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DEGRÉ DE SYMÉTRIE D'UNE SURFACE PLANE

par E. Ehrhart

(Reçu le 22 juillet 1961)

Les objets fournis par la nature, une feuille par exemple,
ne sont jamais rigoureusement symétriques, mais ils le sont

plus ou moins. Le but de cette courte note est de cerner par une
définition mathématique la notion intuitive de degré de symétrie.

Il convient cependant de souligner qu'on peut définir bien
d'autres mesures de symétrie. Dans un travail récent R. Grünbaum

en cite plus de dix, et encore n'envisage-t-il que la symétrie
centrale de corps convexes 1).

Symétrie centrale

1) Soit S une surface plane et S' sa symétrique par rapport
a

à un point 0 de son plan. Le rapport — de l'aire de SnS' à celle
A

de S est le degré de symétrie de S par rapport à 0. C'est un nombre
compris entre 0 et 1, cette dernière valeur n'étant atteinte que
si S a un centre symétrie qui est 0. Ce nombre est la probabilité
pour que, un point étant choisi au hasard dans S, son symétrique
par rapport à 0 appartienne également à cette surface.

a
2) Si 0 est le centre de gravité de S, — est le degré de symétrie

A
gravitate de S. Il peut prendre toute valeur comprise entre 0 et 1 2).

2
Mais pour une surface convexe ce degré est supérieur ou égal à —

l'égalité n'étant atteinte que pour les triangles. Ce théorème,

1) Measures of symmetry for convex sets (63 pages), présenté au Convexity
Symposium, qui a eu lieu à Washington en juin 1961.

2) Il peut même être nul. Il en est ainsi, par exemple, pour la figure formée par
un nombre impair de cercles égaux, dont les centres sont les sommets d'un polygone
régulier, si leur rayon est suffisamment petit.
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conjecturé et démontré avec quelques restrictions par
E. Ehrhart 1), a depuis été établi complètement par B. M.
Stewart 2) et B. N. Kozinec 3).

a
3) Le maximum de — pour tous les points 0 est le degré de

A
symétrie centrale de S. Il peut être supérieur au degré de symétrie
gravitale, même pour S convexe. On le démontre sans difficulté

pour un trapèze isocèle, par exemple.
Cependant il résulte d'un théorème démontré par A. S.

2
Besicovitch 4), que ce degré est aussi supérieur ou égal à —,

l'égalité n'ayant lieu que pour les triangles.

Symétrie axiale

1) Soit S" le symétrique de S par rapport à une droite À

a
de son plan. Le rapport — de S n S" à celle de S est le degré de

A
symétrie de S par rapport à A; il est compris entre 0 et 1.

a
2) Le maximum de — pour toutes les droites A est le degré

A.

rie symétrie axiale de S.

Ce maximum peut être atteint pour plusieurs positions de A,
comme cela est le cas pour un polygone régulier, par exemple.
Pour une surface plane convexe, il ne peut descendre en dessous

d'une certaine valeur. Il serait intéressant, mais sans doute

difficile, de déterminer cette valeur critique des ovales. '

E. Ehrhart
13 a bd. de Lyon
Strasbourg.

C. R. de l'Académie des Sciences,'241 (1955), pp. 274-276.
2) Pacific J. Math., 8 (1958), pp. 335-337.
3) Leningrad. Gos. Univ. Uc. Zap. Ser. Mat. Nauk, N° 271 (1958), pp. 83-89.
4) J. London Math. Soc., 23 (1948), pp.237-240. «L'aire s' du plus grand ovale, à

2 s
centre de symétrie, intérieur à un ovale d'aire s est supérieure ou égale a — » Besico-

s'
vitch appelle « coefficient d'asymétrie » du second ovale la quantité 1 —
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