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MATRICES OF LINEAR OPERATORS x)

by P. M. Anselone

(Reçu le 15 octobre 1962)

In this paper we give a generalization and extension of the
classical Hamilton-Cayley theorem to matrices of bounded linear
operators on a Banach space. The theorem is applied to the
study of the asymptotic behavior of a sequence of vectors
defined by means of a composite recursion formula. In addition,
the theorem is generalized to an abstract algebraic setting.

Let B be a Banach space and let Bm Bx XB denote
the product space with m factors. Elements of Bm will be
denoted by row vectors

X Ol, xj,xteB, (1)

or, when convenient, by column vectors. Define the norm on
Bm by 2)

|| x || max I xt || (2)
i

Then Bm is a Banach space.
Let T — [Tij] be a matrix of linear operators on B. For

each x e Bm, define T x e Bm by analogy with matrix-vector
multiplication:

more explicitly,
m

(TV I TljXj. (4)j-i1) Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.

2) This particular norm is not essential for what follows. Any other equivalent
norm would do, e.g., || x || || xt || 2+ 4. ||xro||2)^
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Thus, T is a linear operator on Bm. If each Ttj is bounded, then
T is bounded and, by an easy argument,

m

I T I g max I 1 Ty || (5)
i j 1

Recall that an operator K on a Banach space is compact (or
completely continuous) if and only if it maps each bounded

sequence into one with a convergent subsequence. A compact
operator is necessarily bounded. It is not difficult to prove that
the operator K [Kij] on Bm is compact if and only if each of
the operators Ktj on B is compact.

Operators 011 B of the form T — al + A, where a is a scalar,

I is the identity operator, and K is compact are important in
both theory and applications, e.g., in the study of Fredholm
integral equations of the second kind. The following theorem
concerns matrices of such operators.

Theorem 1. Let T [a^I + Kij]1 where the Ktj are compact.
Let P(X) be the characteristic polynomial of the scalar matrix
[ay]. Then jP(T) is compact.

Proof. Note that T A + K, where A [a^I] and
K - [Kijl Then

P(T) P (A) + g (A K),

where Q is a polynomial in A and K, with a factor K in every term.
Since the product of a bounded operator and a compact operator

is compact, and since a sum of compact operators is compact,
Ç(A, K) is compact. By the Hamilton-Cayley theorem,

P([aij]) 0. Since the correspondence [atj] A is an

algebraic isomorphism, P{A) 0. Therefore, P(T) Q(A, K)
and, hence, P(T) is compact.

Let T be as in Theorem 1. The fact that a polynomial in T
is compact implies that T has a number of properties which
generalize those of compact operators (cf. [1], ch. 5). We mention

several of these properties. The spectrum o of T is

countable. The only possible limit points of a are zeros of the characteristic

polynomial P{T). Fix X e a such that P(X) 7^ 0. Then
X is an eigenvalue of T. The generalized eigenmanifolds

M\ =ixeBm: (T-Xlfx 0}, k 0, 1 (6)
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are finite dimensional. The ranges

N\ {(T - Alfx:xeBm},fc 0,1,..., (7)

are closed and have finite deficiency (codimension). There is a

positive integer v v(A), called the index of A, such that

{0} M° cz cz M\ M\+1 (8)
* ±

Bm N°,zd...3N\ N\+1 (9)
* *

TMlczMl, TN\cNl, (10)

Bm (11)

Thus, each x e Bm has a unique representation of the form

J u + v ueM\, veN\ (12)

The restrictions of T to M\ and N\ have the spectra {2} and

cr—{2}, respectively. The manifolds M\ and N\ are the
spectral subspaces associated with the subsets {2} and cr — {2}
of. a.

Next we give an application of Theorem 1. Consider a
composite recursion formula in B,

m

xn YjTixn-j, (13)
i=i

where x0 xm_1 are arbitrary elements in B and the Tj}
/ m, are bounded linear operators on B. Clearly,
(13) determines xm n ^ m inductively in terms of x0, xm_l.
It is desired to study the asymptotic behavior of xn as n -» oo.

For this purpose, we let

(*„ 9 xn+1 s xn+m_!) eBm n 0 1 (14)

and define the bounded linear operator T on Bm such that
m

T (%o 5 xm_i) (^i, xm) xm ^ TjXm_j (15)
j=1

L'Enseignement mathém., t. IX, fasc. 3. 5
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Then xw+1 Txn and, hence,

xn Tnx0, « 1,2,.... (16)

The operator T has the matrix representation

1
o I 0 Io

0 0 I 0

0 0 0 i

Tx m T 1 I'm- 1 • T,

The method used above to replace a composite recursion
formula by a simple one serves a similar purpose in the theory of

multiple Markov chains (cf. [2], pp. 185-186). It is used also to
replace an ordinary differential equation of mth order by a

system of first order equations (cf. [31, p. 82).

By (2) and (14),

Il || max (II xn|| ||xn+m-1 ||), 0,1,.... (18)

This equation can be used to derive asymptotic results for xn as

n oo from corresponding results for xn. So let us consider xn.
The asymptotic behavior of xn — Tnx0 as n -> oo is

determined to a large extent by the spectral properties of T. This is

partly because the spectral radius of T,

Ra max {I X |: lea} (19)

satisfies the equation

lim Tw |]1/w Ra. (20)
u-> 00

It follows easily from (20) that

lim sup || Tx0 ||1/n ^
«->00

(21)
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An analogous inequality, a little more difficult to prove, is

lim inf I Tx0 \\1,n^ra if 0, (22)
71-> 00

where

ra min (| A | : Aea} (23)

Suppose now that the operators in (13) are of the form

Tj aj I+Kj,wherethe Kj are compact. Then, by (17),

T [ay /+ KtJ]r where the KtJ are compact and

0 1 0 0

0.0 1 0

[«i/1

0 0 0 1

(24)

^777 ^777 - 1 ^777- 2 ^1

The characteristic polynomial of [afJ.] is (cf. [3], pp. 88-89)

P(A) Xm- £ cijXm-j.
j 1

Therefore, by Theorem 1, the operator

(25)

P (T) Tm- £ cij Tm~j.
j i

(26)

is compact.
The fact that a polynomial in T is compact simplifies greatly

the study of xn — T"x0 as n oo. We consider in some detail
the case with P (2) #0 for U| Ra. There is just a finite
number d ^ 1 of eigenvalues k 1, d, such that |Afc| Ra.
Let vk v (lk) and

M ©... © M\dd (27)

N n N\kk {(T — Ai I)Vl... (T — I)v<* x : xeBm) (28)
fc=i



— 196 —

Then
TM C M, X/V C N, (29)

Bm M ®N (30)

The restrictions of T to M and iV have the spectra gx {Xt :

i 1, T d} and <r2 cr — oy, respectively; M and N are the
spectral subspaces associated with a1 and a2.

Let
x0 u0 +?0 5 u0eM, v0eN. (31)

Then

- f T" u0 eM
y, T"x0 T" w0+T" ,-J _ (32)0 0 0

[T»T;06
y J

By (21) and (22), appropriately specialized,

lim || T"u0||1/nR„ if * 0, (33)
n -* oo

lim sup || Tnvo ||1/w g max {| X | : Xea2} < Ra (34)
«-GO

Therefore, the asymptotic behavior of xn Tnx0 as n -* oo is

essentially that of Tnw0 if u0 ^ 0. This reduces the problem to
one in a finite dimensional subspace of Bm.

The condition above that u0 ^ 0 is not essential. If,
instead, x0 has a non zero component in the spectral subspace
M\ for some eigenvalue 2, then a modification of the foregoing
argument with Ra replaced by the maximum modulus of all
such X yields similar results. Further details are omitted.

The simplest special case is: P (X) ^ 0 for \X\ Ra\there is

just one eigenvalue Xx such ,that \Xx\ Ra\ v'(Xx) 1; and

u0 ^ 0. Then Tu0 Xx u0 and, hence,

xn Tn*o ^w0+T"î0, (35)

where 2"S0 is the asymptotically dominant term on the right.
It follows from (15) that Tu0 Xx u0 if and only if

u0 (u0 Xxu0,..., X'~l u0), (36)
and

(m- frrjTj)u0 o.j (37)
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Since Tjisof the form T} ajI+Kj, it follows from (25) that
(37) is equivalent to

m

I VrjKj]uo 0. (38)
•> 1

Since P (Ax) ^ 0 by hypothesis, this is a generalized Fredholm
equation of the second kind. The number 11 is an eigenvalue
of T if and only if (38) has a non-zero solution u0, in which case

(36) gives a corresponding eigenvector u0.
A special case of a composite recursion relation was studied

by D. Greenspan and the author in [4]. Asymptotic results were
obtained there which go beyond those given above.

We conclude this paper with a generalization of Theorem 1.

Let 51 be an algebra with unit I over the complex field. Let J
be an ideal in 51. Let 5Im denote the algebra of all mxm
matrices T [ T tj] with T {j g 51. Then the set

J?m {K [Kij-]:KijeJ}(39)

is an ideal in 5Im.

Theorem 2. Let T where Ktj g J. Let
P (4) be the characteristic polynomial of the scalar matrix
[atj]. Then P (T) g fm.

Since the proof is essentially the same as that for Theorem 1,

it is omitted.
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