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CHAPITRE PREMIER

Sur une question de minimum 1)

1. Il s’agit de cette question connue: A, B, G étant trois points
donnés, P un point variable du plan ABC, quel est le minimum
de la somme PA+PB--PC ?

Je me propose de résoudre cette question par des méthodes
élémentaires, sans faire d’hypothéses sur ’existence d’une posi-
tion pour laquelle le minimum est atteint, et sans recourir ni
a la théorie des coniques ni & des considérations de géométrie
de situation.

Dans une suite d’exercices de sa Géomeéirie élémentaire (voir
en particulier ex. 363) M. Hadamard a donné une méthode
conduisant au but que je me propose. Bien entendu, sa méthode
n’est pas sans parenté avec celles qui suivent. Des différentes
démonstrations proposées, le lecteur en déduira facilement de
nouvelles.

Les premiers paragraphes contiennent des propositions acces-
soires qui simplifieront 'exposition, mais qu’il n’est pas néces-
saire de traiter a part comme je le fais.

2. Parcourons le périmetre du triangle dans le sens ABC; nous
fixons ainsi un sens de rotation qui sera dit le sens direct.
Si par A on méne une droite quelconque D et par B une
droite A rencontrant D en un point P et telle qu’il faille faire
2n

tourner D de 3 dans le sens direct autour du point P pour
I'amener sur A, le lieu de P quand D tourne autour de A, est

, 2
la circonférence capable de ?ﬂ: décrite sur AB.

1) Le texte qui suit est paru sous le titre: Sur une question de minimum, dans
la Revue de I’Emseignement des Sciences, 12¢ année, janvier-février 1918, p. 1.
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. : . : 2n
Si, au contraire, A se déduisait de D par une rotation de —
dans le sens inverse, le lieu de P serait la circonférence capable

21 )
de — 3 décrite sur AB.

.. T .. .
Les trois circonférences capables de 4 3 décrites respective-
ment sur AB, BC, CA se coupent en un point M, et de méme les
2n
trois circonférences capables de ] se coupent en un point M.

En effet, si M, par exemple, est le point commun aux deux pre-
mieres, on passe de la droite MA a la droite MB par une rota-

2n 2n
tion — > On passe de MB a MC par une rotation -+ 3 donc

on passe de MC a MA par la rotation

2
Soit AIBI’ (fig. 1) la circonférence capable de - —;— décrite

par P. Nous allons chercher dans quelles conditions le point M
est intérieur au triangle ABC. Le sens de rotation direct des

2 e 4 x
angles - ?n est le sens AIB. Ce sens doit étre le méme que le

sens ABC; donc le point C est dans le demi-plan limité par AB
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et qui contient /’. La droite MC forme avec MA et MB des
| ! : .
angles égaux en valeur absolue & 3 et qui sont inscrits dans notre

circonférence; donc MC passe par [, milieu du grand arc AB.
Les droites IA, IB et Parc AI'B divisent le demi-plan considéré
en quatre régions. Si C est dans X'BU ou V'AX, le point M,
qui est sur IC, est sur Varc A ou BI, donc est extérieur a ABC.
"~ Si C est dans UBI'AV’, M est sur AI'B et entre C et le
point de rencontre avec AB; donc il est intérieur & ABC.
Si C est dans le segment AI’B, M est encore sur AI'B, mais
pas entre C et le point de rencontre avec AB; donc il est encore

extérieur a4 ABC.

- 2n
Or, quand C est dans V'AX, I'angle A surpasse 3 quand C

2n
est dans X'BU, ’angle B surpasse 5 quand C est dans le

2n
segment AI'B, l'angle C  surpasse 5 quand C est dans

2n
V'AI'BU, tous les angles du triangle sont inférieurs & 3

Donc M est intérieur au triangle ABC si tous ses angles

o 2m
sont inférieurs a 3—

Supposons maintenant que la circonférence A/BI’ soit ca-
T
pable de —7 et cherchons dans quelles conditions M; est

sur 'arc AI'B que nous appellerons I'. Cette fois, C est dans le
demi-plan limité par AB et qui contient I.

M, étant sur C1, 1l faut que C soit dans AIB ou U’IV. Dans
le premier cas, les deux angles A et B sont tous deux plus petits

T .
que 3 dans le second, ils sont tous deux plus grands; pour toutes

» T
les autres positions de C, I'un de ces angles est plus grand que 3
et ’autre plus petit.

S1 O est un triangle d’angles «, 8, v, on démontrera de méme
que les trois circonférences capables de —+(mw—a), +(m—B)

?




— 218 —

+(m—v), ou de —(n—a), —(x—P), —(m—7v), décrites sur AB,
BC, CA concourent en un point M ou M,. Dans les considérations

precédentes, le triangle équilatéral ABI sera remplacé par un
triangle semblable & @ pour lequel:

Donc, M sera intérieur & ABC si 'on a

A<n—o, B<n—f, C<n—y

M, sera sur 'arc I' st 'on a

soit A<aet B<p
soit A>a e B>f

3. Pour la recherche du minimum de PA-PB-+PC, on peut
se borner aux points P intérieurs a ABC ou situés sur le contour
de ABC. Je les appellerai: les points de ABC.

En effet, soit un point P qui ne soit pas point de ABC. Nous
allons lui faire correspondre un point de ABC donnant une
somme plus petite que PA4-PB+PC.

Si P est en P; dans XA Y’ (fig. 2), on a

P,B + P,C > AB+ AC,
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done
P,A+ P,B+ P,C > AA+AB+AC,

et ’on peut faire correspondre 4 & P;.
Si P est en P, dans X'BCY, on peut lui faire eorrespondre P,
point de rencontre de AP, et de BC, car

P,B + P,C > pB+pC,
donc
P,A + P,B+ P,C > pA+pB+pC.

Tous les cas sont ainsi examinés.

La méme conclusion subsiste et le raisonnement convient aussi
pour le cas de la somme aPA+4bPB-+cPC, a, b, ¢ étant trois
constantes positives données. Pour la somme aPA-+bPB —cPC,
il suffirait de s’occuper des points de la région Y'ABZ; démon-
trons seulement qu’on peut se limiter au demi-plan II limité
par AB et ne contenant pas C. Soient en effet P, et P, deux points
symétriques par rapport a AB, P; étant dans II; il est évident
que l'on a

< aP2A + bP2B_CP2C

4 Soit A=B=C (fig. 3).

Faisons tourner ABC de —{—g autour de C; il vient en A'B’C.
Un point P, intérieur a ABC, vient en P’. Le triangle PCP’,
1isocele car PC'=PC’, et dont 'angle C vaut -+ % , est équilatéral.

- Done
PA+PB+4+PC = AP+-PP'L-P'B’

Un mobile, se déplacant sur APP'B’ de A vers B’, tourne
autour de C d’abord de ’angle ACP qui est dans le sens direct,
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. T .
puis de +§’ puis de P'CB’ = PCB de sens direct; donc il

tourne au total de ACB+- .
. > : 2 .
Si donc l'angle € du triangle surpasse —37—C , la ligne APP'B’
N

est enveloppante pour la ligne ACB’ dont I'angle ACB’ est plus
grand que w. Le minimum est alors obtenu quand P est en C.
Ce minimum est la somme des deux plus petits cotés du triangle,
car AB opposé au plus grand angle C est le plus grand coté de
ce triangle.

A A~ AN 21
Si C, et par suite aussi A et B, est inférieur ou égal & 3 il
existe un point M de ABC tel que les droites MA, MB, MC

2
fassent entre elles des angles de —l——; . 51 P vient en M, on a

A\ 27 A\ T

APC = — CPP' = —

3 3
A\ AN\ 21 N\ T
CP'B’ = CPB = -3— PP'C = —3—;

donc A, P, P’', B sont en ligne droite: la position M de P donne
le minimum et il est évident que ¢’est la seule position le donnant.
Ce minimum est égal &

AB’ = \/[52+§’62—2AC.BC 508 (c +731>
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A
Le fait que C est le plus grand des angles nous a été commode
pour la distinction des deux cas, mais il n’intervient pas dans la
seconde partie du raisonnement; dans ’expression ci-dessus du
minimum, on peut donc effectuer une permutation circulaire sur
les cotés et les angles du triangle.

5. M. Montel m’a fait remarquer que la démonstration s’applique

a la somme
aPA-+ bPB 1 cPC.

Ecartons le cas banal ot I'un des «, b, ¢, serait nul, et suppo-
sons d’abord qu’il existe un triangle ® dont les c6té ont pour lon-
gueurs a, b, c. Solent «, B, vy les angles de ce triangle.

Supposons que l'on ait

A4+0 <B+B < C+y
et faisons tourner ABC de I'angle y autour de C; puis effectuons

Ihomothétie de centre C et de rapport — qui donne le triangle
a

A'B'C; P, intérieur & ABC, vient en P’. On a

b b
P'B" = PBxX — P'C = PCxX —.
a a

e
Le triangle PCP’, dont I'angle PCP’ est égal & vy, est done
semblable & O et

pp' = PCx &
a
Donc on a
PA+bP
AP +PP' +P'B = ATDPB+CPC

a

La démonstration se poursuit comme précédemment. Le mini-
mum est donné par € si C+4y>n. Le minimum est donné par le
point M commun aux trois circonférences capables de +(r—o),
+(n—p), +(r—7) décrites respectivement sur BC, CA, AB, si

A+a<m, B4B <m, C+y <.
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Supposons ensuite qu’il n’existe pas de triangle ©. Soit, par
exemple, ¢>a-+b. On peut trouver ¢, vérifiant ¢;>a, ¢, > b,
¢;<a+b et tel que le triangle de cotés a, b, ¢, ait un angle vy,
opposé & ¢; assez grand pour que C+ v, surpasse n. Alors on a,
quel que soit P différent de C,

aPA+bPB+c¢,PC >aCA+bCB,
donc, a fortiort, puisque ¢, est plus petit que c,
aPA+bPB+cPC > aCA+bCB

et le minimum est donné par la position C de P.

I1

6. Soient A,, B;, C; des points pris sur MA, MB, MC entre
M et A, B, Cet Pun point différent de M. On a

PA < PA, +AA,, PB <PB,+BB,, PC <PC,+CCy,
les trois signes = ne convenant pas a la fois. En ajoutant, on a

PA+PB+PC < PA{ +PB{+PC,;+(4AA, +BB; +CCy).
Si done on a

PA, +PB, +PC; < MA, + MB, + MC,
en ajoutant AA,+BB;+CC, aux deux membres, on en tire:

PA+PB+PC < MA+MB+ MC.

Donc, si M donne le minimum pour PA-++PB-+PC, 1l donne
aussi le minimum pour PA;+ PB4+ PC;. Et puisque, quels que
soient o7, &, €, sur les demi-droites MA, MB, MC, une homo-
thétie de centre M permet de remplacer &7, %, €, par A, By, C;
entre M et A, M et B, M et C,le point M donne aussile minimum
pour la somme P/ P%H-+P%.

La recherche d’une position donnant le minimum est donc
la recherche d’une certaine configuration de trois demi-droites
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MA, MB, MC, mais ne dépend pas de la position des points A4,
B, C.

Cette remarque, qui fait pressentir le réle du point M du § 2,
permet d’arriver tout de suite au résultat sil’on admet I'existence
d’une position P donnant le minimum. Pour rester tout a fait
dans le domaine élémentaire, notons la conclusion sous la forme
suivante.

Si l'on a

PA+PB+PC > MA+MB+ MC,

on peut remplacer dans cette inégalité les points A, B, C par
d’autres situés sur MA, MB, MC entre M et A, M et B, M et C,
ou par des points situés sur PA, PB, PC, au-dela de A, B, C.
En d’autres termes, on peut allonger les longueurs du membre
le plus grand ou diminuer celles du plus petit.

7. Supposons que ABC soit un triangle équilatéral; M est le
point de rencontre de ses hauteurs. Soit P un point différent de M.
Je dis que I'on a

PA+PB+PC > MA+ MB+ MC.

En effet, soient Py, P, les deux points déduits de P par desrotations
2n
de + 3 autour de M. M est le point de rencontre des médianes

du triangle PP P,; donc la somme géométrique de AP, AP,
AP, est d’apres une proposition connue égale & 3 AM. Cette
somme géométrique a une longueur inférieure & AP+ AP, +AP,;
done on a

AP+ AP, + AP, BP+BP; +BP,
3 3
CP +CP, +CP,

+ 3 >AM +BM +CM

PA+PB+PC =

Ainsi le point M donne bien le minimum pour le cas du
triangle équilatéral.

. ‘ 2
Supposons que ABC n’ait aucun angle supérieur é?n.
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D’apres le § 2, il existe un point M tel que les trois demi-droites

' 2
MA, MB, MC fassent entre elles des angles égaux & ?77:_ h.

Sur ces trois demi-droites, prenons, au-dela de A, B, C trois
points o7, %, ¥, & la méme distance de M. M donne le minimum
pour le triangle /%%, donc aussi pour ABC.

Fig 4

2n
Supposons que ABC ait un angle supérieur é—3—, soit

I’angle C. Je dis que C donne le minimum, donc, que, quel que
soit le point P, on n’a pas

PA+PB+PC < CA+CB.

A\ A\ 21
L’un des deux angles BCP ou PCA est inférieur a 3 soit

N .
BCP (fig. 4). Tragons la droite Ca faisant 4 ?n avec CB; elle

coupe PA en a. Si I'inégalité précédente était vraie, on pourrait
y remplacer 4 par a. Or cela est impossible, puisque C donne le
minimum pour le triangle aBC.

111

8. Les raisonnements du § 6 s’appliquent tout de suite au cas
de la somme aPA+bPB+cPC; mais il n’en est pas de méme
du raisonnement du début du § 7 .On peut, dans le cas général,
raisonner comme il suit.

2
1) 8i C = —31‘ , M est en C; la demi-droite MC est alors définie par la condition
de faire T’angle -+ _31_; avec MB. -
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Placons-nous dans le cas ou il existe un triangle ® et ou
A+ o, BB, C+ v sont inférieurs a n. I1 existe alors, dans ABC,
un point M d’ou Pon voit BC, CA, AB sous des angles n—a,
n—B, n—y (§2). Je dis que ce point donne le minimum. Soit P
un point différent de M. L’hypothese

aPA+bPB+cPC =aMA+bMB+cMC

va nous conduire & une contradiction. .

Soient (fig. 5) P4, Py, Pc les projections de P sur AM, BM,
CM et convenons de compter positivement AP ,, BPy, CP. res-
pectivement dans les sens AM, BM, CM. On a

AP = AP ;

inégalité dans laquelle le premier membre est positif et le second
de signe quelconque, ou

AM —AP < AM—AP, = P, M.

Les trois inégalités analogues ne peuvent se réduire simultané-
ment a des égalités. En les ajoutant, on a

0 < a(AM — AP)+b (BM —BP) +c¢(CM — CP)

< aP M +bPyM +cPcM.
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Or, soit 0 un triangle o/ #% ayant pour hauteurs les droites M A
MB, MC. 8 est évidemment semblable & ©@; donc ses cOtés sont
proportionnels & @, b, ¢. En représentant par M, M, M.,
P, Py, P, les distances de M et P aux cOtés de ce triangle,
distances comptées dans des sens tels qu’elles soient positives
pour des points intérieurs a 6, on a, comme ’on sait

aM,+bM,+cM, = aP,+bP,+cP,,

ou encore

a(P,—M,)+b(Py—M,)+c(P.—M,) = 0

Or, au signe prés peut-étre, car la position de 6 n’a pas été pré-
cisée, le premier membre est égal & aP ,M+bPgM+cP:.M, d’ ot
la contradiction annoncée.

Le premier cas étant ainsi traité, pour achever ’examen des
trois cas possibles, on imitera la fin du § 7, puis celle du § 5.

v

9. Je vais examiner rapidement le cas de la somme
aPA + bPB — cPC, en supposant toutefois ¢ <<a-+b, sans quoi
le minimum serait — oo comme on le voit en prenant P de plus
en plus loin.

Soit P un point du demi-plan II limité par AB et ne conte-

nant pas C (§ 3). Soit Q la position du point K donnant le
minimum de ¢ KA-+bKB-+cKC. On a

aPA +bPB > aQA+bOB +cOP,
d’ou
a4QA+bQOB—cQC < aPA+bPB—c(QP+QC)
< aPA+bPB —cPC.

Or, Q est en A si A>n—a, ou s1 a=>b-+c, en B si B>n—§,
ou si b>a-+tc, en C si C>n—r, et s1 aucune de ces conditions
n’est réalisée, il se trouve sur I’arc I' de la circonférence capable
de —(n—+) décrite sur AB qui se trouve dans II.
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Donec, la question est résolue pour a=>b-c, ou b=>a+-c, et,
dans le cas ou il existe un triangle 0, il suffit de s’occuper des
points P du demi-plan IT qui sont compris entre AB et I'.

Soient P un de ces points, Q le point de rencontre de CP
prolongé et de T'. Q donne le minimum de la somme e KA-+bKB
+cKQ, puisque angle AQB est égal & n—a«. Donc

4QA+bOB < aPA +bPB +cPQ,

aQA+b0OB—cQC < aPA+bPB—c(QC—PQ)
< aPA+bPB—cPC.

Donc il suffit de s’occuper du cas ou P serait en A, en B ou sur I

10. Supposons A = a, B = B, C = v et P sur I' qui est main-
tenant un arc de la circonférence circonscrite & ABC. Le théoréme
de Ptolémée donne:

PC.AB = PA.BC+PB. AC,
ou puisque AB, BC, CA sont proportionnels a a, b, c,
cPC = aPA+bPB.

Le minimum est donc 0; il est atteint pour tous les pointsde I'.

11. La conclusion énoncée a la fin du § 6 s’applique sans change-
ment & la somme aPA+bPB—cPC pour ce qui est de la substitu-
tion d’autres points aux points A et B; mais, pour ce qui est
de C, la conclusion est naturellement inverse: on peut remplacer
C par un point situé sur MC au-dela de C ou par un point situé
sur PC entre P et C.

Ceci étant, soit A> «, B> 8. Alors C est dans U'IV (fig. 1).
Il existe sur AI'B un point M, intersection de I' et de C1. Cest
ce point M, qui donne le minimum, car M, donne le minimum
quand on remplace C par 1.

Soient maintenant C intérieur & la circonférence (I') qui porte
Iarc I' (donc C> v) et P un point de I' (fig. 6). Si P ne four-
nissait pas une somme aPA4-bPB—cPC supérieure a celles que
donneraient les points A ou B, il en serait de méme si 'on rem-
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placait C par le point d’intersection € de PC et de (I'). Or, soit Q
un point de I'; on a
cQl = aQA+bQ0B
et
aQA+bOB—cQ¥% = c(QI —Q%)

Sur QI portons QJ = Q%. L’angle ¥JI étant constant, le lieu de
J est une circonférence (1) passant par € et I, et comme J est en /
quand Q est situé en Q,, sur la perpendiculaire au milieu de ¢/
et du méme cOté que A et B par rapport & €1, Q.1 est la tangente
a (4); (A) a donc pour centre le milieu Q, de celui des arcs €/
qui ne contient pas A et B.

Il résulte de 1a que, quand Q parcourt I', I’arc de (1) parcouru
par J ne contient pas le point diamétralement opposé a I,
puisque Q ne prend pas la position Q,; le minimum de la diffé-
rence positive ou négative

JI = QI —0%

donc de aQA-+bQB—cQ%, est par suite obtenu pour I'une des
deux positions extrémes 4 ou B du point Q.

Done, pour C> vy, le minimum est donné par I'un des sommets
A ou B.

Maintenant, si A donne le minimum pour une position de C,
il donne a fortiori le minimum si I’on éloigne C de A sur la droite
AC; donc tous les cas sont traités.
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Le seul cas ou le minimum n’est donné ni par 4, ni par B

est celul ou 'on a
' A>a, B>P

et alors le minimum est donné par le point M.

12. Reste le cas olt ¢> a+b; il faut alors chercher le maximum
de aPA-+bPB—cPC. On sait, d’aprés ce qui précede, que
pour ¢>a-+b on a, quel que soit P,

aPA+bPB < aCA+bCB+cCP,
ou |
aPA+bPB—cPC <aCA+bCB,

et C donne le maximum cherché.
Par des changements de signes, on déduit de ce qui précede
Pétude du maximum ou du minimum de toute somme de la forme

+aPA +bPB+cPCY)?2).

Au commencement de l'article qu'on vient de lire, il est fait
allusion & la solution suivante du probléme proposé:

Soit M la position du point P donnant le minimum si nous
faisons varier le point P sur l’ellipse de foyers A et B passant
par M, PA+PB est constant; le point M est donc le point
de cette ellipse le plus rapproché de C; il en résulte que C M est
une normale & l'ellipse, sans quoil la tangente & l'ellipse n’étant
pas perpendiculaire & CM, le point P décrivant I’ellipse franchi-
rait & son passage en M la circonférence de centre C et de rayon
CM, de sorte qu’il existerait des positions de P voisines de M

1) Les méthodes I et IIT réussissent aussi pour cette somme. Pour la premiére,
jen’ai pu éviter d’assez grandes complications, mais pour la deuxiéme, le raisonnement
s’applique presque sans changement. La seule difficulté, s’il s’agit de aPA4+bPB—-cPC,
est I'utilisation de I'inégalité ¢ (CM — CP) = b M P¢ 4 ajouter & des inégalités de sens
contraires. Mais, en profitant de la possibilité d’éloigner M sur MC, on peut rendre
cette inégalité aussi voisine qu’on veut d’une égalité.

2) Fin de l’article reproduit.

L’Enseignement mathém., t. IX, fasc. 4. 3
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pour lesquelles PA+PB+- PC serait inférieur &8 MA-+MB-+MC;
de plus, I'ellipse doit étre entiérement extérieure au cercle dont
nous venons de parler et ne pas contenir ce cercle & son intérieur;
donc la demi-droite MC doit étre le prolongement de la demi-
droite bissectrice intérieure des demi-droites M A, MB; comme
la méme conclusion §’applique quand on permute 4, B, C, il en
reésulte que les trois demi-droites MA, MB, MC doivent faire
entre elles des angles de 120°. Toutefois, ce raisonnement sup-
pose que les directions des trois demi-droites soient bien déter-
minées, donc que M ne coincide avec aucun des points A, B, C.
Lorsque I'un des angles du triangle est supérieur ou égal a 120°,
1l n’existe pas de point M pour lequel MA, MB, MC sont & 120°.
Le minimum est donc atteint pour un sommet et, évidemment,
pour le sommet du plus grand angle. Lorsque chacun des angles
~ est inférieur & 120°, il existe au contraire un tel point M; on
vérifie facilement que la somme MA+ MB+ MC est inférieure
a la somme de deux quelconques des cotés du triangle et on en
conclut que c’est ce point M qui donne le minimum.

Pourquoi remplacer cette démonstration si simple par d’au-
tres analogues a celles qu'on a lues? C’est que, pour conclure
comme nous ’avons fait, 1l faut admettre qu’il existe une posi-
tion M de P donnant le minimum de PA-++PB+-PC. On peut
étre tenté de considérer que cela va de soi. Pourtant il est clair
qu’il n’y a pas de position de P donnant le maximum de
PA+ PB4 PC, de sorte qu’en réalité, s’il nous parait certain
qu'un minimum est atteint, ¢’est parce que nous n’imaginons
pas qu’il pourrait en étre autrement et ce défaut d’imagination
n’a certainement aucune valeur logique.

Considérons le probléme suivant: soient deux points A et B
et une droite AT ne passant pas par B, et demandons-nous quel
est le plus court de tous les arcs de courbe d’extrémités 4 et B
et ayant AT pour tangente en A. On peut tracer de tels arcs
différant extrémement peu du segment AB. Comme tout arc
joignant A et B a une longueur au moins égale a AB, c’est la
distance AB qui fournit ce que I'on peut appeler le minimum de
la longueur des arcs considérés. (Ce mot minimum sera d’ailleurs
remplacé par un autre d’ici peu.) Mais il est clair qu’aucun de
ces arcs n’a la longueur AB. Voici donc un minimum qui n’est




— 231 —

pas atteint. Ainsi, il apparait comme essentiel de prouver l'exis-
tence de l'extremum que 'on cherche.

Les facons de faire dans lesquelles on néglige de prouver cette
existence ont été critiquées sous une forme treés imagée. par
M. O. Perron. Cherchons avec lui le plus grand des nombres
entiers. Ce ne peut étre 2 car le carré de 2 est plus grand que 2;
ni 3, car le carré de 3 est plus grand que 3; ete... Donc le plus
grand des nombres entiers est 1. |

La premiére fois ou la nécessité de démontrer I'existence de
I'extremum ait été signalée semble étre la suivante. Argand, né a
Genéve, teneur de livres a Paris, avait publié en 1806 un Essat
sur une maniére de représenter les quantités imaginaires dans les
constructions géométriques. Cest 1a qu’il donne la représentation
d’un nombre complexe par son affixe. A la vérité, Argand avait
été précédé par le Danois Caspar Wessel qui avait présenté
en 1797, & ’Académie Royale de Copenhague, un travail sur le
méme sujet, travail bien supérieur a celui d’Argand, mais qui ne
fut pas remarqué et n’eut aucune influence, bien qu’il ait été
publié en 1799 dans les Mémoires de I’Académie. Il s’en fallut
de peu que le travail d’Argand it aussi peu remarqué que celui
de Wessel. Mais Jacques Francais, a la mort de son frére ainé,
trouva dans les papiers de celui-ci une lettre de Legendre men-
tionnant sans en nommer l'auteur la représentation qu’avait
donnée Argand. Francais pria cet auteur inconnu de se faire
connaitre et c’est ainsi qu’Argand reprit en quelque sorte son
essai dans les Annales de Mathématiques pures et appliquées,
tome VI, pages 61 & 71. En particulier, il donne 14 une démons-
tration du théoreme de d’Alembert se réduisant a cette consta-
tation: si une valeur z, de la variable complexe z fournit pour le
module d’un polynome f(z) une valeur positive, il y a au voisinage
de z, des valeurs de z donnant au module une valeur plus petite.
Il en résulte que, seuls, les zéros du polynome f(z) peuvent donner
le minimum du module de f(z), et comme Argand admet que ce
minimum est atteint, il en conclut que toute équation f(z) = 0
admet des racines. Servois critique le mémoire d’Argand dans
le méme tome des Annales, pages 228 & 235. Il écrit notamment:
« Ce n’est point assez, ce me semble, de trouver des valeurs de
qui donnent au polynome des valeurs sans cesse décroissantes:
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il faut de plus que la loi des décroissements améne nécessaire-
ment le polynome & zéro, ou qu’elle soit telle que zéro ne soit
pas, si 'on peut s’exprimer ainsi, 'asymptote du polynome. »

Cette fine critique de Servois fut faite & nouveau en termes
plus précis par Weierstrass & ’occasion des recherches de Riemann
sur les fonctions algébriques, recherches fondées sur le probléme
de minimum connu sous le nom de probléme de Dirichlet. A
cette occasion, Weierstrass montra que les fonctions continues
d’une ou de plusieurs variables atteignent leurs extrema lorsqu’on
ne considere ces fonctions que dans des domaines bornés. D’autre
part, il introduisit ce que ’on a appelé les conditions suffisantes
dans le Calcul des variations. Pour le moment, rappelons seule-
ment les dénominations précises qu’il a introduites. Une famille
de nombres étant donnée, on appelle borne inférieure de ces
nombres le plus grand des nombres tels qu’aucun nombre de
la famille ne lui soit inférieur. La borne supérieure se définit d’une
maniére analogue. Toute famille de nombres admet nécessaire-
ment une borne inférieure et une borne supérieure, seulement la
borne inférieure peut étre — oo et la borne supérieure -+ oo.
Supposons que la famille de nombres considérée soit la famille
des valeurs prises par une fonction f(X). D’apres la définition
méme de la borne inférieure, cette borne sera, ou le plus petit
des nombres f( X), ou le plus grand des nombres inférieurs a f( X).
Dans le premier cas seulement, on dira que la fonction a un
minimum; c¢’est le cas ol nous disions précédemment que le
minimum est atteint. Dans le second cas, il vaut mieux remplacer
le mot de minimum par ’expression borne inférieure.

Il ne faut pas trop s’étonner que la distinction entre minimum
et borne inférieure, ou maximum et borne supérieure ait été faite
si tardivement. C’est qu’elle n’a aucune signification concréte.
Qui oserait décider §’il existe une charge maxima que peut
supporter un pont, plutdét qu'une charge minima qui le fasse
écrouler ? Aussi s’explique-t-on que les physiciens, dont les
recherches ont posé certains problémes de minimum comme celui
de Dirichlet, aient été longs & admettre que les recherches des

mathématiciens relatives a ces problemes ne soient pas de simples

jeux, mais des travaux nécessaires.
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