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CuariTrRE II

Sur le probléme des isopérimetres

On a vu, dans article précédemment reproduit, que, lorsqu’on
n’admet pas a priori 'existence de l'extremum de Y = f(X)
cherché, il faut que le procédé employé conduise & la construc-
tion de ’élément extrémal X ainsi que cela s’est produit dans
notre premiére méthode, ou que, comme dans les deux autres
méthodes, il fasse soupconner quel est cet élément extrémal;
il convient alors de terminer par une vérification. Dans cet
article, I'élément X était un point. Lorsque X est une courbe
qui n’est & priori donnée ni de forme ni de grandeur, il faudra
presque toujours construire la courbe extrémale. C’est ce que
nous allons faire pour le probléme des isopérimetres qui s’énonce
ainsi: quelle est, de toutes les courbes planes fermées, de méme
longueur, celle qui enferme la plus grande aire, ou encore quel
est de tous les domaines plans de méme aire celui qui a le plus
petit périmétre? 1)

Le probléme des isopérimeétres peut, comme l'on sait, étre

2

ainsl posé: tracer un domaine pour lequel le rapport < du

carré du périmeétre a ’aire du domaine, soit le plus petit possible.
(est sous cette forme que je l’envisagerai.

J’admets démontré, ce qui est facile, que la solution de ce
probléme ne peut étre donnée que par un domaine convexe. Le
contour convexe qui limite un tel domaine, étant supposé
parcouru dans le sens direct, admet parallelement a toute direc-
tion une et une seule tangente dirigée, en entendant par tangente
au contour une droite qui a des points communs avec le contour,

1) Le texte qui suit est paru sous le titre: Sur les problémes des isopérimeétres et
sur les domaines de largeur constantes, dans les Comptes rendus des séances de la Société
mathématique de France, 1914, p. 72.
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mais aucun point intérieur au domaine. Un contour convexe
est défini par Iensemble de ses tangentes, ou, ce qui revient
au méme, par un ensemble dénombrable de tangentes correspon-
dant & des directions denses dans tout angle. Si 'on compte
les directions & partir d’une origine quelconque, et si « désigne
un arc incommensurable avec 7, toutes les tangentes paralléles
aux directions ma, ou m est entier, suffiraient & déterminer le
contour. Les directions oy, oy, o... étant choisies pour les
tangentes, chacune des tangentes correspondantes dépend d’un
parametre, par exemple sa distance a un point fixe. Le probléme
des isopérimetres, probléme du calcul des variations, est remplacé
par un probléme de minimum pour une fonction de ces parameétres
en nombre infini. C’est 14 une transformation purement formelle
et trés banale, mais elle mérite cependant d’étre signalée parce
que, icl, on peut raisonner sur les paramétres comme s’ils étaient

indépendants. Je veux dire que 'on peut déterminer chaque
2

parametre par la condition que le rapport 3 considéré comme

fonction de ce parametre, supposé seul variable, soit minimum.

Soit C un contour convexe solution du probleme des isopéri-
meétres. Un tel contour, & supposer qu’il existe, n’est déterminé
qu’a une similitude prés; mais peu importe, raisonnons sur un
contour C' déterminé. Soient 7', 75, T, ... les tangentes a ce
contour de directions oy, o, o3, ...

Considérons le polygone II, convexe limité par les tangentes
dirigées 1'y, Ty, T, ... T ,. Je suppose ce polygone fini, ¢’est-a-dire
ne s’étendant pas a I'infini, ce qui est vrai des que p = 3 si ay, a5,
a3 sont bien choisis. Le polygone IT, admet p cOtés ou du moins,
5’1l admet moins de p cotés et §’il n’admet pas, par exemple,
de coté porté par T}, c’est que T passe par un de ses sommets
et que ce sommet est un point de C, sans quoi 7 ne serait pas
tangente & C. On peut donc toujours dire que II, a p cOtés,
a condition, peut-étre, de considérer des cotés infiniment petits.
Ceci va se préciser de suite: passons dell, & II,,; en coupant
II, par T,.1;0n sait & avance que les cotés de II, qui seront
coupés par 7,,; sont ceux qui, dans la rose des directions,
comprennent la direction «,.;. Soient AB, AC ces deux cOtés,
qui sont finis ou infiniment petits, peu importe;la tangente I',,
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coupe certainement AB entre A et B et AC entre A et C, mais
elle peut passer par A, par B ou par C. Dans tous les cas, pour
passer de IT, & II,.;, on enléve de II, un triangle et non un
polygone plus compliqué; c’est la remarque essentielle.

Ce triangle, enlevé pour passer de I, a1l .y, est de grandeur
inconnue, mais il est connu & une homothetle prés. Si L, et S,
sont la longueur et Paire de II, et si I'on coupe II, par une
parallele & 7',,4 qui passe entre A et B et entre A et C, on
remplace II, par I, et L, et S, respectivement par L,—k,
S,—k*s, 1 et s étant des nombres qu'on peut calculer des que

2
Gy, Oy Ogy ... 0,41 SONt donnés. Par sulte( p+1) est au moins
2 S +1
. (L, k) i

‘égal au minimum de S 125 cherchons ce minimum. On

,—
I'obtient pour:

21 2ks

L,—kl  S,—k%s

ou

—kl kl L

2. T 12< < (1)
S, —k*s k®s

et ce minimum est

L,—kl)* L o 1S, 1 L, I
g_ﬂ___z_)_=_£ L—-kl|=22l1--2—|=-2 = (2
S,—k"s S, S

12
Ainsi, quand on passe de II, & Il ,,;, on gagne au plus — = ¢
- s
quantité connue a P'avance et ne dépendant que de oy, o, ...,
«,+1 > et ’on ne gagne cette quantité que sil’égalité (1) est vérifiée
par la tangente T,. Cette égalité s’interprete géométriquement

D

d’une fagon tres simple: ——L—’i est le rayon d’un cercle inscrit

p , 2k%s
dans un polygone de longueur L, et d’aire §,;

est le rayon

du cercle exinscrit dans le triangle enlevé pour passer de II,
a I, et inscrit dans 'angle A de ce triangle, ¢’est-a-dire dans
celui des angles de II, dont le sommet n’est pas sommet de IT, .,
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Szi donc IT, est un polygone circonscriptible et si I'on gagne
!
— = ¢&, en passant de II, & IT,,,, Il est circonscrit au méme
S
cercle que IL,.

Ceci étant, et supposant, comme précédemment, que oy,

oy, oy, Solent choisis de maniére que II; soit un triangle, soit

’ r : :

m le rapport 5 pour ce triangle; m est connu, puisque le triangle
2

est connu & une homothétie prés. Le rapport — pour II ;.
. . S P
sera au moins

Mm—=g;—8& —...—§&,

et 1l ne sera égal a cette quantité que si la condition (1) est
constamment remplie, c’est-a-dire si II,, I, ... II,.; sont
circonscrits au cercle inscerit dans II5. Si cette condition n’était
pas remplie par Il,;; ayant été remplie par II,, 1I5, ... I,
5.
£ serait au moins

S

HE — B~ 8y = o o= By_q =By = wn = Ep—H

avec 1 <<g,. Et ce « manque & gagner » g—7 ne pourrait jamais
étre rattrapé dans la suite.

L2

— pour le contour C étant la limite du rapport correspondant
pour les polygones II,,, on voit que le cas ou C est un cercle
est une solution du probléeme des isopérimeétres et que c’est la
seule solution. 12

Chemin faisant, nous avons vu que le minimum de < powr

un polygone dont les c6tés ont des directions données est toujours
fourni par un polygone circonscriptible. Signalons encore une
quantité de curieuses expressions, savoir toutes celles qui résul-
tent de la formule

AT = m—¢g3— €4 —8&5—...;

inutile de les expliciter ici.?t)

1) La suite de la communication est relative aux domaines de largeur constante;
il en sera question plus loin (voir p. 247, note 3).
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Dans un livre auquel auront avantage a se reporter tous
ceux qui s’intéressent au probleme des isopérimetres et aux
questions analogues: Sur le probléme des isopériméires et
le probléeme des isépiphanes (collection des monographies sur
la théorie des fonctions, Gauthier-Villars, 1930), M. T. Bon-
nessen a dit que la démonstration précédente était la seule
démonstration élémentaire qu’il connaissait avant d’avoir
construit les siennes. Elle est facile & suivre et, en ce sens,
mérite bien, je crois, le qualificatif d’élémentaire. Mais, si 'on
se reporte a la signification donnée au mot géométrie élémentaire
par les Grees et si U'on cherche ce qui caractérise les procédés
de cette géométrie, on sera conduit, je pense, & noter en premier
lieu 'absence de considérations sur l'infini. Ce n’est pas qu’a
y regarder de pres, on ne rencontre la notion d’infini a chaque
pas puisque les étres mémes sur lesquels on raisonne, point,
droite, etc..., sont concus comme résultant d’une suite indéfinie
de simplifications faites sur des objets du monde réel; les consi-
dérations du troisiéme livre sur les rapports, ainsi que celles
sur les aires et volumes, introduisent bien aussi des passages
a la limite, donc des considérations de suite infinie. Pourtant
14 encore l'infini n’intervient que pour arriver aux notions pre-
mieres, aux définitions, on évite son emploi dans les raisonne-
ments. A cet égard, la démonstration qui vient d’étre donnée
n’est pas élémentaire: on y construit la circonférence extrémale
& 'aide d’une suite infinie de ses tangentes. I’emploi de I'infini
dans les problémes d’extremum est pour ainsi dire de régle;
aucune de ces questions n’est vraiment élémentaire.

Prenons par exemple le probléme simple suivant:

de tous les quadrilatéres ABCD ayant quatre cétés de longueur
donnée a, b, c, d, quel est celui de plus grande aire?
L’aire a pour expression

1 1
Ead sin A+ Ebc sin C. (1)

Les angles A et C sont liés par la relation

a*+d*—2ad cos A = b?+c*>—2bc cos C. (2)
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La méthode des dérivées donne alors

1
—-ad cos A —be cos C
2 2

2ad sin A —2bcsin C

d’ou

tgA+tgC = 0

Le maximum de l'aire ne peut donc étre atteint que pour un
quadrilatére inscriptible. Mais il faudra s’assurer qu’il existe
un tel quadrilatere et qu’il donne effectivement le maximum.
Ce dernier point conduira au calcul de la dérivée seconde.
Faisons-le immédiatement: en considérant C comme fonction
de A4, la dérivation des relations (2) et (1) donne

ad sin A
be sin C’

28" = ad cos A+bc cos C.C’

ad '
= — (cos 4 sin C+sin 4 cos C)
sin C

p sin (44 C)
sin C

28" = ———[oos (A+C) sin C(1+C’)—sin (4 +C) cos C.C']
Sin ‘ i

ad (A+C) sin €~ Y sin 2 4
= cOoS Sin — .

sin 2C bc sin C

Donc, pour A+C = II, §'' est négatif, ce sera bien un maximum
que I'on obtiendra. Quant a ’existence d’un quadrilatére inscrip-
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tible de cotés a, b, ¢, d, elle résultera de 'existence des racines
de I'équation

a?+d?>—2ad cos A = b*+c*+2bc cos A. (3)

Les conditions de possibilité s’obtiendront en écrivant que la
valeur de cos A tirée de cette équation n’est pas extérieure
a lintervalle —1,-~1. On verra facilement que ces conditions
sont vérifiées si chacune des quatre longueurs est plus petite
que la somme des trois autres, donc dans le cas que nous consi-
dérons ou, avec les longueurs de ces cOtés, on peut construire
un quadrilateére.

Les considérations sur l'infini sont tout entiéres cachées a
la fin de l'étude précédente, au moment ou nous utilisons,
sans le dire explicitement, ce théoréme de Weierstrass: une
fonction continue d’une ou plusieurs variables considérée dans
un domaine borné y atteint sa borne inférieure, sa borne supé-
rieure et toutes les valeurs comprises entre ces deux bornes.
(est seulement grace & ce théoreme que nous avons pu conclure
a l'existence du quadrilatére dés que nous avons été assurés
que I'équation (3) donne pour cos A une valeur non extérieure
a l'intervalle -1, +1. Or ce théoréme de Weierstrass se démontre
et ne peut étre démontré que grace a la considération de I'infini.

Je rappelle qu'on utilise généralement ce qu'on appelle le
théoréme de Bolzano-Weierstrass, savoir: tout ensemble infini
de points distincts ou confondus et situés dans un domaine
borné admet au moins un point-limite. On peut le démontrer
ainsi: partageons le domaine en un nombre fini de domaines
partiels; I'un d’eux contiendra nécessairement une infinité de
points. Partageons de nouveau celui-ci en une infinité de do-
maines partiels; parmi ces nouveaux domaines, 'un contiendra
nécessairement une infinité de points, etc... En prenant conve-
nablement ces subdivisions, on aura une suite infinie de domaines
emboités les uns dans les autres et tels quil n’existe qu’un
seul point P intérieur & tous. Il est clair que, dans tout voisinage
de P, il y aura une infinité de points distincts ou confondus
de I’ensemble primitif. Donc P est I'un de ces points-limites
dont 1l s’agissait de prouver 'existence.
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Puisque les raisonnements d’aspect élémentaire sont aussi
bien que les autres basés sur la considération de I'infini, utilisons
franchement de telles considérations, et reprenons par exemple
le probléme du quadrilatére.

Considérons une suite infinie de quadrilatere Q,, Q,, etc...
ayant les cotés donnés a, b, ¢, d et dont les aires tendent vers
la borne supérieure. Placons tous ces quadrilatéres de fagon,
par exemple, qu’ils aient les cotés AB confondus. Nous aurons
une infinité de positions distinctes ou confondues de C, d’ou
au moins un point-limite €, pour ces points C. Choisissons
dans la famille des quadrilatéres @y, Q,, ... une suite partielle
Q'y, Q'g ... pour lesquels les points C tendent vers C,. Les
sommets D de ces quadrilatéres ont au moins un point-limite D,,.
Prenons enfin une suite Q";, Q"y ... tels que C et D tendent
vers Cy et Dy. Il est clair que le quadrilatéere ABCyD, a les cotés
donnés et qu’il a pour aire la borne supérieure de I'aire. Ainsi,
sans utiliser les dérivées, nous venons de démontrer I’existence
d’un quadrilatere extrémal et de prouver que le maximum
de I'aire est atteint. S1 maintenant nous appliquons au quadrila-
tére trouvé ABCyD, la méthode des dérivées, 1l nous suffira
de reprendre le commencement du calcul fait précédemment
pour étre certain que ce quadrilatére extrémal est inscriptible.

Si on nous avait donné n longueurs a, b, ¢, d, ... [, pour
les cotés successifs d’un polygone et qu’on nous ait demandé
de rechercher s’il existe un polygone donnant le maximum de
I’aire, nous aurions démontré I'existence du polygone extrémal
et prouvé que le maximum de Paire est atteint exactement de
la méme maniére. Sachant alors qu’il existe un polygone extrémal
donnant le maximum, prenons quatre des sommets de ce poly-
gone, soient M, N, P, Q. Je dis que MNPQ est inscriptible.
En effet ¢’il ne I'était pas et si mnpqg était le quadrilatére ins-
criptible de mémes coOtés, I'aire de mnpq serait supérieure a
celle de MNPQ. Transportons les arcs du périmetre du polygone
extrémal Il sous-tendus par les diagonales M N, NP, PQ, QM,
de maniére que leurs extrémités viennent en mn, np, pq, gm.
Le nouveau polygone obtenu serait d’aire plus grande que celle
de II et aurait les mémes cOtés; ce qui est absurde. Donc M N PQ
est inscriptible. Il est vrai que J’ai admis que le nouveau polygone
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formé avait un contour qui ne se recoupait pas lui-méme, de
sorte que ce que 'on doit appeler son aire apparait clairement.
Mais s’il se recoupait lui-méme ou §’il était concave, en effectuant
un certain nombre de fois I'opération qui consiste & remplacer
deux cdtés consécutifs JK, KL par leurs symétriques par rapport
a JL, on le rendrait convexe et I'aire de ce polygone convexe
serait plus grande que celle de II. Ainsi le probléme consistant
a trouver un polygone de cOtés donnés et d’aire maximum a
une solution sous la seule condition qu’avec les longueurs données
on puisse effectivement construire un polygone, et le polygone-
solution est inscriptible.

Pour achever I'étude de ce probleme, il reste seulement &
montrer que le polygone est bien déterminé par ce qui a été
trouvé, c’est-a-dire qu’il n’existe qu'un polygone convexe ins-
criptible ayant les cotés successifs de longueurs a, 0, ¢, ..., [

Nous déterminerons le rayon du cercle circonscrit a un tel
polygone par I’équation

Pat@pt..c.+@p =, ‘ (4)

dans laquelle les ¢ sont les moitiés des angles sous lesquels les
cOtés sont vus du centre, ce qui donne des relations telles que

2R sin ¢, = a.

Il faudra, ou prendre tous les ¢ aigus (centre & l'intérieur du
polygone) ce qui donnera I’équation (4'), ou prendre I’angle sous
lequel on voit le plus grand c6té obtus et les autres aigus, ce
qui donnera I’équation (4"). 2R est au moins égal aux plus grandes
longueurs données, soit la longueur a. Substituons dans les pre-
miers membres de (4") et (4”) une valeur R que nous ferons croitre

a :
de > a 0. Alors le premier membre de (4') décroit constamment

jusqu’a zéro, (4') ne peut donc donner qu'une solution et en
donne une si la valeur de départ est au moins égale & 7n; cela
arrive en particulier si plusieurs longueurs données sont égales




b 4 o /4 hY n h
a a, car alors, au départ, plusieurs ¢ sont égaux a 5 Le premier

membre de (4”) part de la méme valeur que celui de (4'), mais
pour R = oo, il atteint la valeur =n. Il D'atteint d’ailleurs en
décroissant car la dérivée par rapport & R de ce premier membre

i 1
. C’est done — RZZ

est ‘., avec @) = — ————
29" ? 2R? cos o; cos ¢;

Pour R = oo la somme ) se réduit & a+b+ ... +I, quantité
positive, donc la dérivée du premier membre de 4” est négative.
Pour une valeur de R annulant cette dérivée, la dérivée seconde
est

i sin @; 1 i% sin @,

- 4R4Z

cos? @; N 8R5 2

1 l_ b 3 l 3
s >+ +seae
8R |_ cos @, COS @ cos @
1 b l 5
v 4+t +
8R COS @y COS

(AR

le premier membre de (4”) ne peut done pas avoir de minimum
et par suite il a au plus un maximum. Ceci étant, quand on

—ZRZZ

cos >, cos? o,

a . y g
fait varier R de 0 a oc, le premier membre de (4') part, si (4)

a donné une solution, d’une valeur au moins égale & n pour
finir avec la valeur 7 et (4”) ne donne pas de solution; si (4) n’a
pas donné de solution, le premier membre de (4”) part d’une
valeur inférieure & = pour décroitre a la fin vers la valeur =,
donec dans ce cas (4”) donne une solution et une seule.

Ainsi, st a, b, ¢, ... 1, sont les cotés successifs d’un polygone
plan, il existe un polygone inscriptible de cdiés successifs a, b, c, ... 1
et c’est lui qui, de tous les polygones admettant des cotés ayant
les mémes longueurs et dans le méme ordre, donne le maximum
de U'aire. Le méme polygone donnerait d’ailleurs aussi le maxi-
mum de Paire si Iordre des cotés n’était pas imposé; on obtient
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en effet tous les ordres différents par la répétition de la permu-
tation de deux longueurs consécutives. Or, le remplacement
des cotés PQ et QR du polygone inscriptible convexe relatif
au premier ordre considéré, par exemple, parleurs symétriques
relativement & la médiatrice de PR, donne un polygone inscrip-
tible convexe sans modification de laire et sans que soit changée
la valeur du rayon du cercle circonscrit; ce qui explique que,
dans I'équation (4), I'ordre des longueurs données n’intervient
pas.

Il est facile de démontrer & partir de la le théoreme des

isopérimetres: tout domaine plan @ de périmétre L et non circulaire
2

a une aire A inferieure a l'aire ym du domaine circulaire de méme
/A

périmeétre.

En effet, on peut inscrire dans le contour de 2 un quadrilateére
ABCD non inscriptible dans une circonférence. Si, sans changer
les longueurs des cotés de ABCD, on rendait ce quadrilateére
inscriptible, son aire subirait un accroissement, un gain g. Tout
polygone plan Il ayant quatre sommets suffisamment voisins
de ABCD éprouverait. si on le rendait inscriptible sans change-

A /4 » . . r a g . 0
ment des cOtés, un gain d’aire au moins égal & 5 Choisissons II
comme 1l suit: prenons d’abord un polygone II, inscrit dans
. , - ; g . .
le contour de & et d’aire supérieure a A — o 3 puis modifions 11,

de maniére & satisfaire a ces trois conditions évidemment com-
patibles:

<«

1° son aire est supérieure & A — 5

~ 2° ses cOtés sont au plus égaux & ceux de I, et ont une partie
aliquote commune;

3° le nouveau polygone est un polygone II.

En partageant, grice a la partie aliquote commune, les ¢otés
de Il en segments égaux, si n est le nombre total de ces segments,

: 1 2
Iaire de II est au plus égale & ) nR? sin —
n
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. 7T
avec 2nR sin — < L.
n

Donc on a

.om T L i L?
<nsmn-—cos— [ —— < ,
n n T T 4
2n sin — dn tg —
n n

A

I

| Q

ce qui démontre le théoréeme.

On vient en somme de compléter certains modes de démons-
tration du théoréme des isopérimetres. On pourrait les compléter
tous de facon analogue, sans modifier en réalité leur simplicité,
mais en faisant un usage non masqué de considérations sur 'infini.

Comment ces considérations, qui viennent de nous servir
pour l'étude des polygones, peuvent-elles étre caractérisées?
Ce qui frappe, c¢’est qu’elles donnent, sans recourir aux équations
qui proviendraient de la méthode des dérivées, 'existence de
I’élément extrémal; c’est seulement ensuite que les équations
interviennent pour déterminer I’élément extrémal dont 'existence
est déja acquise. C’est le fait analogue qui caractérise ce qu’on
appelle la méthode directe du calcul des variations, aussi j’appel-
lerat méthode directe tout traitement d’un probléme d’extremum
dans lequel Uexistence de [Uélément extrémal sera prouvée tout
d’abord, la détermination de cet élément ne venant qu’ aprés. On voit
que ce qualificatif direct se justifie parfaitement & un certain
point de vue, bien qu’a un autre, comme on l’a dit au début,
il ne convient guere.

Il y a des cas ou le recours & la méthode directe semble obliga-
toire. Soit & trouver le maximum de y = 2% —2x+4-3 dans 'inter-
valle (—2, -+2); la dérivée seconde étant toujours positive,
ce maximum ne peut étre obtenu par la méthode des dérivées;
mais la méthode directe — qui se réduit ici a la démonstration
du théoréme de Weierstrass — montre cependant Iexistence
de 1’élément extrémal. Celui-ci ne pouvant étre obtenu par
la méthode des dérivées est nécessairement 'une des extrémités
de lintervalle; ¢’est —2 et le maximum est 11.

Soit encore a trouver le minimum de l'aire d’un quadrilatere
dont les coOtés successifs ont pour longueurs a, b, ¢, d, telles,
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naturellement, que de pareils quadrilatéres existent. Les calculs
de dérivation que nous avons faits montrent que I’élément extre-
mal ne peut &tre obtenu par ces calculs et cependant les consi-
dérations qui nous ont servi pour ’étude du maximum de I'aire
nous donneraient encore une figure A BCy D, limite de quadrilatéres
ayant les cOtés voulus et dont dont les aires tendent vers la
borne inférieure des aires. Puisque le calcul des dérivées ne
peut étre appliqué & cette figure ABC,D,, c’est que 'angle A
par exemple ne peut varier dans les deux sens, en croissant et
en décroissant, & partir de la valeur qu’il a dans ABC,D,.
Ceci exige donc que, pour I'une de ces variations, la figure cesse
d’appartenir a la famille de nos quadrilateres; en d’autres termes
deux coOtés de ABC,D, doivent se recouvrir partiellement.
L’élément extrémal ABC,D, est donc a la frontiére, peut-on
dire, de la famille de quadrilatéres considérés et ce n’est plus
un véritable quadrilatére; I'aire qu’on est conduit a attribuer
a ABCyD, est celle d’un triangle ayant pour cdtés deux des
longueurs consécutives données et pour troisieme coté la diffé-
rence des deux autres longueurs.

Les problémes justiciables de la méthode des dérivées et
de son analogue dans le calcul des variations sont dits réguliers.
Tous les autres sont dits irréguliers; ceux-ci sont bien entendu
de natures trés variées; il arrive que, pour eux, 1’élément extré-
mal n’appartienne plus a la famille d’éléments considérés, mais
soit seulement & la frontiére de cette famille; ¢’est déja ce que nous
avions rencontré dans la recherche de la courbe joignant A & B,
ayant en A une tangente déterminée, et de longueur minimum.

L’Enseignement mathém., t. IX, fasc. 4.
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