Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 9 (1963)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: SPIN STRUCTURES ON MANIFOLDS
Autor: Milnor, J.

DOl: https://doi.org/10.5169/seals-38784

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-38784
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SPIN STRUCTURES ON MANIFOLDS

by J. MiLNor

Let M be an oriented, Riemannian manifold. Then the
tangent bundle of M has the rotation group SO(n) as structural
group. If 1t 1s possible to replace SO(n) by the 2-fold covering
group Spin (n) as structural group, then one says that M can be
given a “ spin structure ”. The object of this note will be to
make this concept precise, and to discuss the related concept of
“ spin cobordism ”.

Let me take this opportunity to point out an error in a pre-
vious paper. The definition of spinor cobordism group which
was proposed In my paper “ A survey of cobordism theory ”
[7, §2, Example 4] is erroneous. A corrected version of this
definition will be given at the end of the present paper.

Let £ denote a principle fibre bundle with structural group
SO(n). Herencanbeany positiveinteger. The valuen = -+ oo
1s also acceptable. The total space of £ will be denoted by
E(&) and the base space by B. We will always assume that B is
a CW-complex, or a manifold.

Definition : A spin structure on & is a pair (»,f) consisting of

(1) A principal bundle % over B with the spinor group Spin (n)
as structural group; and

(2) A map f: E(n) » E(§) such that the following diagram is

commutative.
E(’?) % Splﬂ (I’L) right t1'ansl._>E(;1)\
1 x4 | B

E(f) < SO(n) right transl. E(f)/

Here A denotes the standard homomorphism from Spin (n) to
SO(n).

This definition must be qualified as follows. A second spin
structure (n’, ') on & should be identified with (n,f) if there exists
an isomorphism g from ' to n so that fog = 1.
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Note that the definition makes sense even in the special
cases n = 2 and n = 1. It is to be understood that Spin (2) 1s
the 2-fold covering group of the circle SO(2); and that Spin (1)
18 a cyclic group of order 2.

As an example, the tangent bundle of the 2-sphere S? has a
unique spin structure (n, f) where E(n) is a 3-sphere. The
tangent bundle of the circle S* has two distinct spin structures.

The above definition is straightforward, but is rather cumber-

some. An elegant variant was suggested to the author by
M. Hirsch:

Alternative definition 1: A spin structure on & is a cohomology
classt)o ¢ H! (E(&); J,) whose restriction to each fibre is a genera-
tor of the cyelic group H* (Fibre; J,). (Note: This last clause
disappears in the special case of an SO(1)-bundle.)

The 1dea is the following: Any such cohomology class deter-
mines a 2-fold covering of E(§). This 2-fold covering space 1s to
be taken as the total space E(n). The condition on @ | Fibre
guarantees that each fibre is covered by a copy of Spin(r), the
unique 2-fold covering of SO(rn). With this interpretation it is
not difficult to show that the alternative definition is completely
equivalent to the original. Henceforth we will use the two
definitions interchangeably.

It is known that an SO(r)-bundle can be given a spin struc-
ture if and only if its Stiefel-Whitney class w, is zero. (Compare
Borel and Hirzebruch [2, pg. 350].)

Lemma: If w, (&) = O then the number of distinct spin struc-
tures on £ is equal to the number of elements in H* (B; J,).

Proof: If B is connected, then this follows from the exact
sequence

0 = H1(B; Jy) = H (E(S); Jo) » H*(S0(n); J,) — H2 (B; J,)

which can be extracted from the spectral sequence of the fibra-
tion . The general case follows easily.

[These facts suggest an analogy between the concept of “ spin
structure ” for SO(n)-bundles and the concept of *“ orientation ”
for O(n)-bundles. Thus an O(n)-bundle can be oriented if and

1) The notation Jg is used for the integers modulo 2.
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only if w; = 0. If w; = 0 then the number of distinct orienta-
tions is equal to the number of elements in H(B; J,).]

Now a word of warning. It may happen that two spin
structures (n, f) and (', f') on & are distinet, even though the
corresponding spinor group bundles # and #" are isomorphic.

As an illustration, consider the following.

Example: Let &' denote the trivial SO(n)-bundle over the
real projective plane P2, Since HY(P?%*; J,) =~ J, this bundle
can be given two distinet spin structures. For n =1 or for
n = 2 the two corresponding Spin(n)-bundles are distinct from
each other. However for n>2 it can be shown that the two
Spin(n)-bundles are isomorphic: in fact both are trivial.

[This example suggests the conjecture that if (», f) and
(n', ) are two spin structures on the same SO(n)-bundle, with
n> dim B, then 7 is necessarily isomorphic to #’. The anala-
gous statement for orientations of an O(n)-bundle is known to
be true.]

Now we will restrict attention to tangent bundles.

Definition : A spin manifold will mean an oriented Rieman-
nian manifold M, together with a spin structure on the tangent
bundle of M.

To be more explicit let FM denote the space of oriented
orthonormal n-frames on M. Then we will think of the spin
structure as being a cohomology class ¢ ¢ HY(FM; J,) whose
restriction to each fibre is non-trivial (if n>1).

The notation (M, o) will be used for such a spin manifold.
However if M happens to be simply connected, so that o 1is
- uniquely determined, then we will simply say that M is a spin
manifold.

Suppose that V is a k-dimensional submanifold of M with
a specified field of normal (n - k)-frames. Then FVcFM;
hence any spin structure ¢ on M determines a spin structure
o | FV on V. Inparticular this is true if V is the boundary 0.M.

Definition : A closed spin manifold (V, ¢;) will be called a
spin boundary if there exists a compact spm manifold (M, o)
with M = V and ¢ | FV =o,.

As an illustration consider the following.




&
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Example: The 2-dimensional disk D? has a unique spin
structure o. Restricting to the boundary 0D? = S we obtain
the non-zero cohomology class

o, € HY (FSY; J,) = J,.

Thus (8%, 6) is a spin boundary. On the other hand if we take
the zero cohomology class in HY(FS'; J,) (this is permissible
since n = 1) we obtain a different spin manifold (S, 0). It can
be shown that (5%, 0) is not a spin boundary.

Similarly one can define the relation of cobordism between
closed n-dimensional spin manifolds. The corresponding co-
bordism group will be denoted by @, Here is a list of the
first eight spin cobordism groups.

Q"™ ~ J (infinite cyelic) by definition,

Q" ~ J, generated by (52, 0).

Q" ~ J, generated by the torus with a suitable spin
structure.

Q" — (),

Q" =~ J generated by a Kummer surface K*. (Compare
[5 pg. 127])

stpln — O.

QGSpin = (. 1)

Q0.

Q" =~ J @ J generated by the quaternion projective
plane and by a manifold L8 such that L8-7L84-I8 I8 is spin
cobordant to K* x K< Alternatively, as second generator,
one could take the almost parallelizable manifold M3 of re-
ference [4].

It follows that in dimensions 4 and 8 the spin cobordism class
of a manifold (V, o) is completely determined by the Pontrjagin
numbers of V. In dimension 4 the Pontrjagin number p, [ V*]
is subject only to Rohlin’s relation

pi [V =0  (mod 48).

1) Compare Wall [8, p. 428].
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In dimension 8 the two Pontrjagin numbers are subject only to
the Borel-Hirzebruch relation

Tp2[V?] = 4p, [V?] (mod 5760).

(Compare references [1, Corollary 2], [3, §3.1] and [4].)

The computation of these eight groups is similar to the usual
computations in cobordism theory. Thus one first shows that
Q™ is isomorphic to the stable homotopy group =,., M(Spin
(k) ) of a suitable Thom complex; and then determines these
homotopy groups by a formidable computation. No details
will be given.

For n=6 the spin cobordism group can also be interpreted as
the cobordism group for the class of 2-connected oriented Rie-
mannian manifolds. In fact if n = 6 then:

Assertion 1: Any closed n-dimensional spin manifold is spin
cobordant to a 2-connected manifold.

Assertion 2: If a 2-connected n-manifold is a spin boundary,
then it bounds a 2-connected manifold. Proofs are easily given
using the technique of surgery (=spherical modification) which
18 described in references [6], [9].

In conclusion let me mention two other variant definitions
for the concept of spin structure, which may prove useful for
special purposes. We will assume that n = 2.

Let ¢ be an SO(r)-bundle over a CW-complex B. The
k-skeleton of B will be denoted by B".

Alternative definitions 2: A spin structure on £ 1s a homotopy
class of cross-sections of ¢ | B! which can be extended to cross-
sections of ¢ | B2

It can be shown that every “ spin structure ” in this sense
determines a spin structure in the original sense, and conversely.
No details will be given.

Now let the group Spin(n) act on a high dimensional sphere
SY in such a way that the cyclic subgroup J,<=Spin(n) acts
freely on SY. [Such an action can be obtained by using a spinor
representation of the group Spin(n).] We will assume that
N>dim B.

)
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Then the quotient group SO(n) = Spin(n)/J, acts on the

quotient space P¥ = S"/J,. Hence to every SO(n)-bundle ¢
over B there corresponds an associated bundle {’ having the pro-
jective space PN as fibre.

Alternative definition 3: A spin structure on £ is a homotopy

class of cross-sections of the associated bundle &’.

Again it can be seen that this definition is equivalent to the

original definition.
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