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§ 2. EXEMPLE D’UNE FONCTION CONTINUE SANS DERIVEE
COMPRENANT TOUTE L’ECHELLE LOGARITHMICO-PUISSANCE

Considérons la fonction f () de la forme

0

fx) = Y k(b7 o ('), (14)
k=1 .

ou ¢ (x) est une fonction définie par la formule (2) et 5> 0

est un nombre pair. Le domaine de variation des parameétres a,

B qui y interviennent sera le suivant:

0<p<1, (15)

et s1 B =0, on supposera o > 1, tandis que si 3 =1 on ad-
mettra o < 1. Ceci étant, la continuité de la fonction f(x) et
les hypotheéses du théoréeme 1 sont réalisées.

Remarquons que
pour 0 < B <1, les valeurs du parametre o étant arbitraires,
pour B =0, «> 1 et pour 8 =1, « <0 le produit

a.b, = k™ *bA =Bk (16)

est minoré par une constante indépendante de %. La fonction f
étant partout continue est en vertu du théoréme 2 partout non
dérivable pour ces valeurs des parametres 8, «.

Quant aux conditions suffisantes pour qu'une fonction f (z)
de la forme (1) appartienne a la classe H (3, y) lorsque les
coefficients a,, b, satisfont aux conditions (7), elles ont été
exprimées par l'inégalité (33) de [4] (p. 26). S1 'on tient compte
de celle-ci ainsi que de la forme de la fonction (14), on peut
formuler la condition suffisante pour que la fonction (14) soit
de la classe H (3, v) moyennant les deux inégalités

n

p@—Dmny, =7 Z k=*pA=Pk <« M (17)
' k=1
b? ("“)(n—l—l)”y Z k=*bh P < M, (18)
k=n+1

ou M est une constante indépendante de n.
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Afin de trouver la limite de 'expression & gauche de I'inéga-
lité (17) lorsque n — oo, on appliquera le théoréme de Stolz avec
les suivantes valeurs de paramétres 3, v, B8, «

0 <3 <1, v arbitraire ou 3 =1, y> 0
et simultanément
0 <B <1, « arbitraire ou B =1, « < 1.

La recherche de la limite de 'expression & gauche de 1'inégalité
(17) sera remplacée par la recherche de la limite du produit

-1
p~ @) pn (6=5) |:1_<n_1>7 b5~1:| (19)
n

ou les parametres admettent les valeurs considérées ci-dessus.
On voit bien que cette limite est finie dans le cas ou

0<p<1,06=8,a+y>0, (20)
ainsi que dans celui ou
p=106=0y=1—a. (21)

Voyons maintenant si pour les valeurs des paramétres
0, y ainsi établies, la condition (18) est vérifiée. Si I'on pose
k—n—1 = p et I'on admet § = B, 'expression a gauche de
I'inégalité (18) peut s’écrire sous la forme

i b (n+1)""(p+n+1)"* (22)

p=0
a) S10 < B <1,y = —«,0na

n+1

our o >0: b PP ——
d " <p+n+1

> < b7PP la série (22) est donc

bornée pour chaque n par le nombre M = Y p=#7
p=0

1 4
pour « <0 on a pour tout n > 1: <‘D+L—;> <<£+1> .
n+




— 186 —

Dans ce cas I'inégalité (18) est satisfaite en admettant

M=) b Fr <§ + 1) pour tout 7.

p=0

b) S1 B =0, «> 1, la série (22) prend la forme

i m+D) " (p+n+1)7*.

En appliquant le critére intégral de la convergence des séries on
limite la somme de la série par les nombres (a—1) "1 (n-+1)7*77*1,
3+ (a—1)7" (1) 777

L’inégalité (18) est donc vérifiée indépendamment dela valeur
de n lorsque —a—y-+1 <0, ¢’est-a-dire v > 1—a.

¢) Admettons 8 = 1, v = 1—a. De méme que dans le cas a)
I'inégalité (18) est satisfaite pout tout n: si « < 0 pour

1 o) —a 100
M:—Zb_p<g+1 et si « >0 pour M =— > b7,
2 & 2 2 =

Si ’on rapproche les cas a), b), ¢) ainsi que (20) et (21), on
trouve

a) st <B < 1, o est arbitraire, on a fe H (B,—a),
b) sip=0,a>1,onafeH(0,1—a),
c) siB=1,a=1,onafeH (1, 1—a).

Le théoreme 1 servira a trouver une condition suffisante
pour que la fonction f () définie par la formule (14) satisfasse
aux points de l'ensemble Z1) la relation (4) avec ¢ (h) =
B’ |log k|’ ou, comme nous le dirons dans la suite, pour que la
fonction f(z) soit aux points de lensemble Z de la classe
H*>(3, v). Cette propriété de la fonction f(x) pourra s’écrire sous
la forme f € Hy (3, v).

Prenons un point z,€ Z parmi les points du partage des

1) L’ensemble Z a été défini & la fin de la démonstration du théoréme 1 comme
I’ensemble de tous les points du partage de chacun des intervalles < p,p+1 >
(p entier) en b™ intervalles égaux.
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intervalles < p, p-+1 > (p entier) en 5" sous-intervalles égaux.
Si pour n = o

= (o +by ) =/ (x0) _

o (b1 [ log by L |

la fonction f (z) est au point z, de la classe £ (3, v). St 'on pré-
sente le quotient sous la forme

f(xo +by 1) = (x0) b, '
by’ (b, ')’ [log b, " [

et Uon tient compte des relations (13) et (16), on trouve comme
valeur de ce quotient

b(é—l)n p@=1)n n—1

A . — Y S
n? (log by’ """ W (log by’ Z ‘

Attendu que le premier composant de cette somme tend vers
zéro, lorsque n — oo, dans tout le domaine de variation des
parametres 9, v, on pourra se contenter d’examiner uniquement
le second composant. I’étude de la limite de cette expression sera
remplacée par 'é¢tude de la Iimite du produit

-1
(n— 1)~ @D pr G=H+ =1 " y_ba—1
- n—1

et I'on y admettra les mémes valeurs des paramétres que dans le
cas de I'étude de 'expression a gauche de I'inégalité (17).

Considérons les cas qui correspondent & @), b), ¢) énumeérés
ci-dessus. Si

0 <<, =08 v <—u
ou bien
B:O,SIB,Y<—OC,OC>1,

on conclut que fe Hy (B, v).

Dans le cas ou 8 =1, §= 0, v> 0 on trouve fe H? (I, Y)
avec v < 1l—a.
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En résumé, il vient:

s1 0 < B <1, a« est arbitraire, on a fe H (B, —«),
et siy <—aonafeHyP (B, v),

s13 =0, a>1 onafeH (0 1—«)
et lorsque v < —a«, on a fe H? (0, v,
stenfin B =1, a <1, onafeH(11—a),

et lorsque 0 <y <1—a, on a fe HY (1, v).

Ainsi la fonction de I'exemple de M. G. de Rahm (B =1,
o = 0) est de la classe H (1, 1), sans appartenir a aucune des
classes H (1, v) (v < 1), car pour v <1 elle est de la classe
HZ (1, v). De méme la fonction dont les coefficients sont définis
par (3) (B = 0, o = 2) appartient simultanément & la classe
H (0,—1) et & HZ (0, v) avec v <—2. Elle n’appartient donc
a aucune des classes H (0, v) avec ¥y << —2. La méthode donne
en deuxiéme cas (B = 0, « > 1) la localisation de la fonction
f (x) non compléte.

BIBLIOGRAPHIE

1. L. pe Vito, Su un esempio di funzione continua senza derivata. En-
seignement mathématique, IV (1958), pp. 281-283.

2. G. o Ramwm, Sur un exemple de fonction continue sans dérivée. En-
seignement mathématique, 111 (1957), pp. 71-72.

3. J.-P. Kanang, Sur ’exemple, donné par M. de Rahm, d’une fonction
continue sans dérivée. Enseignement mathématique, V (1960), pp. 53-
57.

4, K. Tarnawski, Continuous functions in the logarithmic-power classifi-
cation according to Holder’s conditions. Fundamenta Mathema-
ticae, XLII (1955), pp. 11-37.




	§ 2. Exemple d'une fonction continue sans dérivée COMPRENANT TOUTE L'ÉCHELLE LOGARITHMICO-PUISSANCE

