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faisant à la condition de Lipschitz 1). Les secondes conditions
ajoutées aux premières permettent dans de nombreux cas de

localiser la fonction / sur l'échelle logarithmico-puissance, c'est-à-
dire de prouver que / e H (8, y) pour certaines valeurs de S, y
et que simultanément /e7f°°(§, yx) pour tout yx < y. C'est

grâce à cela qu'on a pu construire l'exemple universel donné

plus haut.
La condition suffisante pour que / e H00 (8, y), qui résulte de

cette méthode, se compose de trois conditions. L'une d'elles

lim a„bôn(logbn)~y oo 2)
«-> oo

ne permet pas dans le cas où an an, bn à", ab 1 de

trancher si / e 7700 (S, y) ou non. Ceci a lieu aussi dans le cas de

l'exemple de M. de Rahm. Si cependant on applique la méthode
utilisée par M. de Rahm dans la démonstration de la non-dériva-
bilité de la fonction de son exemple, on arrive parfois à trancher
la question.

C'est précisément cette méthode qui a été appliquée au § 2

dans le simple cas d'une fonction continue sans dérivée / (x; oc, ß)
de la forme (14) où la fonction cp(x) est définie par la relation (2).
Selon la valeur des paramètres oc, ß, cette fonction parcourt
toute l'échelle logarithmico-puissance. Ce cas comprend en particulier

les exemples donnés par M. de Vito.

§ 1. Théorèmes Préliminaires

Lemme. S'il existe deux suites { En }, { rjn } telles que x0,
rjn -» y0, E„ < x0 < 7)n pour tout n et on a

lim "TT TT" 00 > (9)

où ^ (h) est une fonction définie et différente de zéro pour h > 0,
non décroissante et tendant vers zéro lorsque h -» 0, la fonction
/ (x) satisfait au point x0 à la relation (4).

0 Cf. [4], p. 28, Theorem 10. C'est une généralisation du théorème de M de Vitoconcernant la fonction de l'exemple de M. de Rahm.
2) Cf. [41 p. 27, formule (34).
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Démonstration. Si ce lemme n'était pas vrai, il existerait
deux constantes M1 oc telles que pour [ h j < a et x x0 l'iné-
galité (5) aurait eu lieu. On aurait donc eu pour n > n0

\f(nn)-f(DI< M\l/(rjn~x0) + Mil/(x0-Q < (rç„

ce qui contredit l'hypothèse (9).
A présent on formulera deux théorèmes sur la fonction / (x)

définie par (1), où la fonction <p(x) est donnée par la relation (2)
et les coefficients art, bn vérifient les conditions (7), les nombres

bn+1
ßn étant des nombres pairs, b1 1. Il est évident que la

"n
fonction / (x) est une fonction continue.

00

Théorème 1. Si la série £ akbk est divergente, la fonction
k= 1

/ (x) satisfait dans Y ensemble Z dénombrable et dense de Taxe Ox
à la relation (4) avec ^ (h) — h. La fonction / (x) n?a donc pas
de dérivée dans fensemble Z.

Démonstration. La fonction cp(x) étant périodique, on se

bornera à rapporter les raisonnements à fintervalle < 0,1 >.
Le graphique de la fonction

<Pn(x) <*n<p(bnx) (10)

est une ligne brisée formant avec Taxe Ox des triangles adhérents
dont la base a la longueur b~1 et dont les extrémités sont les zéros

de la fonction cpn (x). Aux milieux des bases la fonction cpn (x)
est maximum avec les valeurs | an. Les deux côtés des dits
triangles ont comme les modules des coefficients angulaires les

produits anbn.

Désignons par n0 une valeur établie de n et par x0 un zéro

choisi de la fonction cpnQ (x). Il est à remarquer que le nombre ß„

étant pair, les points x0 et Xç+'b^1 sont des zéros de toute fonction

(pk (#), où k > n0. Il en résulte

(Pk(x0+b~0^-(Pkjxp) 0 pour k

è"1 ak pour k < n0

OÙ

\cck\ akbk (11)



— 183 —

et

f (x0+b„Q )—f (x0) 0

^
Pno

2, w
t>n0 fc=l

x0 étant établi, calculons pour n > n0 la valeur du coefficient

différentiel

Pn /(^o+vy/Co) + y % (13)
bn k~no

00

On en déduit que dans le cas où la série Z akbk diverge la fonc-
k= 1

tion / (x) vérifie au point x0 la relation (4) avec <\> (h) h. Ceci

a lieu pour tout point de partage en bn sous-intervalles égaux
de l'intervalle <0,1 >. En désignant par Z l'ensemble de ces

points pour n 1,2,... et ceux qui leur correspondent dans le

partage des intervalles < p, p + 1 > (p entier), la thèse du

théorème se trouve démontrée.
Théorème 2. Si pour toute suite { \ } où | \ \ 1, la série

co

Z MA diverge n), la fonction f (x) est de la classe H00 (0, 1),
fc=l
c'est-à-dire elle n'a en aucun point de dérivée.

Démonstration. La démonstration est presque immédiate.
Il suffit de substituer dans la formule (12) x0 et %+ à"1 respectivement

par les deux extrémités de l'intervalle < r\n >,
formé par le partage de l'intervalle < 0, 1 > en b„0 intervalles
égaux, de remplacer n0 par n et de choisir les intervalles <£„, r}n>
de manière qu'ils contiennent un certain point x choisi
arbitrairement. En s'appuyant sur le lemme avec ^ (h) A, on
aboutira à la proposition avancée.

Exemples. Le théorème 2 trouve des applications dans les

cas suivants: a) an 10~", bn 2nl (exemple de M. Faber);

b) an an, bn bn, où ab > 1, b > 0 pair, 0 < a < 1;

c) an n~a, bn bn, b > 0 pair, oc > 1. Le théorème 2 n'est
pas applicable lorsque an n~ab~n, bn bn, b > 0 pair, oc> 1

mais on peut alors utiliser le théorème 1.

i) Cette hypothèse est équivalente à lim &kbk>0
k go
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