C4 a au moins un point commun avec I', sans quol
on pourrait rapetisser C4; soit B un point commun a C et a I'.
AB étant normale & I' en B est aussi normale & I' en un autre
point C, situé sur la demi-droite indéfinie BA d’origine B,
a la distance D de B.

Si A est intérieur & I', ces points ont la disposition BAC et
R, <D; si A est extérieur, on a la disposition BCA et R > D.
Placons-nous dans la premiere hypothése, puisque nous voulons
chercher le minimum de R,, pour A variable. Dans ce cas,
le cercle ¢, de centre A et passant par C, dont le rayon r, égale
D—R 4 est le plus grand cercle de centre A qui soit intérieur a I'.
La recherche du plus petit cercle C 4 est équivalente a la recherche
du plus grand cercle ¢4 ou encore, puisque R;+r, = D, & la
recherche du minimum de R,—r,. Nous allons interpréter cette
différence.

Soit A la circonférence de centre A et de rayon p. Etablissons
sur A et I' le méme sens de parcours direct, les tangentes a A4 et
a I' sont par la-méme dirigées. Etablissons entre A et I' une
correspondance par tangentes dirigées paralléles et soit ¢ le
maximum de I'écartement des tangentes correspondantes de A
et de I'. Si Pon a o> R,, on a évidemment e = p—r > R, —r ;
si on a p<ry, on a

& = RA“"p >RA_rA‘
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Enfin, pour R,> p>r,, la valeur de ¢ estle plus grand des deux
nombres R, —pet p—r,. Il résulte de tout cela que le minimum
R,—r : . Ry+r D

24 , qu est atteint pour p = 44—,
2 2 D
Si A est extérieur & I', le minimum de e est supérieur 3

D . :
et 1l est obtenu encore pour p = 5 » Comme on le voit facilement.

de ¢ est

Done, trouver le minimum de R, revient & trouver le
minimum de ¢ ¢’est-a-dire & trouver la circonférence qui differe
le moins de I' quand on établit une correspondance par tan-
gentes paralleles dirigées entre I' et cette circonférence. C’est un
probléme a la Tchebycheft.

Représentons la courbe I' par ses tangentes, comme on le fait
toujours quand il s’agit d’une courbe convexe. Soit

x cos ¢+y sin o—p =0 | (1)

T
I’équation de la tangente dirigée a I de direction (P+5' p est

une fonction f (@) bien déterminée et continue. Si Uorigine des
coordonnées est intérieure & I', p est constamment positif. Dans
tous les cas, 'équation p = f(¢) peut étre considérée comme
I’équation de I'.

Dans le méme systéme de coordonnées polaires tangentielles,
I’équation d’un cercle de rayon R est

p = R+4+a cos ¢ +b sin ¢, (2)

a et b étant deux constantes. Pour ce cercle 4, la valeur de ¢ est
le maximum de la différence

|f(¢)—(R+a cos ¢+b sin ¢)| = | (e, R, a, b)|]. (3)

Donc la recherche du minimum de € est exactement équivalente

a la recherche de la meilleure approximation avec laguelle la

fonction (@) peut étre représentée par une expression de la forme (2).
C’est le probléme méme de Tchebycheff.

10. Tchebycheff a surtout considéré le cas de Papproximation
d’une fonction continue par un polynome. Ses raisonnements ont
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été simplifiés et précisés par MM. Kircherberger et Borel?). Le
cas de 'approximation par des suites trigonométriques finies a été
considéré par M. J.-W. Young ?) et par M. Fréchet 3). Mais il
sera plus simple ici de prouver directement les quelques résultats
qu’on utilisera.

Remarquons d’abord que 'on a

flo+m) +f(9) =D, (4)

en supposant l'origine intérieure & I', ce que nous réaliserons
toujours. Donc

o0(p, R,a,b)+06(p+mn, R,a, b) = D—2R

Sidone, quand ¢ varie, a, b, R étant fixes, 3 (¢, R, a, b) atteint
la limite supérieure m, il a pour limite inférieure —n=D — 2R —m.
Et par suite, en prenant 2R = D, nous rendons aussi petit que
possible le plus grand des deux nombres m et n. En d’autres
termes, pour a, b fixes, ¢’est-a-dire le centre A d’un cercle A étant
fixe, on obtient le minimum du maximum p de | 3 (9, R, @, b) |,
c’est-a-dire la circonférence A différant le moins de I au sens

: D :
précédemment indiqué, en prenant R = 5 et alors & wvarie

entre —u et 4+ p. Résultat déja obtenu et, en somme, par le
meéme raisonnement.

Prenons ainsi R, et faisons varier a et b. Si 'un d’eux, ou tous
deux, augmentent indéfiniment en valeur absolue, p augmente
indéfiniment. Donc le minimum de w, pour a, b variables,
s’obtient pour des valeurs finies de a et .

Cette valeur minimum de p est positive, sans quol f (¢) serait
~de la forme (2) et I' serait une circonférence, cas que I’on peut
laisser de coté. Alors donc, pour les valeurs minimisantes de a
et b, 3 varie entre p. et —p et I'on a

o0(p+mn)+06(p) = 0.

1) Voir I’exposition qu’en a donnée M. BoreL dans ses Lecons sur les fonction-
de variables réelles et aussi la maniére originale grice a laquelle M. DE LA VALLEES
Poussin retrouve et compléte les résultats de Tchebycheff (Bulletin de I’ Académi:
royale de Belgique, 1910, p. 809 et suiv.).

2) Transactions of the American mathematical Sociely, 1907

3) Annales de ’Ecole Normale supérieure, 1908.
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Soient deux valeurs, « et a-+tm, de ¢ annulant J. Dans
(o, o-7) 8 atteint soit la valeur p, soit la valeur —u, cecl est
évident: je dis qu'en réalité, il atteint les deux. Supposons en
effet que 8 varie entre w et —m, avec m <<y, et modifions a et
b de facon & remplacer a cos @-+b sin ¢ par a cos ¢-+b sin ¢+
A sin (o—a); & deviendra

5—A sin (p—a) = &

et 3’ varie entre u’ et m’ avec p' <p, m<<m'<<p, si A est positif
et assez petit. Ainsi yw n’aurait pas sa valeur minimum pour les
valeurs considérées de @ et b, ce qui-est contraire a I’hypothese.

Traduisons le résultat en disant que, pour les valeurs minimi-
santes a et b, 8 (o) atteint ses valeurs extrémes 4-p et —u dans
tout intervalle (0, 6+=) d’étendue .

La réciproque est vraie: si & (¢) atteint ses valeurs extrémes
L+ m et —m dans tout intervalle (6, 6+ =), pour tout autre systeme
de valeurs de a et b, | 3 (¢) | atteint des valeurs plus grandes que m.
En effet, modifier ¢ et b revient toujours a remplacer & (¢) par
une expression de la forme

6(@)+4 sin (¢ —a) = 9" (¢),

et puisque J (@) atteint +m et —m dans («, a+), dans cet
intervalle 3’ atteindra des valeurs supérieures a m si A est positif,
des valeurs inférieures & —m s1 A est négatif.

Nous pouvons conclure: I existe toujours une circonférence A
qut, dans la correspondance par tangentes paralléles dirigées,
différe moins que toute aulre d’une orbiforme donnée I'. La cir-
conférence C 4 concentrique & A est la plus petite de toutes celles
qui enferment I', nous ['avons appelée la circonférence circonscrite;
la circonférence ¢4 concentriqgue a A est la plus grande des cir-
conférences intérieures a I'y c’est la circonférence inscrite. St l'on
considére deux mozitiés correspondantes de C, et ¢, [c’est-a-dire
données par les mémes valeurs («, a+=) de ¢], il y a toujours
sur chacune de ces demi-circonférences des poinis de I.

11. Ces propositions correspondent exactement & celles des
n% 1 et 2; elles sont un peu plus complétes, mais s’appliquent
seulement aux orbiformes. Quant & la similitude des raisonne-
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ments, qui va souvent jusqu’a I'identité, il est inutile d’y insister
davantage. '
Soit I’équation d’une tangente en A & une orbiforme I

x cos ¢+y sin o —p = 0; (1)
soit

—Xx sin ¢ +y cos ¢ —q = 0, (5)

Iéquation de la normale correspondante. p et ¢ sont des fonctions
continues de ¢ (n° 6). La tangente voisine est

x cos (¢ +6p)+y sin (p+5p)—p—35p = 0 (6)
le pbint commun a (1) et (6) est aussi sur la droite

1— cos do op

—X sin @ +y cos ¢ —p =0 (7)

sin 0@ sin d¢
Faisons tendre d¢ vers zéro, le point commun aux deux tangentes
) . : 0
doit tendre vers A, ¢’est-a-dire vérifier (5), donc g_lf tend vers g.

Ainsi: la fonction p=f(p) définissant une courbe orbiforme est
continue et a une dérivée continue.
Cette fonction doit vérifier la condition

flo+m)+f(9) = D 4)

et une autre condition qui exprimera la convexité de I’enveloppe
de (1).
Les coordonnées du point A sont

X =p cos ¢—p' sin @, y = p sin ¢ +p’ cos @;
done, le segment OA projeté sur la direction ¢ donne
p cos (¢ —y)—p’ sin (¢ —¥),
et, pour la convexité, on doit avoir
p() > p(p) cos (Y —9@)+p'(¢) sin (Y —9). (8)

Pour la commodité, posons D = 2r, p = h-+r et représentons
k (o) par une courbe L comme si & et ¢ étaient deux coordonnées
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cartésiennes rectangulaires. Supposons, de plus, que 0 est le
centre du cercle circonscrit a I', alors A varie entre +p et—p.

La condition (8) exprime alors que la courbe L est tout entiére
au-dessus de chaque sinusoide de la forme

h=A sin ¢ + B cos ¢ —r, (8"

qui lui est tangente. Et, comme conséquence de (4) et (8), on
voit que L est tout entiére au-dessous de chaque sinusoide de la

forme
h = A sin ¢ +B cos ¢+r, (8")

qui lui est tangente 1). ,

Soient « un point ou & (¢) = 0, B la plus petite valeur supé-
rieure a ol A (p) = =+ et supposons que A (8) = —+p. L’arc
de L correspondant & a=¢=f est au-dessus de la sinusoide (8")
qui lui est tangente au point ¢ = {3, on a donc

h(p) 2 (r+p cos (p—f)—r,

d’ou, en faisant ¢ = «,

r
CcoSs —o) < s
B—o) = i

Appelons cos 0 le second membre, 8 étant aigu. On a f—a = 6.

- Soit vy la plus petite valeur supérieure a £ et telle que
® (y) = —w. Quand on passe de $ & v, £ passe de 4p a 0,
puis de 0 & —p; en utilisant comme on vient de le faire la sinu-
soide (8’) et de facon analogue (8”), on trouve que y—f = 26.
Nous savons que vy est inférieur da4-mw. Je dis qu'entre y et
a4 1l y a encore un point § ou £ (3) = + p. Sans quoi en effet
1l n’y aurait pas de tel point entre y—0 et y-+= soit dans un
intervalle d’étendue supérieure a =, ce qui est impossible. 3 existe
donc et l'on a

o—y = 20, a+m—06 =0;

d’ou
o+m—o = 60, 0 <

o

1) Ceci revient a dire que si I’on connait un point A et une normale dirigée en A
d’une orbiforme I' de diameétre D, on en déduit le second pied B de la normale AB et I
est située entre les tangentes en A et B et aussi entre les circonférences de rayon D
et de centres A et B. Comparer avec le ne 6.
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Donec
T 3
r=(r+p cos~6~ = (r+uw 1/2—— ‘

d’ou pour le rayon r+u du cercle circonscrit:

oy < 2r D
v o~ T /= T/
~ ”‘¢3 V3

Le plus grand cerele circonscrit est donc de rayon — ; mais

J_ ?
cette valeur n’est atteinte que si toutes Tes inégalités précédentes
se changent en égalité, auquel cas L est formée de sinusoides (8')

et (8”). Donc, en prenantoa = 0, on a

(p) = "), deoaz
—__cos ——1], de 0 a —;
p\® \/ @ 6 3
@) D 4D d T 21
= — —— §In , de —a —;
pl@ \/3 ® 3 3
@) D S1t 27
= — —— COS ——, de — ;
Pi® /3 *7% 3 &7

.....................................

les valeurs non écrites de p (o) résultant de suite de la condi-
tion (4). Or on reconnait la définition de p (¢) pour 'orbiforme
équilatérale. C’est donc pour elle et pour elle seule que le ma-
ximum du cercle circonscrit est atteint.

12. On pourrait traiter de méme le cas des ensembles de
I'espace, les modifications & apporter & ce qui précéde sont banales.
Seules les considérations du numéro précédent doivent subir des
modifications assez notables. Mais je ne veux pas traiter & nou-
veau la question de la sphere circonscrite, je dis seulement quel
sera ici le probléme d’approximation de Tchebycheff.

L’équation (1) sera remplacée par

X cos @ sin 0+y sin ¢ sin 84+z cos §—p =0

|
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ot p sera une fonction continue de 0, ¢, & dérivées partielles du
premier ordre continues. Et nous aurons & représenter au mieux
cette fonction p (¢, 0) par une expression de la forme

R—[A cos ¢ sin O+B sin ¢ sin 6+C cos 0].

Je signale encore la nouvelle forme que prendra la relation (4):
si on suppose que p (o, 0) est définie pour 0S¢ <= et quel que
soit 0,

p(p,0)+p(p,0+m) =D.

Cette relation montre que le contour apparent en projection
d’une surface orbiforme est une courbe orbiforme. De la 1l
résulte que ce contour apparent en projection est de longueur
indépendante de la direction des projetantes. Minkowski?),
dans un ingénieux petit Mémoire, a démontré la réciproque.
(est le seul travail que je connaisse sur les surfaces orbiformes.
Au point de vue géométrique, celles de ces surfaces qui sont
analytiques doivent mériter d’étre étudiées. Leur surface des
centres doit dtre bien curieuse; la correspondance qui existe entre
leurs lignes de courbure doit aussi étre 'origine de faits géomé-
triques intéressants. J’ai dit que le probléeme du maximum du
rayon de la spheére enveloppante se traitait comme le probléeme
plan analogue; il y a cependant une différence & signaler:

Il existait une seule forme de courbe orbiforme donnant au
rayon du cercle circonscrit sa valeur maximum; dans Iespace,
il existe une infinité de surfaces orbiformes inégales donnant au
rayon de la spheére circonscrite sa valeur maximum. En voici la
raison: une courbe orbiforme de diameétre D est entiérement
déterminée quand on l'assujettit & passer par les trois sommets
d’un triangle équilatéral de coté D; au contraire une surface
orbiforme de diametre D n’est pas définie par la seule condition
de passer par les sommets d’un tétraedre régulier d’aréte D.

13. Nous avons déja remarqué que toutes les orbiformes de
meéme largeur D ont la méme longueur. Comme parmi ces orbi-
formes se trouve la circonférence de diameétre D, elles ont toutes

1)y (Buvres, t. 11, p. 277.
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une longueur égale & wD. Du théoréme des isopérimétres, il
résulte alors que la circonférence de diametre D est, de toutes les

o . . nD?
orbiformes de méme largeur, celle qui a la plus grande alre,—Z—;
cette remarque conduit naturellement & rechercher quelle est
Porbiforme de largeur D qui a la plus petite aire.

Pour traiter ce probleme, j’emploierai ici une méthode pure-
ment géométrique qui nous permettra de démontrer & nouveau
que toutes les orbiformes D ont méme longueur que celle de ces
orbiformes qui est circulaire et qu’elles ont une aire plus petite
qu’elle.

Soient oy = 0, «,, «3, ... un ensemble dénombrable de nom-
bres, positifs et inférieurs a «, partout dense dans (0, «); je pose
«; = a;--7. A chaque entier i, j’attache les deux tangentes T},
T;, de directions o; et o;, d’une orbiforme donnée. Cette orbi-
forme sera parfaitement déterminée par la connaissance de cette
infinité dénombrable de tangentes; sa longueur et son aire peu-
vent étre considérées comme des fonctions des nombres «;.
Les problémes de Calcul des Variations relatifs aux orbiformes
peuvent ainsi étre considérés comme des questions de minimum
pour des fonctions des variables o;. Cette transformation banale
est icl avantageuse.

Nous allons, pour une orbiforme quelconque, calculer L et .S
comme limites des nombres analogues relatifs au polygone cir-
conscrit II, formé par les tangentes T, T, T, T,, ..., T, TI',.
On passe de IT, & IT,,, en enlevant de II, deux triangles; pour
préciser, supposons que o, soit compris entre les deux nombres
o, et o de la suite oy, o, ..., o, o

‘Les tangentes 7, et T,, distantes de la largeur D de l'orbi-
forme et les deux tangentes 7, et Ty, distantes aussi de D,
forment un losange dont les points A et A’ de rencontre de T, et
T., de T, et de T} sont deux sommets opposés. De sorte que A4’
est la bissectrice de T, et de T}, de T, et de T, dont la direction est

o, +oy T
_I_ —_— .

Si T4, rencontre T, en M et T} en N et s1, de méme, TI',+1
rencontre 7T, et Ty en M’ et N', MM’ et NN’ sont les bissec-
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trices extérieures des angles AMN, A’M'N'; ANM, A'N"M".
Les deux triangles AMN, A’M’'N’ sont donc homothétiques, le
centre d’homothétie étant le centre & la fois du cercle exinscrit
dans AMN, suivant le c6té MN, et du cercle analogue relatif
a A" M'N'.

La longueur MN+M'N"est la -/
base V'm d’un triangle semblable
a la fois & OMN et & OM'N' et
dont la hauteur est la somme D
des hauteurs de ces triangles.
MN-+M'N" a donc une valeur
que 'on peut calculer des que
Ion connait o, «,+;, o et qui
est indépendante de celle des
orbiformes de largeur D que ’on
consideére.

Deméme AM+A"M" et AN-+A'N' ont des valeurs connues,
celles des longueurs des cOtés am, aN' d’un triangle 0, semblable
& AMN et de base MN-+MN'. Done, quand on passe de II,
a II,,;,on diminue le périmetre du polygone circonscrit d’une
longueur bien déterminée De,. La longueur de II, est donc égale &

longueur de [T, —D (e +&5+....+€,-1);

elle est donc la méme pour toutes les orbiformes de largeur D et,
par suite, celles-ci ont toutes méme longueur; résultat déja connu.

14. Evaluons de méme la différence entre les aires de II .
et II,; c’est-d-dire la somme des aires des triangles AMMN,
A"M'N’. Cette somme est égale & l'aire du triangle 0, déja
considérée, semblable & AMN et de base MN-+M'N’', multi-

MN
MN-+M'N"

Le triangle 0, est indépendant de l'orbiforme considérée;
¢’est-a-dire de la forme particuliéere du polygone II,; 1l en est de

meéme de son aire. La seule quantité- qui varie d’une orbiforme
a 'autre c¢’est la grandeur de la quantité A, qui peut varier de 0

pliée par A7+ (1—2,)% si 2, est le rapport
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a 1. Or, le multiplicateur [A5 (1 —X,)?] est minimum pour A, = X
c’est-a-dire MN = M’N’ et maximum pour A, = 0, ou 1, c’est-
a-dire MN ou M'N’, égal & zéro. Les deux limites entre lesquelles

peut varier I'aire de II, sont done, en désignant par =, l'aire
de 0,.

, 1
aire de I, — 5(172 13+ F,my)

et
aire de I1, — (1, +93+ ... +1,-1)

Et puisque l'aire de I'orbiforme est la limite de I’aire de II,, les
maximum et minimum de cette aire seront

_ 1
aire de II, — 5(772 +134+.. ... )

L]

et
aire de II, — (, +13+. .. .. );

du moins §’1l existe bien des orbiformes pour lesquelles ces limites
sont atteintes.

Le maximum est atteint pour une orbiforme telle que I'on ait
constamment MN = M'N’; alors les deux triangles AMN,
A'M'N’ sont égaux et les deux circonférences de centre 0
exinscrites respectivement dans AMN et A'M’N’ étant de
méme rayon, sont confondues. Le point 0 est donc également
distant de 7', T,, Tk, T, T, 1, T;,H ; parsuite, en raisonnant de
proche en proche, on voit qu’il existe un point 0 également distant
de touteslestangentes a 'orbiforme qui est donc une circonférence.
Résultat connu.

15.1 Pour appliquer & la recherche du minimum de ’aire le
procédé qui vient de nous donner son maximum, il faut d’abord
qu'un choix convenable des premiers nombres de la suite oy,
ty, Og, ..., DOUS conduise & un polygone II, le méme, a la position
prés, pour toutes les orbiformes de longueur D; 1l faut ensuite
que, & partir du passage de IT au polygone suivant, la condition
du minimum MN.M'N’ = 0 soit constamment remplie dans
chaque passage de 11, & II ;.

1) La rédaction de ce paragraphe 15 n’est pas celle qui est parue dans le Journal
de mathématiques pures et appliquées, mais une rédaction nouvelle. Voir la note 1) de
la page 251.
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T 2n
Prenons o, = @, a5 = ¢ —l——3~, oy = cp—l—?; IT; est un hexa-

gone ABCDEF dont tous les angles sont de 120° et qu’on obtient,
par exemple, en coupant le losange II,, formé de deux triangles
équilatéraux accolés par leurs bases AD, par des paralleles & AD.
De 1a résulte que AB = CD, et, plus généralement, que les cOtés
de rangs 1, 3, 5 de Il; savoir AB, CD, EF sont égaux; de méme
les cotés de rang pair sont égaux.

Si, pour ¢ = ¢, II; n’est pas un hexagone régulier, c’est,
par exemple, que les cOtés de rang impair sont plus grands que
ceux de rang pair. Faisons varier ¢ de facon continue de ¢, a

T T . :
cpo—l—g. Pour cpo—l—g, nous retrouvons le méme II;, mais les

cOtés qui étaient de rang impair sont devenus de rang pair, et
inversement; de sorte que ce sont maintenant les cotés de rang

T
pair qui sont les plus grands. Il y a donc entre ¢o et @ + 3 une

valeur de ¢ pour laquelle II; est ’hexagone régulier dont I’apo-
théeme est la moitié de D. C’est cette valeur ¢ que nous choisis-
sons; le polygone 11, est alors le polygone II que nous cherchions.

Si, dans le passage de 1I; = II & II,, la condition MN.M'N' =
0 est réalisée, c’est que I'une des tangentes T, ou T, passe par
I'un des sommets de II;; soit par A. Alors A appartient a Porbi-
forme, AB et AF sont deux tangentes en A & cette courbe; les
normales correspondantes AE, AC nous fournissent deux autres
points £ et C de 'orbiforme. Celle-ci est donc 'orbiforme équi-
latérale formée des arcs de cercle de centres A, C, E et sous-
tendus par CE, EA, AC. D’ailleurs, pour cette courbe, de deux
tangentes paralleles, 'une passe nécessairement par 4, C, ou E,
donc la condition du minimum est remplie dans le passage de I,
a ll,.; & partir de p = 3. C’est done Porbiforme équilatérale et
celle seule qui donne le minimum de Paire 1),

1) Dans le texte publié dans le Journal de malhématiques pures et appliguées,
il ¢tait aflirmé inexactement que la condition du minimum pouvait étre remplie
des le passage de ITp & II3. En se reportant 4 ce texte, on verra que la phrase qui le
résumait dans le Compte rendu de la Société mathématique de France du 24 juin 1914
ne m’avait pas parue claire. Mais les explications que j’avais ajoutées ¢taient inopérantes
et ne rendaient mon erreur que plus tangible. La correction que m’avait indiquée
Bonnessen était un peu moins simple, mais peu différente en somme de celle utilisée ici.
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Ainsi Uorbiforme d aire mintmum est I'orbiforme équilatérale;

. 3
son aire est: D* |~ — \/— 1),
2 2

16. Présenté sous la forme précédente, 'artifice parait treés
spécial et basé entiérement sur le fait que toute normale & une
orbiforme est une normale double. On peut lui donner une forme
qui le rend utilisable dans des cas assez variés.

Supposons que nous ayons a chercher le minimum d’une fonc-
tion de contour F (c), qui conserve la méme valeur pour deux
contours homothétiques et dont le minimum ne puisse étre
atteint que par un contour convexe. Il sera alors tout naturel
de déterminer ces contours par leurs tangentes de direction
Ay, %y, ..., les a, étant des nombres donnés partout denses dans
(0, 27). Les p premiéres tangentes forment un polygone II,;
le passage & Il ,, fera passer la fonction de F' (II,) & F (11 ,4,) et,
grace a la condition d’homothétie, il arrivera souvent que le
gain, F (II,)—F (II,.,), le meilleur qui puisse se réaliser, soit
indépendant de 1I,; on déterminera donc alors facilement les
tangentes successives, donc le contour minimisant.

Pour retrouver ce que nous avons fait précédemment, il

suffit de rechercher, pour les orbiformes, le maximum et le
2

minimum du quotient < du carré de la longueur a la surface;

dans ce cas, pour tenir compte de la définition de I'orbiforme,
on déterminera toujours simultanément les tangentes de direc-
tions «, et o, .

J’ai montré, dans la Note citée, qu’ainsi présenté, I'artifice
réussit trés bien pour le probléme des isopérimeétres, probléme
qu’il faut ici énoncer comme étant encore la recherche du mini-

2
mum de % ; mais cette fois pour toutes les courbes possibles.

On voit, qu’en somme, on trouve avantage & ne pas raisonner
sur une intégrale, comme on le fait ordinairement dans le calcul
- des variations, mais & raisonner sur une expression construite
a Paide de plusieurs intégrales.

1) Le calcul effectif de ¢ et n fournit des identités intéressantes, mais qui ne différent
pas de celles que donnent les calculs classiques de II.
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