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faisant & la condition de Lipschitz!). Les secondes conditions
ajoutées aux premiéres permettent dans de nombreux cas de
localiser 1a fonction f sur I’échelle logarithmico-puissance, ¢’est-a-
dire de prouver que f e H (3, v) pour certaines valeurs de 9, v
et que simultanément fe H*® (3, v,) pour tout vy, < vy. Clest
grice & cela qu'on a pu construire I’exemple universel donné
plus haut.

La condition suffisante pour que f e H* (3, v), qul résulte de
cette méthode, se compose de trois conditions. L’une d’elles

lim a, b2 (log b,)”" = oo 2)
ne permet pas dans le cas ou a,=a", b,=10" ab =1 de
trancher si f e H® (3, v) ou non. Ceci a lieu aussi dans le cas de
I'exemple de M. de Rahm. Si cependant on applique la méthode
utilisée par M. de Rahm dans la démonstration de la non-dériva-
bilité de la fonction de son exemple, on arrive parfois & trancher
la question.

C’est précisément cette méthode qui a été appliquée au § 2
dans le simple cas d’une fonction continue sans dérivée f (z; o, 8)
de la forme (14) ou la fonction ¢(z) est définie par la relation (2).
Selon la valeur des paramétres «, {8, cette fonction parcourt
toute I'échelle logarithmico-puissance. Ce cas comprend en parti-
culier les exemples donnés par M. de Vito.

§ 1. THEOREMES PRELIMINAIRES

Lemme. S’il existe deux suites { £, }, { , } telles que &, — z,,
T = Yo, &n < Ly < 7, pour tout n et on a

im = 0,
noo Y (1, =)
ol ¢ (k) est une fonction définie et différente de zéro pour 4 > 0,

non décroissante et tendant vers zéro lorsque 2 — 0, la fonction
[ (z) satisfait au point x, & la relation (4).

9)

1) Cf. [4], p. 28, Theorem 10. C’est une généralisation du théoréme de M. de Vito
concernant la fonction de I’exemple de M. de Rahm.
2) Cf. [4] p. 27, formule (34).
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Démonstration. Si ce lemme n’était pas vrai, il existerait
deux constantes M, « telles que pour |h| < a et x = z, I'iné-
galité (5) aurait eu lieu. On aurait donc eu pour n > n,

[ £ () =F (&) | < My (1, —Xo) + MY (%0 — &) < 2MY (n,— &)

ce qui contredit 'hypotheése (9).

A présent on formulera deux théorémes sur la fonction f (x)
définie par (1), ou la fonction ¢(z) est donnée par la relation (2)
et les coefficients a,, b, vérifient les conditions (7), les nombres

b, . , ;
B, = *1 stant des nombres pairs, b; = 1. Il est évident que la

n

fonction f (x) est une fonction continue.

Théoréeme 1. Si la série ), a,b, est divergente, la fonction
k=1

f (x) satisfait dans Pensemble Z dénombrable et dense de ’axe Ox
a la relation (4) avec ¢ (k) = h. La fonction f (x) n’a donc pas
de dérivée dans I’ensemble Z. |

Démonstration. La fonction ¢(x) étant périodique, on se
bornera a rapporter les raisonnements & I'intervalle < 0,1 >.
Le graphique de la fonction

¢n(x) = a, o (b,x) (10)

est une ligne brisée formant avec 'axé Ox des triangles adhérents
dont la base a la longueur b, ' et dont les extrémités sont les zéros
de la fonction ¢, (). Aux milieux des bases la fonction ¢, (z)
est maximum avec les valeurs % a,. Les deux cdtés des dits
triangles ont comme les modules des coefficients angulaires les
produits a,b,.

Désignons par n, une valeur établie de n et par z, un zéro
choisi de la fonction @, (z). Il est & remarquer que le nombre B,
étant pair, les points z, et xo—{—bn—ol sont des zéros de toute fonc-
tion @ (z), ot k > ny. 1l en résulte

@i (Xo +bn,") — @1 (x0) _ 0 pour k>ng

b,." w, pour k <mng,

ou
| oy | = ay by - (11)
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et
-1y ng—1
O, = f(xo +bn0_3 f(XO) _ Z (xk . (12)
° bno k=1

x, 6tant établi, calculons pour n > n, la valeur du coefficient

différentiel
—1

_ fxo b D —f(x0) _ - S ab.  (13)

Pn —1 -
bn k':no

o0

On en déduit que dans le cas ou la série ), a.b, diverge la fone-
k=1

tion f (z) vérifie au point z, la relation (4) avec ¢ (k) = h. Ceci
a lieu pour tout point de partage en b, sous-intervalles égaux
de Vintervalle < 0,1 >. En désignant par Z I'ensemble de ces
points pour n = 1,2, ... et ceux qui leur correspondent dans le
partage des intervalles < p, p+1> (p entier), la theése du
théoréme se trouve démontrée.

Théoréme 2. Si pour toute suite { 2, } ou | &, | = 1, la série

> Magb, diverge 1) la fonction f (x) est de la classe H* (0, 1),
k=1
¢’est-a-dire elle n’a en aucun point de dérivée.

Démonstration. La démonstration est presque immédiate.
11 suffit de substituer dans la formule (12) z, et x0+b;01 respecti-
vement par les deux extrémités de lintervalle <&, 7,>,
formé par le partage de I'intervalle < 0,1 > en b, intervalles
égaux, de remplacer n, par n et de choisir les intervalles <&, n,>
de maniére qu’ils contiennent un certain point z choisi arbi-
trairement. En s’appuyant sur le lemme avec & (h) = A, on
aboutira a la proposition avancée.

Exemples. Le théoréme 2 trouve des applications dans les
cas suivants: a) a, = 107" b, = 2" (exemple de M. Faber);
b) a,=a", b,="0", ou ab>1, b> 0 pair, 0 <a <1;
¢) a,=n"% b,=10" b> 0 pair, « > 1. Le théoréme 2 n’est
pas applicable lorsque a, =n"*"" b, = b", b > 0 pair, o« > 1
mais on peut alors utiliser le théoréme 1.

1) Cette hypothése est équivalente akﬁﬁ agby>0
~> 00
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