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Chapitre premier

Sur une question de minimum x)

1. Il s'agit de cette question connue: A, B, C étant trois points
donnés, P un point variable du plan ABC, quel est le minimum
de la somme PA+PB-f PC

Je me propose de résoudre cette question par des méthodes

élémentaires, sans faire d'hypothèses sur l'existence d'une position

pour laquelle le minimum est atteint, et sans recourir ni
à la théorie des coniques ni à des considérations de géométrie
de situation.

Dans une suite d'exercices de sa Géométrie élémentaire (voir
en particulier ex. 363) M. Hadamard a donné une méthode
conduisant au but que je me propose. Bien entendu, sa méthode
n'est pas sans parenté avec celles qui suivent. Des différentes
démonstrations proposées, le lecteur en déduira facilement de

nouvelles.
Les premiers paragraphes contiennent des propositions accessoires

qui simplifieront l'exposition, mais qu'il n'est pas nécessaire

de traiter à part comme je le fais.

2. Parcourons le périmètre du triangle dans le sens ABC; nous
fixons ainsi un sens de rotation qui sera dit le sens direct.

Si par A on mène une droite quelconque D et par B une
droite A rencontrant D en un point P et telle qu'il faille faire

2n
tourner D de — dans le sens direct autour du point P pour

l'amener sur A, le lieu de P quand D tourne autour de A, est
2n

la circonférence capable de — décrite sur AB.

0 Le texte qui suit est paru sous le titre: Sur une question de minimum, dans
la Revue de l'Enseignement des Sciences, 12e année, janvier-février 1918, p. 1.
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2k
Si, au contraire, A se déduisait de D par une rotation de —

dans le sens inverse, le lieu de P serait la circonférence capable
2k

de décrite sur AB.
3

2k
Les trois circonférences capables de + — décrites respectivement

sur AB, BC, CA se coupent en un point M, et de même les

2k
trois circonférences capables de — — se coupent en un point Mv

En effet, si iif, par exemple, est le point commun aux deux
premières, on passe de la droite MA à la droite MB par une rota-

2k 2K
tion + — ; on passe de MB à MC par une rotation + — ; donc

on passe de MC à MA par la rotation

2k 2k 2k
_1_ 27z — — — — -f* —

3 3 3

271

Soit AIBI' (fig. 1) la circonférence capable de + — décrite

par P. Nous allons chercher dans quelles conditions le point M
est intérieur au triangle ABC. Le sens de rotation direct des

2k
angles + — est le sens AIB. Ce sens doit être le même que le

sens ABC] donc le point C est dans le demi-plan limité par AB
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et qui contient La droite MC forme avec MA et MB des

angles égaux en valeur absolue à —et qui sont inscrits dans notre

circonférence; donc MC passe par milieu du grand arc .AB.

Les droites IA, IB et l'arc AI'B divisent le demi-plan considéré

en quatre régions. Si C est dans X'BU ou V'AX, le point M,

qui est sur IC, est sur l'arc AI ou BI, donc est extérieur à ABC.

Si Cest dans UBI'AV,Mest sur AI'B et entre C et le

point de rencontre avec AB;donc il est intérieur à ABC.
Si C est dans le segment AI'B,M est encore sur mais

pas entre C et le point de rencontre avec AB; donc il est encore

extérieur à ABC.
2n

Or, quand C est dans VAX, l'angle A surpasse — ; quand C

2tc
est dans X'BU, l'angle B surpasse — ; quand C est dans le

2n
segment AI'B, Tangle C. surpasse — ; quand C est dans

2n
VAI'BU, tous les angles du triangle sont inférieurs à -y.

Donc M est intérieur au triangle ABC si tous ses angles
2n

sont inférieurs à —.3

Supposons maintenant que la circonférence AIBI' soit ca-
2n

pable de — et cherchons dans quelles conditions M± est

sur Tare AI'B que nous appellerons T. Cette fois, C est dans le

demi-plan limité par AB et qui contient I.
M± étant sur CI, il faut que C soit dans AIB ou U'IV. Dans

le premier cas, les deux angles A et B sont tous deux plus petits
71

que — ; dans le second, ils sont tous deux plus grands; pour toutes
71

les autres positions de C, Tun de ces angles est plus grand que —

et Tautre plus petit.
Si 0 est un triangle d'angles a, ß, y, on démontrera de même

que les trois circonférences capables de +(7u—a), +(7i — ß),
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+ (71 — y), ou de — (n — a), — (n — ß), —(tc— y), décrites sur AB,
BC, C34 concourent en un point ilf ou Mv Dans les considérations
précédentes, le triangle équilatéral ABI sera remplacé par un
triangle semblable à 0 pour lequel:

ABl ß, mA =- y, IAB oc

Donc, M sera intérieur à ABC si Ton a

A <% — oc, B <7i~ß, C <7i— y

Mx sera sur bare r si Ton a

soit A < a et B < ß

soit A > a et B > ß

3. Pour la recherche du minimum de PA-{-PB-{-PC, on peut
se borner aux points P intérieurs à ABC ou situés sur le contour
de ABC. Je les appellerai: les points de ABC.

En effet, soit un point P qui ne soit pas point de ABC. Nous
allons lui faire correspondre un point de ABC donnant une
somme plus petite que PA^-PB^-PC.

Si P est en Pt dans XA Y' (fig. 2), on a

P iB + P J C > AB + AC,
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donc

PXA + PXB + PXC > AA+AB+AC,

et Pon peut faire correspondre A à Px.
Si P est en P2 dans X'BCY, on peut lui faire correspondre p,

point de rencontre de AP2 et de BC, car

P2B + P2C > pB + pC,

donc

P2v4 + P2B + P2C > pA+pB + pC.

Tous les cas sont ainsi examinés.
La même conclusion subsiste et le raisonnement convient aussi

pour le cas de la somme aPA-\-bPB-\-cPC, a, b, c étant trois
constantes positives données. Pour la somme aPAA-bPB — cPC,
il suffirait de s'occuper des points de la région Y'ABZ\ démontrons

seulement qu'on peut se limiter au demi-plan II limité
par AB et ne contenant pas C. Soient en effet P1 et P2 deux points
symétriques par rapport à AB, Px étant dans II ; il est évident

que l'on a

aPxA +bPxB — cPxC aP2A + bP2B — cPxC

< aP2A + bP2B —cP2C

I

4. Soit A^B^C (fig. 3).
TC

Faisons tourner ABC de H— autour de C; il vient en A'B'C.
3

5

Un point P, intérieur à ABC, vient en P'. Le triangle PCP',
71

isocèle car PC PC', et dont l'angle C vaut + —, est équilatéral.

Donc

PA+PB+PC AP+PP'+P'B'

Un mobile, se déplaçant sur APP'B' de A vers Br, tourne
autour de C d'abord de l'angle ACP qui est dans le sens direct,
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puis de +1"? Puis de P'CB' PCB de sens direct; donc il
7C

tourne au total de ACB-\—.
^ 3

2tt
Si donc Tangle C du triangle surpasse — la ligne APP'B'

est enveloppante pour la ligne ACB' dont Tangle ACB' est plus
grand que tu. Le minimum est alors obtenu quand P est en C.

Ce minimum est la somme des deux plus petits côtés du triangle,
car AB opposé au plus grand angle C est le plus grand côté de

ce triangle.

^ /s /N 2ti
Si C, et par suite aussi A et 5, est inférieur ou égal à —, il

existe un point M de ABC tel que les droites MA; MB, MC
2n

fassent entre elles des angles de + — Si P vient en M, on a

^ 2n ^ n
APC — CPP' -3 3

/N ^2% <^71CP'B' CPB — PP'C =-;3 3

donc A, P, P', B sont en ligne droite: la position M de P donne
le minimum et il est évident que c'est la seule position le donnant.

Ce minimum est égal à

AB' J ^ÏC2 +BC2-2AC.BCcosfc+ j\
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Le fait que C est le plus grand des angles nous a été commode

pour la distinction des deux cas, mais il n'intervient pas dans la
seconde partie du raisonnement; dans l'expression ci-dessus du
minimum, on peut donc effectuer une permutation circulaire sur
les côtés et les angles du triangle.

5. M. Montel m'a fait remarquer que la démonstration s'applique
à la somme

aPA + bPB + cPC.

Ecartons le cas banal où l'un des a, b, c, serait nul, et supposons

d'abord qu'il existe un triangle 0 dont les côté ont pour
longueurs a, 6, c. Soient a, ß, y les angles de ce triangle.

Supposons que l'on ait

A + oc ^B+ß ^ C +y

et faisons tourner ABC de l'angle y autour de C; puis effectuons
jy

l'homothétie de centre C et de rapport — qui donne le triangle
a

A'B'C\ jP, intérieur à ABC, vient en P'. On a

b b
P'Br PB X - P'C PCX

a a

/n
Le triangle PCP', dont l'angle PCP' est égal à y, est donc
semblable à © et

BP' PCX-
a

Donc on a

Ar+Pr+w =°FA+bPB+'pc

La démonstration se poursuit comme précédemment. Le minimum

est donné par Csi C+y>n. Le minimum est donné par le
point M commun aux trois circonférences capables de + (71—a),
+(rc—ß), +(1—y) décrites respectivement sur BC, CA, AB, si

A +a < re, B + ß < n, C +y < n.
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Supposons ensuite qu'il n'existe pas de triangle ©. Soit, par
exemple, c>a-\-b. On peut trouver c3 vérifiant cx> a, c{>b,
c3<a+6 et tel que le triangle de côtés a, b, cx ait un angle y3
opposé à cx assez grand pour que C+y3 surpasse n. Alors on a,
quel que soit P différent de C,

aPA + bPB + ClPC > aCA+bCB,

donc, a fortiori, puisque cx est plus petit que c,

aPA + bPB+cPC >- aCA +bCB

et le minimum est donné par la position C de P.

II

6. Soient Ax, Bx, Cx des points pris sur il/A, MB, MC entre
M et A, B, C et P un point différent de il/. On a

PA ^PA1+AAU PB SPBX+BBU PC ^PC± + CCl9

les trois signes ne convenant pas à la fois. En ajoutant, on a

PA +PB +PC < PA1 +PB1 +PC± +(AA1 +BB1 + CCX).

Si donc on a

PA1 + PBX + PCX ^ MA1 + MBX + MC1

en ajoutant AA1-\-BB1JrCC1 aux deux membres, on en tire:

PA +PB +PC < MA + MB + MC.

Donc, si M donne le minimum pour PA-\-PB-\~PCr il donne
aussi le minimum pour PA1JrPB1JrPCv Et puisque, quels que
soient s/, <&, sur les demi-droites MA, MB, MC, une homo-
thétie de centre il/ permet de remplacer sé, <, par Ax, Bx, Cx

entre M et A, M et B, M et C, le point M donne aussi le minimum

pour la somme Psé+P&-\-P^.
La recherche d'une position donnant le minimum est donc

la recherche d'une certaine configuration de trois demi-droites
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MA, MB, MC, mais ne dépend pas de la position des points A,
B, C.

Cette remarque, qui fait pressentir le rôle du point M du § 2,

permet d'arriver tout de suite au résultat si l'on admet l'existence
d'une position P donnant le minimum. Pour rester tout à fait
dans le domaine élémentaire, notons la conclusion sous la forme
suivante.

Si l'on a

PA+PB+PC > MA + MB + MC,

on peut remplacer dans cette inégalité les points A, B, C par
d'autres situés sur MA, MB, MC entre M et A, M et B, M et C,

ou par des points situés sur PA, PB, PC, au-delà de A, B, C.

En d'autres termes, on peut allonger les longueurs du membre
le plus grand ou diminuer celles du plus petit.

7. Supposons que ABC soit un triangle équilatéral ; M est le

point de rencontre de ses hauteurs. Soit P un point différent de M.
Je dis que l'on a

PA+PB+PC > MA + MB + MC.

En effet, soient Px, P2 les deux points déduits de P par des rotations
2n

de ± autour de M. M est le point de rencontre des médianes

du triangle PPXP2; donc la somme géométrique de AP, APX,
AP2 est d'après une proposition connue égale h 3 AM. Cette
somme géométrique a une longueur inférieure à AP^-AP^AP^,
donc on a

+PB +PC ap±ap1±ap>bp+bp1+bp2_
3 3

CP + CPt + CP2
+ > AM+BM + CM

Ainsi le point M donne bien le minimum pour le cas du
triangle équilatéral.

2tl
Supposons que ABC n'ait aucun angle supérieur à—.
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D'après le § 2, il existe un point M tel que les trois demi-droites
2n

MA, MB, MC fassent entre elles des angles égaux à — -1).

Sur ces trois demi-droites, prenons, au-delà de A, B, C trois
points j/, J*, #, à la même distance de M. M donne le minimum
pour le triangle séâlM, donc aussi pour ABC.

Supposons que ABC ait un angle supérieur à —, soit

Tangle C. Je dis que C donne le minimum, donc, que, quel que
soit le point P, on n'a pas

PA+PB+PC < CA + CB.

2n
L'un des deux angles BCP ou PCA est inférieur à —, soit

2n
^

BCP (fig. 4). Traçons la droite Ca faisant + — avec CB\ elle

coupe PA en a. Si l'inégalité précédente était vraie, on pourrait
y remplacer A par a. Or cela est impossible, puisque C donne le

minimum pour le triangle aBC.

HI

8. Les raisonnements du § 6 s'appliquent tout de suite au cas
de la somme aPA-\-bPB-\-cPC\ mais il n'en est pas de même

du raisonnement du début du § 7 .On peut, dans le cas général,
raisonner comme il suit.

in
î) si C -r- M est en C; la demi-droite MC est alors définie par la condition

3 2 H
de faire l'angle + "y avec MB- '
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Plaçons-nous dans le cas où il existe un triangle 0 et où

A-\-oc, i?+ß, C+Y sont inférieurs à n. Il existe alors, dans ABC,

un point M d'où l'on voit BC, CA, AB sous des angles tc —oc,

n — ß, n — Y (§2). Je dis que ce point donne le minimum. So.it P

un point différent de M. L'hypothèse

aPA+bPB+cPC *£ aMA+bMB+cMC

va nous conduire à une contradiction.

Soient (fig. 5) PA, PB, Pc les projections de P sur AM, BM,
CM et convenons de compter positivement APa, BPb, CPc
respectivement dans les sens AM, BM, CM. On a

AP ^ APa;

inégalité dans laquelle le premier membre est positif et le second
de signe quelconque, ou

AM-AP ^ AM-APa PaM.

Les trois inégalités analogues ne peuvent se réduire simultanément

à des égalités. En les ajoutant, on a

0 ^ a(AM-AP)+b (BM-BP)+c (CM - CP)

< aPaM + bPBM + cPcM.
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Or, soit 9 un triangle ayant pour hauteurs les droites MA
MB, MC. 6 est évidemment semblable à 0; donc ses côtés sont
proportionnels à a, b, c. En représentant par Ma, Mb, Mc,
Pa, Pb, Pc les distances de M et P aux côtés de ce triangle,
distances comptées dans des sens tels qu'elles soient positives
pour des points intérieurs à 9, on a, comme l'on sait

ü Ma-{• b Mbc Mc ciPa + bPb + cPc,

ou encore

a(Pa — Ma) +b(Pb — Mb) +c(Pc — Mc) 0

Or, au signe près peut-être, car la position de 9 n'a pas été
précisée, le premier membre est égal à aPÂM-\-bPBM+cPcM, d'où
la contradiction annoncée.

Le premier cas étant ainsi traité, pour achever l'examen des

trois cas possibles, on imitera la fin du § 7, puis celle du § 5.

IV

9. Je vais examiner rapidement le cas de la somme
aPA + bPB — cPC, en supposant toutefois c<a+b, sans quoi
le minimum serait — oo comme on le voit en prenant P de plus
en plus loin.

Soit P un point du demi-plan II limité par AB et ne contenant

pas C (§ 3). Soit Q la position du point K donnant le

minimum de aKA-\-bKB-\-cKC. On a

aPA + bPB > aQA + bQB + cQP,

d'où

aQA + bQB — cQC< aPA + bPB — c (QP + QC)

< aPA+bPB-cPC.

Or, Q est en A si A^>n — a, ou si a>&+c, en B si 5>7i —ß,

ou si è>a+c, en C si C>7i —y, et si aucune de ces conditions
n'est réalisée, il se trouve sur l'arc T de la circonférence capable
de —(n — y) décrite sur AB qui se trouve dans II.
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Donc, la question est résolue pour a>à+ e, ou b^a-\-c, et,

dans le cas où il existe un triangle 0, il suffit de s'occuper des

points P du demi-plan 77 qui sont compris entre AB et T.

Soient P un de ces points, Q le point de rencontre de CP

prolongé et de T. Q donne le minimum de la somme aKA-pbKB
+ cKQ, puisque l'angle AQB est égal à n — oc. Donc

aQA + bQB < aPA + bPB+cPQ,

aQA + bQB-cQC < aPA + bPB-c(QC-PQ)
< aPA + bPB — cPC.

Donc il suffit de s'occuper du cas où P serait en A, en B ou sur T.

10. Supposons A oc, B ß, C y et P sur F qui est
maintenant un arc de la circonférence circonscrite à ABC. Le théorème
de Ptolémée donne:

PC .AB PA. BC +PB AC,

ou puisque AB, BC, CA sont proportionnels à a, b, c,

cPC aPA + bPB.

Le minimum est donc 0; il est atteint pour tous les points de F.

11. La conclusion énoncée à la fin du § 6 s'applique sans changement

à la somme aPA-^bPB—cPC pour ce qui est de la substitution

d'autres points aux points A et B ; mais, pour ce qui est
de C, la conclusion est naturellement inverse: on peut remplacer
C par un point situé sur MC au-delà de C ou par un point situé
sur PC entre P et C.

Ceci étant, soit A> oc, B> ß. Alors C est dans U'IV (fig. 1).
Il existe sur Al'B un point Mx intersection de F et de CI. C'est
ce point M1 qui donne le minimum, car M1 donne le minimum
quand on remplace C par I.

Soient maintenant C intérieur à la circonférence (T) qui porte
l'arc T (donc C> y) et P un point de T (fig. 6). Si P ne
fournissait pas une somme aPA+bPB—cPC supérieure à celles que
donneraient les points A ou B, il en serait de même si l'on rem-



— 228 —

plaçait C par le point d'intersection # de PC et de (T). Or, soit Q

un point de T; on a

cQI aQA + bQB
et

aQA+bQB-cQ% c(QI-Q%)

Sur QI portons QJ Q<ë. L'angle %>JI étant constant, le lieu de

J est une circonférence (A) passant par # et /, et comme J est en /
quand Q est situé en sur la perpendiculaire au milieu de

et du même côté que A et B par rapport à #/, Q-J est la tangente
à (A); (2) a donc pour centre le milieu Q2 de celui des arcs
qui ne contient pas A et B.

Il résulte de là que, quand Q parcourt T, l'arc de (A) parcouru
par J ne contient pas le point diamétralement opposé à /,
puisque Q ne prend pas la position Q2; le minimum de la
différence positive ou négative

ji QI-QV
donc de aQA-\-bQB—cQ%>, est par suite obtenu pour l'une des

deux positions extrêmes A ou B du point Q.

Donc, pour C> y, le minimum est donné par l'un des sommets
A ou B.

Maintenant, si A donne le minimum pour une position de C,

il donne a fortiori le minimum si l'on éloigne C de A sur la droite
AC; donc tous les cas sont traités.
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Le seul cas où le minimum n'est donné ni par A, ni par B
est celui où Ton a

A > a, B > ß

et alors le minimum est donné par le point Mv

12. Reste le cas où c> a+b ; il faut alors chercher le maximum
de aPA+bPB—cPC. On sait, d'après ce qui précède, que

pour c>a-\-b on a, quel que soit P,

aPA + bPB < aCA + bCB+cCP,

ou

aPA+bPB-cPC <aCA + bCB,

et C donne le maximum cherché.

Par des changements de signes, on déduit de ce qui précède
l'étude du maximum ou du minimum de toute somme de la forme

±aPA±bPB±cPC1)2).

Au commencement de l'article qu'on vient de lire, il est fait
allusion à la solution suivante du problème proposé:

Soit M la position du point P donnant le minimum; si nous
faisons varier le point P sur l'ellipse de foyers A et B passant
par M, PA-pPB est constant; le point M est donc le point
de cette ellipse le plus rapproché de C; il en résulte que CM est

une normale à l'ellipse, sans quoi la tangente à l'ellipse n'étant
pas perpendiculaire à CM, le point P décrivant l'ellipse franchirait

à son passage en M la circonférence de centre C et de rayon
CM, de sorte qu'il existerait des positions de P voisines de M

1) Les méthodes I et III réussissent aussi pour cette somme. Pour la première,
je n'ai pu éviter d'assez grandes complications, mais pour la deuxième, le raisonnement
s'applique presque sans changement. La seule difficulté, s'il s'agit de aPA + bPB—cPC,
est l'utilisation de l'inégalité c (CM— CP) ^ bMPc à ajouter à des inégalités de sens
contraires. Mais, en profitant de la possibilité d'éloigner M sur MC, on peut rendre
cette inégalité aussi voisine qu'on veut d'une égalité.

2) Fin de l'article reproduit.

L'Enseignement mathém., t. IX, fasc. 4. 3
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pour lesquelles PA+PB+PC serait inférieur à MA +MB+MC;
de plus, Pellipse doit être entièrement extérieure au cercle dont
nous venons de parler et ne pas contenir ce cercle à son intérieur;
donc la demi-droite MC doit être le prolongement de la demi-
droite bissectrice intérieure des demi-droites MA, MB; comme
la même conclusion s'applique quand on permute A, B, C, il en
résulte que les trois demi-droites MA, MB, MC doivent faire
entre elles des angles de 120°. Toutefois, ce raisonnement
suppose que les directions des trois demi-droites soient bien
déterminées, donc que M ne coïncide avec aucun des points A, B, C.

Lorsque Pun des angles du triangle est supérieur ou égal à 120°,
il n'existe pas de point M pour lequel MA, MB, MC sont à 120°.
Le minimum est donc atteint pour un sommet et, évidemment,
pour le sommet du plus grand angle. Lorsque chacun des angles
est inférieur à 120°, il existe au contraire un tel point M; on
vérifie facilement que la somme MA-\-MB-\-MC est inférieure
à la somme de deux quelconques des côtés du triangle et on en
conclut que c'est ce point M qui donne le minimum.

Pourquoi remplacer cette démonstration si simple par d'autres

analogues à celles qu'on a lues? C'est que, pour conclure
comme nous Pavons fait, il faut admettre qu'il existe une position

M de P donnant le minimum de PAA~PB-\-PC. On peut
être tenté de considérer que cela va de soi. Pourtant il est clair
qu'il n'y a pas de position de P donnant le maximum de

PA-\-PBA~PC, de sorte qu'en réalité, s'il nous paraît certain
qu'un minimum est atteint, c'est parce que nous n'imaginons
pas qu'il pourrait en être autrement et ce défaut d'imagination
n'a certainement aucune valeur logique.

Considérons le problème suivant: soient deux points A et B
et une droite AT ne passant pas par B, et demandons-nous quel
est le plus court de tous les arcs de courbe d'extrémités A et B
et ayant AT pour tangente en A. On peut tracer de tels arcs
différant extrêmement peu du segment AB. Comme tout arc
joignant A et B a une longueur au moins égale à AB, c'est la
distance AB qui fournit ce que l'on peut appeler le minimum de

la longueur des arcs considérés. (Ce mot minimum sera d'ailleurs
remplacé par un autre d'ici peu.) Mais il est clair qu'aucun de

ces arcs n'a la longueur AB. Voici donc un minimum qui n'est
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pas atteint. Ainsi, il apparaît comme essentiel de prouver l'existence

de l'extremum que l'on cherche.

Les façons de faire dans lesquelles on néglige de prouver cette
existence ont été critiquées sous une forme très imagée, par
M. 0. Perron. Cherchons avec lui le plus grand des nombres

entiers. Ce ne peut être 2 car le carré de 2 est plus grand que 2;
ni 3, car le carré de 3 est plus grand que 3; etc... Donc le plus
grand des nombres entiers est 1.

La première fois où la nécessité de démontrer l'existence de

l'extremum ait été signalée semble être la suivante. Argand, né à

Genève, teneur de livres à Paris, avait publié en 1806 un Essai

sur une manière de représenter les quantités imaginaires dans les

constructions géométriques. C'est là qu'il donne la représentation
d'un nombre complexe par son affixe. A la vérité, Argand avait
été précédé par le Danois Caspar Wessel qui avait présenté
en 1797, à l'Académie Royale de Copenhague, un travail sur le

même sujet, travail bien supérieur à celui d'Argand, mais qui ne

fut pas remarqué et n'eut aucune influence, bien qu'il ait été

publié en 1799 dans les Mémoires de l'Académie. Il s'en fallut
de peu que le travail d'Argand fût aussi peu remarqué que celui
de Wessel. Mais Jacques Français, à la mort de son frère aîné,
trouva dans les papiers de celui-ci une lettre de Legendre
mentionnant sans en nommer l'auteur la représentation qu'avait
donnée Argand. Français pria cet auteur inconnu de se faire
connaître et c'est ainsi qu'Argand reprit en quelque sorte son
essai dans les Annales de Mathématiques pures et appliquées,
tome VI, pages 61 à 71. En particulier, il donne là une démonstration

du théorème de d'Alembert se réduisant à cette constatation

: si une valeur z0 de la variable complexe z fournit pour le
module d'un polynome f(z) une valeur positive, il y a au voisinage
de z0 des valeurs de z donnant au module une valeur plus petite.
Il en résulte que, seuls, les zéros du polynome f(z) peuvent donner
le minimum du module de /(z), et comme Argand admet que ce
minimum est atteint, il en conclut que toute équation f(z) 0

admet des racines. Servois critique le mémoire d'Argand dans
le même tome des Annales, pages 228 à 235. Il écrit notamment:
« Ce n'est point assez, ce me semble, de trouver des valeurs de x
qui donnent au polynome des valeurs sans cesse décroissantes;
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il faut de plus que la loi des décroissements amène nécessairement

le polynome à zéro, ou qu'elle soit telle que zéro ne soit
pas, si l'on peut s'exprimer ainsi, l'asymptote du polynome. »

Cette fine critique de Servois fut faite à nouveau en termes
plus précis par Weierstrass à l'occasion des recherches de Riemann
sur les fonctions algébriques, recherches fondées sur le problème
de minimum connu sous le nom de problème de Dirichlet. A
cette occasion, Weierstrass montra que les fonctions continues
d'une ou de plusieurs variables atteignent leurs extrema lorsqu'on
ne considère ces fonctions que dans des domaines bornés. D'autre
part, il introduisit ce que l'on a appelé les conditions suffisantes
dans le Calcul des variations. Pour le moment, rappelons seulement

les dénominations précises qu'il a introduites. Une famille
de nombres étant donnée, on appelle borne inférieure de ces
nombres le plus grand des nombres tels qu'aucun nombre de

la famille ne lui soit inférieur. La borne supérieure se définit d'une
manière analogue. Toute famille de nombres admet nécessairement

une borne inférieure et une borne supérieure, seulement la
borne inférieure peut être — oo et la borne supérieure + oo.

Supposons que la famille de nombres considérée soit la famille
des valeurs prises par une fonction f(X). D'après la définition
même de la borne inférieure, cette borne sera, ou le plus petit
des nombres f(X)1 ou le plus grand des nombres inférieurs à f(X).
Dans le premier cas seulement, on dira que la fonction a un
minimum; c'est le cas où nous disions précédemment que le

minimum est atteint. Dans le second cas, il vaut mieux remplacer
le mot de minimum par l'expression borne inférieure.

Il ne faut pas trop s'étonner que la distinction entre minimum
et borne inférieure, ou maximum et borne supérieure ait été faite
si tardivement. C'est qu'elle n'a aucune signification concrète.

Qui oserait décider s'il existe une charge maxima que peut
supporter un pont, plutôt qu'une charge minima qui le fasse

écrouler Aussi s'explique-t-on que les physiciens, dont les

recherches ont posé certains problèmes de minimum comme celui
de Dirichlet, aient été longs à admettre que les recherches des

mathématiciens relatives à ces problèmes ne soient pas de simples

jeux, mais des travaux nécessaires.
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