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Chapitre II

Sur le problème des isopérimètres

On a vu, dans l'article précédemment reproduit, que, lorsqu'on
n'admet pas a priori l'existence de l'extremum de Y /(X)
cherché, il faut que le procédé employé conduise à la construction

de l'élément extrémal X ainsi que cela s'est produit dans

notre première méthode, ou que, comme dans les deux autres

méthodes, il fasse soupçonner quel est cet élément extrémal;
il convient alors de terminer par une vérification. Dans cet

article, l'élément X était un point. Lorsque X est une courbe

qui n'est à priori donnée ni de forme ni de grandeur, il faudra

presque toujours construire la courbe extrémale. C'est ce que
nous allons faire pour le problème des isopérimètres qui s'énonce

ainsi: quelle est, de toutes les courbes planes fermées, de même

longueur, celle qui enferme la plus grande aire, ou encore quel
est de tous les domaines plans de même aire celui qui a le plus
petit périmètre? 1)

Le problème des isopérimètres peut, comme l'on sait, être
L2

ainsi posé: tracer un domaine pour lequel le rapport — du
S

carré du périmètre à l'aire du domaine, soit le plus petit possible.
C'est sous cette forme que je l'envisagerai.

J'admets démontré, ce qui est facile, que la solution de ce

problème ne peut être donnée que par un domaine convexe. Le
contour convexe qui limite un tel domaine, étant supposé

parcouru dans le sens direct, admet parallèlement à toute direction

une et une seule tangente dirigée, en entendant par tangente
au contour une droite qui a des points communs avec le contour,

i) Le texte qui suit est paru sous le titre: Sur les problèmes des isopérimètres et
sur les domaines de largeur constantes, dans les Comptes rendus des séances de la Société
mathématique de France, 1914, p. 72.
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mais aucun point intérieur au domaine. Un contour convexe
est défini par l'ensemble de ses tangentes, ou, ce qui revient
au même, par un ensemble dénombrable de tangentes correspondant

à des directions denses dans tout angle. Si l'on compte
les directions à partir d'une origine quelconque, et si oc désigne
un arc incommensurable avec %, toutes les tangentes parallèles
aux directions ma, où m est entier, suffiraient à déterminer le

contour. Les directions oc-,, oc2, oc3,... étant choisies pour les

tangentes, chacune des tangentes correspondantes dépend d'un
paramètre, par exemple sa distance à un point fixe. Le problème
des isopérimètres, problème du calcul des variations, est remplacé
par un problème de minimum pour une fonction de ces paramètres
en nombre infini. C'est là une transformation purement formelle
et très banale, mais elle mérite cependant d'être signalée parce
que, ici, on peut raisonner sur les paramètres comme s'ils étaient
indépendants. Je veux dire que l'on peut déterminer chaque

L2
paramètre par la condition que le rapport — considéré comme

S

fonction de ce paramètre, supposé seul variable, soit minimum.
Soit C un contour convexe solution du problème des isopérimètres.

Un tel contour, à supposer qu'il existe, n'est déterminé
qu'à une similitude près; mais peu importe, raisonnons sur un
contour C déterminé. Soient Tx, T2, Ts, les tangentes à ce

contour de directions a1? oc2, oc3,

Considérons le polygone Hp convexe limité par les tangentes
dirigées Tx, Ts, Tp. Je suppose ce polygone fini, c'est-à-dire
ne s'étendant pas à l'infini, ce qui est vrai dès que p 3 si a1? a2,

a3 sont bien choisis. Le polygone 77p admet p côtés ou du moins,
s'il admet moins de p côtés et s'il n'admet pas, par exemple,
de côté porté par Tk, c'est que Tk passe par un de ses sommets
et que ce sommet est un point de C, sans quoi Tk ne serait pas

tangente à C. On peut donc toujours dire que Up r p côtés,
à condition, peut-être, de considérer des côtés infiniment petits.
Ceci va se préciser de suite: passons dellp à IIP+1 en coupant
IIP par Tp+1; on sait à l'avance que les côtés de II p qui seront

coupés par Tp+1 sont ceux qui, dans la rose des directions,
comprennent la direction ap+1. Soient AB, AC ces deux côtés,

qui sont finis ou infiniment petits, peu importe ; la tangente Tp+1
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coupe certainement AB entre A et B et AC entre A et C, mais

elle peut passer par A, par B ou par C. Dans tous les cas, pour

passer de II p
à np+1, oïi enlève de IIp un triangle et non un

polygone plus compliqué; c'est la remarque essentielle.

Ce triangle, enlevé pour passerde IIpà Iïp+1, est de grandeur

inconnue, mais il est connu à une homothétie près. Si Lp et Sp

sont la longueur et l'aire de II p et si l'on coupe IIp par une

parallèle à Tp+1 qui passe entre A et B et entre A et C, on

remplace IIp par IIp+1et Lp et Sp respectivement par Lp — kl,

Sp—k2s, l et s étant des nombres qu'on peut calculer dès que
(Lp+i)2

X2, «3?

égal au minimum de

l'obtient pour:

œp+1 sont donnés. Par suite

(Lp~klf
est au moins

>p+î

Sp-k2s
cherchons ce minimum. On

21 2 ks

Lp--kl Sp-k2s

ou

LP~-kl kl Lp

sP- k2s k2 s Sp

et ce minimum est

(Lp — kl)2_ Lp

Sp-k2s Sp
Lp-kl

L2P

sP
\J^±~
_

5 Lp Lp_

(1)

- ^ ~ (2)

l2
Ainsi, quand on passe de Up à IIP+1, on gagne au plus — sp,

quantité connue à l'avance et ne dépendant que de oc1? a2,

ap+1 ; et l'on ne gagne cette quantité que si l'égalité (1) est vérifiée

par la tangente Tp. Cette égalité s'interprète géométriquement
2 Sp

d'une façon très simple: est le rayon d'un cercle inscrit
Lp 2k2s

dans un polygone de longueur Lp et d'aire Sp\ est le rayon
K>1

du cercle exinscrit dans le triangle enlevé pour passer de II p

à Iïp+1 et inscrit dans l'angle A de ce triangle, c'est-à-dire dans
celui des angles de IIp dont le sommet n'est pas sommet de IIp+1.
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Si donc ITp est un polygone circonscriptible et si Ton gagne
l2
— ep en passant de Hp à IIp+1, IIp+1 est circonscrit au même

cercle que IIp.
Ceci étant, et supposant, comme précédemment, que al5

a2, a2, soient choisis de manière que n3 soit un triangle, soit
L2

m le rapport — pour ce triangle ; m est connu, puisque le triangle
s l2 ^est connu à une homothétie près. Le rapport — pour Ilp+1

sera au moins

m-e3-s4-...~8p
et il ne sera égal à cette quantité que si la condition (1) est
constamment remplie, c'est-à-dire si n4, II5, IIp+1 sont
circonscrits au cercle inscrit dans n3. Si cette condition n'était
pas remplie par Tlk + 1 ayant été remplie par n4, II5, Uk,
L2

—r serait au moins
S

m — s3 — £4 — — 1 — sk+l — — 8p — rj

avec y}<%. Et ce «manque à gagner » zk—7) ne pourrait jamais
être rattrapé dans la suite.

L2
— pour le contour C étant la limite du rapport correspondant
S

pour les polygones IIm, on voit que le cas où C est un cercle

est une solution du problème des isopérimètres et que c'est la
seule solution. ß

Chemin faisant, nous avons vu que le minimum de — pour
jS

un polygone dont les côtés ont des directions données est toujours
fourni par un polygone circonscriptible. Signalons encore une
quantité de curieuses expressions, savoir toutes celles qui résultent

de la formule

4jz m — s3 —s4 — 85 —...;

inutile de les expliciter ici.1)

i) La suite de la communication est relative aux domaines de largeur constante;
il en sera question plus loin (voir p. 247, note 3).
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Dans un livre auquel auront avantage à se reporter tous

ceux qui s'intéressent au problème des isopérimètres et aux
questions analogues: Sur le problème des isopérimètres et

le problème des isépiphanes (collection des monographies sur
la théorie des fonctions, Gauthier-Villars, 1930), M. T. Bon-

nessen a dit que la démonstration précédente était la seule

démonstration élémentaire qu'il connaissait avant d'avoir
construit les siennes. Elle est facile à suivre et, en ce sens,
mérite bien, je crois, le qualificatif d'élémentaire. Mais, si l'on
se reporte à la signification donnée au mot géométrie élémentaire

par les Grecs et si l'on cherche ce qui caractérise les procédés
de cette géométrie, on sera conduit, je pense, à noter en premier
lieu l'absence de considérations sur l'infini. Ce n'est pas qu'à
y regarder de près, on ne rencontre la notion d'infini à chaque

pas puisque les êtres mêmes sur lesquels on raisonne, point,
droite, etc..., sont conçus comme résultant d'une suite indéfinie
de simplifications faites sur des objets du monde réel; les
considérations du troisième livre sur les rapports, ainsi que celles

sur les aires et volumes, introduisent bien aussi des passages
à la limite, donc des considérations de suite infinie. Pourtant
là encore l'infini n'intervient que pour arriver aux notions
premières, aux définitions, on évite son emploi dans les raisonnements.

A cet égard, la démonstration qui vient d'être donnée
n'est pas élémentaire: on y construit la circonférence extrémale
à l'aide d'une suite infinie de ses tangentes. L'emploi de l'infini
dans les problèmes d'extremum est pour ainsi dire de règle;
aucune de ces questions n'est vraiment élémentaire.

Prenons par exemple le problème simple suivant:

de tous les quadrilatères ABCD ayant quatre côtés de longueur
donnée a, à, c, rf, quel est celui de plus grande aire?

L'aire a pour expression

1 1

— ad sm A -I be sin C (1)
2 2 v

Les angles A et C sont liés par la relation

a2 +d2 —2ad cos A b2+c2-2bc cos C. (2)
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La méthode des dérivées donne alors

1 1

- ad cos A -be cos C
2 2

2ad sin A — 2be sin C

d'où

tçfA-\-tçjC 0

Le maximum de l'aire ne peut donc être atteint que pour un
quadrilatère inscriptible. Mais il faudra s'assurer qu'il existe
un tel quadrilatère et qu'il donne effectivement le maximum.
Ce dernier point conduira au calcul de la dérivée seconde.
Faisons-le immédiatement: en considérant C comme fonction
de A1 la dérivation des relations (2) et (1) donne

ad sin A
C'

h :—r 9

be sm C

2Sf ad cos A + bc cos C C'

ad
(cos A sin C + sin A cos C)

ad

sin C

sin (^4 + C)

sin C

2S" —[cos 04+ C) sin C(1 AC')— sin (A + C) cos C.C'l
sm 2 C L J

ad

sin 2 C

ad sin 2 Al
r\ cos (A + C) sin C - — :——
L be sm C J

Donc, pour A-\-C II, S" est négatif, ce sera bien un maximum
que l'on obtiendra. Quant à l'existence d'un quadrilatère inscrip-
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tible de côtés a, bf c, d, elle résultera de l'existence des racines

de l'équation

a2+d2— 2ad cos A b2 +c2 +2bc cos A. {.3)

Les conditions de possibilité s'obtiendront en écrivant que la

valeur de cos A tirée de cette équation n'est pas extérieure
à l'intervalle -1, + 1. On verra facilement que ces conditions
sont vérifiées si chacune des quatre longueurs est plus petite
que la somme des trois autres, donc dans le cas que nous
considérons où, avec les longueurs de ces côtés, on peut construire
un quadrilatère.

Les considérations sur l'infini sont tout entières cachées à

la fin de l'étude précédente, au moment où nous utilisons,
sans le dire explicitement, ce théorème de Weierstrass: une
fonction continue d'une ou plusieurs variables considérée dans

un domaine borné y atteint sa borne inférieure, sa borne
supérieure et toutes les valeurs comprises entre ces deux bornes.
C'est seulement grâce à ce théorème que nous avons pu conclure
à l'existence du quadrilatère dès que nous avons été assurés

que l'équation (3) donne pour cos A une valeur non extérieure
à l'intervalle -1, +1. Or ce théorème de Weierstrass se démontre
et ne peut être démontré que grâce à la considération de l'infini.

Je rappelle qu'on utilise généralement ce qu'on appelle le
théorème de Bolzano-Weierstrass, savoir: tout ensemble infini
de points distincts ou confondus et situés dans un domaine
borné admet au moins un point-limite. On peut le démontrer
ainsi: partageons le domaine en un nombre fini de domaines
partiels; l'un d'eux contiendra nécessairement une infinité de

points. Partageons de nouveau celui-ci en une infinité de
domaines partiels; parmi ces nouveaux domaines, l'un contiendra
nécessairement une infinité de points, etc... En prenant
convenablement ces subdivisions, on aura une suite infinie de domaines
emboîtés les uns dans les autres et tels qu'il n'existe qu'un
seul point P intérieur à tous. Il est clair que, dans tout voisinage
de P, il y aura une infinité de points distincts ou confondus
de l'ensemble primitif. Donc P est l'un de ces points-limites
dont il s'agissait de prouver l'existence.
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Puisque les raisonnements d'aspect élémentaire sont aussi
bien que les autres basés sur la considération de l'infini, utilisons
franchement de telles considérations, et reprenons par exemple
le problème du quadrilatère.

Considérons une suite infinie de quadrilatère Q2, etc...
ayant les côtés donnés a, è, c, d et dont les aires tendent vers
la borne supérieure. Plaçons tous ces quadrilatères de façon,

par exemple, qu'ils aient les côtés AB confondus. Nous aurons
une infinité de positions distinctes ou confondues de C, d'où
au moins un point-limite C0 pour ces points C. Choisissons
dans la famille des quadrilatères (?i? Q2, une suite partielle
Q'i, Qf2 pour lesquels les points C tendent vers C0. Les
sommets D de ces quadrilatères ont au moins un point-limite D0.
Prenons enfin une suite Q"x, Q"2 tels que C et D tendent
vers C0 et D0. Il est clair que le quadrilatère ABC0D0 a les côtés
donnés et qu'il a pour aire la borne supérieure de l'aire. Ainsi,
sans utiliser les dérivées, nous venons de démontrer l'existence
d'un quadrilatère extrémal et de prouver que le maximum
de l'aire est atteint. Si maintenant nous appliquons au quadrilatère

trouvé ABCqDq la méthode des dérivées, il nous suffira
de reprendre le commencement du calcul fait précédemment
pour être certain que ce quadrilatère extrémal est inscriptible.

Si on nous avait donné n longueurs a, 6, c, d, £, pour
les côtés successifs d'un polygone et qu'on nous ait demandé
de rechercher s'il existe un polygone donnant le maximum de

l'aire, nous aurions démontré l'existence du polygone extrémal
et prouvé que le maximum de l'aire est atteint exactement de

la même manière. Sachant alors qu'il existe un polygone extrémal
donnant le maximum, prenons quatre des sommets de ce

polygone, soient Af, A, P, Q. Je dis que MNPQ est inscriptible.
En effet s'il ne l'était pas et si mnpq était le quadrilatère
inscriptible de mêmes côtés, l'aire de mnpq serait supérieure à

celle de MNPQ. Transportons les arcs du périmètre du polygone
extrémal n sous-tendus par les diagonales MN, AP, PÇ, QM,
de manière que leurs extrémités viennent en mn, np, pq, qm.
Le nouveau polygone obtenu serait d'aire plus grande que celle
de II et aurait les mêmes côtés; ce qui est absurde. Donc MNPQ
est inscriptible. Il est vrai que j'ai admis que le nouveau polygone
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formé avait un contour qui ne se recoupait pas lui-même, de

sorte que ce que Ton doit appeler son aire apparaît clairement.
Mais s'il se recoupait lui-même ou s'il était concave, en effectuant
un certain nombre de fois l'opération qui consiste à remplacer
deux côtés consécutifs JK1 KL par leurs symétriques par rapport
à /L, on le rendrait convexe et l'aire de ce polygone convexe
serait plus grande que celle de II. Ainsi le problème consistant
à trouver un polygone de côtés donnés et d'aire maximum a

une solution sous la seule condition qu'avec les longueurs données

on puisse effectivement construire un polygone, et le polygone-
solution est inscriptible.

Pour achever l'étude de ce problème, il reste seulement à

montrer que le polygone est bien déterminé par ce qui a été

trouvé, c'est-à-dire qu'il n'existe qu'un polygone convexe
inscriptible ayant les côtés successifs de longueurs a, è, c, I.

Nous déterminerons le rayon du cercle circonscrit à un tel
polygone par l'équation

a + <Pz> + •••• +<Pz — (4)

dans laquelle les cp sont les moitiés des angles sous lesquels les
côtés sont vus du centre, ce qui donne des relations telles que

2R sin cpa a.

Il faudra, ou prendre tous les cp aigus (centre à l'intérieur du
polygone) ce qui donnera l'équation (4'), ou prendre l'angle sous
lequel on voit le plus grand côté obtus et les autres aigus, ce

qui donnera l'équation (4"). 2R est au moins égal aux plus grandes
longueurs données, soit la longueur a. Substituons dans les
premiers membres de (4') et (4//) une valeur R que nous ferons croître

a
de - à °°. Alors le premier membre de (4') décroît constamment

jusqu'à zéro, (4') ne peut donc donner qu'une solution et en
donne une si la valeur de départ est au moins égale à %\ cela
arrive en particulier si plusieurs longueurs données sont égales
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n
à a, car alors, au départ, plusieurs cp sont égaux à - Le premier

membre de (4") part de la même valeur que celui de (4'), mais

pour R oo, il atteint la valeur n. Il l'atteint d'ailleurs en
décroissant car la dérivée par rapport à R de ce premier membre

C'est donc ^Y-~ n2 Z—<
est Yjp'i, avec (p\ -z— _ _ 0^ 2R2 cos q>i 2R ~ cos <pt

Pour R co la somme ]T se réduit à a+ô+ +Z, quantité
positive, donc la dérivée du premier membre de 4" est négative.
Pour une valeur de R annulant cette dérivée, la dérivée seconde

est

1

2R2

i sin (pj _ 1^ r sin (pt

cos2 (pt
^1 4cos 3(pt 8R5^ 3COS

1

8.R5

1

8R5

(2

COS cpa

b

> +
cos <pb

5 + ....+
COS (pl

cos cpb

b

+ +
/

cos <pb
+ +

COS (pt

l
COS (pi

< 0;

le premier membre de (4") ne peut donc pas avoir de minimum
et par suite il a au plus un maximum. Ceci étant, quand on

a
fait varier R de — à ce, le premier membre de (4 part, si (4)

a donné une solution, d'une valeur au moins égale à n pour
finir avec la valeur n et (4,/) ne donne pas de solution; si (4') n'a

pas donné de solution, le premier membre de (4") part d'une
valeur inférieure à % pour décroître à la fin vers la valeur 71,

donc dans ce cas (4") donne une solution et une seule.

Ainsi, si a, b, c, Z, sont les côtés successifs d'un polygone

plan, il existe un polygone inscriptible de côtés successifs a, b. c, I

et c'est lui qui, de tous les polygones admettant des côtés ayant
les mêmes longueurs et dans le même ordre, donne le maximum
de l'aire. Le même polygone donnerait d'ailleurs aussi le maximum

de l'aire si l'ordre des côtés n'était pas imposé; on obtient
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en effet tous les ordres différents par la répétition de la permutation

de deux longueurs consécutives. Or, le remplacement
des côtés PQ et QR du polygone inscriptible convexe relatif
au premier ordre considéré, par exemple, par leurs symétriques
relativement à la médiatrice de PR. donne un polygone inscriptible

convexe sans modification de Y aire et sans que soit changée
la valeur du rayon du cercle circonscrit; ce qui explique que,
dans h équation (4), Tordre des longueurs données n'intervient
pas.

Il est facile de démontrer à partir de là le théorème des

isopérimètres: tout domaine plan 3) de périmètre L et non circulaire
L2

a une aire A inférieure à Vaire — du domaine circulaire de même
An

périmètre.
En effet, on peut inscrire dans le contour de S) un quadrilatère

ABCD non inscriptible dans une circonférence. Si, sans changer
les longueurs des côtés de ABCD, on rendait ce quadrilatère
inscriptible. son aire subirait un accroissement, un gain g. Tout
polygone plan II ayant quatre sommets suffisamment voisins
de ABCD éprouverait, si on le rendait inscriptible sans change-

gment des côtés, un gain d'aire au moins égal à — Choisissons II

comme il suit: prenons d'abord un polygone II0 inscrit dans

le contour de Q) et d'aire supérieure à A — j ; puis modifions ü0

de manière à satisfaire à ces trois conditions évidemment
compatibles:

1° son aire est supérieure à A — ~ ;

2° ses côtés sont au plus égaux à ceux de II0 et ont une partie
aliquote commune;
3° le nouveau polygone est un polygone II.
En partageant, grâce à la partie aliquote commune, les côtés
de II en segments égaux, si n est le nombre total de ces segments,

1 2 71

Taire de II est au plus égale à — nR2 sin
2 n
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avec 2nR sin — < L.
n

Donc on a

£ n 7il\ L2
A s n s m — cos — / \ — < —-2 n n \ n n An

\ 2n sin — / An tg —
\ n f n

ce qui démontre le théorème.
On vient en somme de compléter certains modes de démonstration

du théorème des isopérimètres. On pourrait les compléter
tous de façon analogue, sans modifier en réalité leur simplicité,
mais en faisant un usage non masqué de considérations sur l'infini.

Comment ces considérations, qui viennent de nous servir
pour l'étude des polygones, peuvent-elles être caractérisées?
Ce qui frappe, c'est qu'elles donnent, sans recourir aux équations
qui proviendraient de la méthode des dérivées, l'existence de

l'élément extrémal; c'est seulement ensuite que les équations
interviennent pour déterminer l'élément extrémal dont l'existence
est déjà acquise. C'est le fait analogue qui caractérise ce qu'on
appelle la méthode directe du calcul des variations, aussi f appellerai

méthode directe tout traitement d'un problème d'extremum
dans lequel l'existence de l'élément extrémal sera prouvée tout
d'abord, la détermination de cet élément ne venant qu'après. On voit
que ce qualificatif direct se justifie parfaitement à un certain
point de vue, bien qu'à un autre, comme on l'a dit au début,
il ne convient guère.

Il y a des cas où le recours à la méthode directe semble obligatoire.

Soit à trouver le maximum de y x2 —2^+3 dans l'intervalle

(—2, +2); la dérivée seconde étant toujours positive,
ce maximum ne peut être obtenu par la méthode des dérivées;
mais la méthode directe — qui se réduit ici à la démonstration
du théorème de Weierstrass — montre cependant l'existence
de l'élément extrémal. Celui-ci ne pouvant être obtenu par
la méthode des dérivées est nécessairement l'une des extrémités
de l'intervalle; c'est —2 et le maximum est 11.

Soit encore à trouver le minimum de l'aire d'un quadrilatère
dont les côtés successifs ont pour longueurs a, à, c. d, telles,
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naturellement, que de pareils quadrilatères existent. Les calculs
de dérivation que nous avons faits montrent que l'élément extré-
mal ne peut être obtenu par ces calculs et cependant les

considérations qui nous ont servi pour l'étude du maximum de l'aire
no us donneraient encore une figure ABC0D0 limite de quadrilatères
ayant les côtés voulus et dont dont les aires tendent vers la
borne inférieure des aires. Puisque le calcul des dérivées ne

peut être appliqué à cette figure ABC0D0, c'est que l'angle A

par exemple ne peut varier dans les deux sens, en croissant et
en décroissant, à partir de la valeur qu'il a dans ABC0D0.
Ceci exige donc que, pour l'une de ces variations, la figure cesse

d'appartenir à la famille de nos quadrilatères; en d'autres termes
deux côtés de ABC0D0 doivent se recouvrir partiellement.
L'élément extrémal ABC0D0 est donc à la frontière, peut-on
dire, de la famille de quadrilatères considérés et ce n'est plus
un véritable quadrilatère; l'aire qu'on est conduit à attribuer
à ABC0D0 est celle d'un triangle ayant pour côtés deux des

longueurs consécutives données et pour troisième côté la
différence des deux autres longueurs.

Les problèmes justiciables de la méthode des dérivées et
de son analogue dans le calcul des variations sont dits réguliers.
Tous les autres sont dits irréguliers; ceux-ci sont bien entendu
de natures très variées; il arrive que, pour eux, l'élément extrémal

n'appartienne plus à la famille d'éléments considérés, mais
soit seulement à la frontière de cette famille ; c'est déjà ce que nous
avions rencontré dans la recherche de la courbe joignant A à B,
ayant en A une tangente déterminée, et de longueur minimum.
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