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SUR LES FONCTIONS CONTINUES SANS DÉRIVÉES
CONSIDÉRÉES

DANS L'ÉCHELLE LOGARITHMICO-PUISSANCE

par E. Tarnawski (Gdansk).

M. L. de Vito a montré x) dans sa note [1] que la fonction

00

f{x) X G, (p (1)
n=l

où an 2~n, b„ 2M et

(p(x) min\x—p\ (p entier) (2)
p

qui avait servi à M. G. de Rahm 2) d'exemple de fonction
continue sans dérivée, est une fonction satisfaisant à la condition de

Holder pour tout exposant S (0 < S < 1)3). Dans la même note
M, de Vito mit en lumière l'observation de M, G. de Rahm sur
l'existence de fonctions continues non dérivables ne vérifiant la
condition de Holder pour aucun exposant S (0 < S < 1). C'est la
fonction / (x) de la forme (1) où l'on a posé

n~\ bn 2n (3)

et (p(x) est une fonction définie par la formule (2), qui en est un
exemple.

Or, M. J.-P. Kahane a pu dans [3] formuler ces remarques
d'une manière plus précise. Il y dit notamment que «l'exemple
de M. de Rahm, à peine modifié, témoigne qu'aucune condition
de majoration sur le module de continuité d'une fonction, strictement

plus faible que la condition de Lipschitz, n'assure la déri-
vabilité fut-ce en un seul point. Enfin, une modification supplé-

0 Cf. la note i) page 181.
2) Cf. [2],
3) Cf. (5) où >Hh) h
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mentaire permet de construire facilement une fonction continue
dont le module de continuité en chaque point est aussi « mauvais
qu'on veut » >. Cette proposition de M. Kahane est appuyée par
deux théorèmes qu'il établit. Soit cp(A) une fonction définie pour
h > 0, non décroissante, tendant vers zéro lorsque h -> 0 et telle
que (h) > 0. Par une construction basée sur une modification
appropriée de l'exemple de M. de Rahm, M. Kahane démontre

que dans toute classe de fonctions satisfaisant à la condition
généralisée de Holder (5) et contenant des fonctions non lipschit-
ziennes, il existe des fonctions n'admettant de dérivées en aucun
point1). Une autre modification de l'exemple de M. de Rahm
a permis à M. Kahane de démontrer un théorème qui prouve
l'existence d'une fonction continue / (x) dont le module de continuité

en chaque point est minoré par une fonction donnée (h).
Il est à remarquer que le second théorème de M. Kahane

entraîne le théorème connu 2) sur l'existence d'une fonction
continue / (x) satisfaisant pour tout x à la condition

— \f(x + h)-f(x){
lim oo (4)

<A(I h\)

où ^ (h) est une fonction donnée.
On retrouve alors la remarque de M. de Rahm en posant dans

la formule (4) par exemple ^ (x) | log h \~x pour 0 < h < e"1,

^ (h) 1 pour h > e-1.
On peut d'ailleurs étendre l'observation de M. de Rahm de la

manière suivante 3). Dans de nombreux travaux on considère une
classification plus générale que celle de Holder. On admet alors

comme ^ (h) dans la condition généralisée de Holder

\f(x+h)-f(x)|< Mi/H | hI),(5)

1) Ce théorème était connu. Cf. [4], p. 25, Remark 2.
2) Cf. [4] Remark 1 et l'astérique 7) cle la page 25. Afin de le prouver il suffit,

la fonction i>(h) étant donnée d'avance, de choisir une suite <[ hn [ tendant vers zéro et
une fonction (h) de la manière suivante: on prend h± arbitraire et l'on pose

4^(hi). On choisit après 0 < hn < hn-1 (n 2, 3,.. afin que <b(hnX
et <l>o(hn) 2~nxF(hi). Si à présent on interpole linéairement les valeurs de la fonction
cpo(h) entre les membres voisins de la suite \ hn \ et l'on applique le second théorème de

M. Kahane à la fonction ainsi obtenue, on déduit de ce théorème l'existence d'une fonction

f(x) satisfaisant à la condition (4).
3) La généralisation de ces raisonnements résulte du théorème de M. W. Orlicz,

cf. [4], p. 12.
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(où ^ (h) est une fonction non décroissante, définie et différente
de zéro pour h > 0 et tendant vers zéro lorsque h -» 0) la fonction

xjj (h) hô | log h |y pour 0 < h < ce,
(6)

xj/(h) \jj (a) pour h > a

a peut y être choisi de manière que la fonction ^ (h) soit pour
h< a une fonction croissante 1). On attribue aux paramètres S, y
les valeurs suivantes : 0 S ^ 1 et

si 0 < 8 < 1 y est arbitraire,

si 8 1 y > 0, si 8 0 y < 0.

Considérons maintenant uniquement des fonctions continues,
définies et bornées dans l'intervalle (—oo,+ oo). Une telle fonction

f(x) appartiendra à la classe 77(8, y) si elle satisfait pour
tout x et pour tout A à la condition (5) où ^ (h) est une fonction
définie par les formules (6). On remarque facilement que

si S-l > S2 on a H (8X, yx) cz H (82, y2) indépendamment des

valeurs ya, y2

si Sjl — S2 on a H (8^ yx) c H (S2, y2) pourvu que yx < y2.

et que la première des deux classes est portion de la seconde au
sens propre du mot. Ainsi on parvient à une classification des

fonctions / (x) d'après une échelle logarithmico-puissance.
Une fonction continue / (x) satisfaisant pour tout x à la

condition (4), où (h) est définie par les formules (6), sera dite de

la classe Hœ(S, y). Le sens des relations entre les classes
H00 (8, y) est opposé à celui des classes H (8, y). Comme la
non-dérivabilité de la fonction / (x) peut s'écrire sous la forme
de / e H00 (1, 0) et l'on a Hœ (1, 0) =3 H00 (8, y) pour toutes
les valeurs considérées de S, y, on conclut que toutes les classes
H00 (8. y) contiennent des fonctions continues non dérivables.
Il est évident que H (S, y) H00 (8, y) 0.

Ainsi les observations rapportées par M. de Vito peuvent être
formulées comme il suit: il existe une fonction / (x), à savoir

i) Dans le cas où y >0 on peut poser par exemple a e~ôll et lorsque y < ù
a 1I2.
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l'exemple de M. de Rahm, qui tout en appartenant à la classe
H00 (1, 0) appartient aussi à chaque classe H (8, 0) (0 < S < 1)

et d'autre part il existe une fonction / (x) [c'est la fonction
CO J

/ ix) — Z 7Y 9 (%k x) OÙ cp (x) est définie par la formule (2)]
k= 1 k

qui appartient à la classe Hœ (1, 0), mais n'appartient à aucune
des classes H (S, 0) (0 < S ^ 1).

On peut préciser encore ces observations de la manière
suivante. Considérons une fonction de la forme (1) où

OO

a„>0, 0 < b„ < bn+1,-> co, £ co, (7)
n 1

et la fonction ($>(x) est une fonction périodique arbitraire, non
constante, vérifiant la condition de Lipschitz. Si l'on définit

a„ A'0'2"'r n! ~k, (8)
(ni)

où A > 1, k > 0 on obtient l'exemple d'une fonction / appartenant

simultanément dans toute l'échelle logarithmico-puissance
aux classes H (S, y) et yx) pour chaque y1 < y. Si dans
les formules (8) on pose S 0, y 0 on obtient une fonction
/ e H°°(0, yx) pour tout < 0, en particulier une fonction
continue sans dérivée qui n'appartient à aucune des classes de

l'échelle logarithmico-puissance 2).

La méthode appliquée dans [4] permet d'établir d'une part
les conditions suffisantes pour qu'une fonction / définie par les

formules (1), (7) [où (û(x) est une fonction périodique arbitraire,
non constante et vérifiant la condition de Lipschitz] appartienne

à la classe if (S, y) et d'autre part les conditions suffisantes

pour que la fonction / appartienne à la classe if00 (S, y). En
appliquant les premières conditions on établit par exemple la
proposition affirmant que la fonction / définie par les formules (1), (7)

est de la classe H 1, 1) pourvu que an an, bn èn, ab 1 et

cp(x) soit une fonction périodique arbitraire non constante, satis-

i) Cet exemple universel pour l'échelle logarithmico-puissance se trouve dans [4],
p. 36, Example 6.
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faisant à la condition de Lipschitz 1). Les secondes conditions
ajoutées aux premières permettent dans de nombreux cas de

localiser la fonction / sur l'échelle logarithmico-puissance, c'est-à-
dire de prouver que / e H (8, y) pour certaines valeurs de S, y
et que simultanément /e7f°°(§, yx) pour tout yx < y. C'est

grâce à cela qu'on a pu construire l'exemple universel donné

plus haut.
La condition suffisante pour que / e H00 (8, y), qui résulte de

cette méthode, se compose de trois conditions. L'une d'elles

lim a„bôn(logbn)~y oo 2)
«-> oo

ne permet pas dans le cas où an an, bn à", ab 1 de

trancher si / e 7700 (S, y) ou non. Ceci a lieu aussi dans le cas de

l'exemple de M. de Rahm. Si cependant on applique la méthode
utilisée par M. de Rahm dans la démonstration de la non-dériva-
bilité de la fonction de son exemple, on arrive parfois à trancher
la question.

C'est précisément cette méthode qui a été appliquée au § 2

dans le simple cas d'une fonction continue sans dérivée / (x; oc, ß)
de la forme (14) où la fonction cp(x) est définie par la relation (2).
Selon la valeur des paramètres oc, ß, cette fonction parcourt
toute l'échelle logarithmico-puissance. Ce cas comprend en particulier

les exemples donnés par M. de Vito.

§ 1. Théorèmes Préliminaires

Lemme. S'il existe deux suites { En }, { rjn } telles que x0,
rjn -» y0, E„ < x0 < 7)n pour tout n et on a

lim "TT TT" 00 > (9)

où ^ (h) est une fonction définie et différente de zéro pour h > 0,
non décroissante et tendant vers zéro lorsque h -» 0, la fonction
/ (x) satisfait au point x0 à la relation (4).

0 Cf. [4], p. 28, Theorem 10. C'est une généralisation du théorème de M de Vitoconcernant la fonction de l'exemple de M. de Rahm.
2) Cf. [41 p. 27, formule (34).
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Démonstration. Si ce lemme n'était pas vrai, il existerait
deux constantes M1 oc telles que pour [ h j < a et x x0 l'iné-
galité (5) aurait eu lieu. On aurait donc eu pour n > n0

\f(nn)-f(DI< M\l/(rjn~x0) + Mil/(x0-Q < (rç„

ce qui contredit l'hypothèse (9).
A présent on formulera deux théorèmes sur la fonction / (x)

définie par (1), où la fonction <p(x) est donnée par la relation (2)
et les coefficients art, bn vérifient les conditions (7), les nombres

bn+1
ßn étant des nombres pairs, b1 1. Il est évident que la

"n
fonction / (x) est une fonction continue.

00

Théorème 1. Si la série £ akbk est divergente, la fonction
k= 1

/ (x) satisfait dans Y ensemble Z dénombrable et dense de Taxe Ox
à la relation (4) avec ^ (h) — h. La fonction / (x) n?a donc pas
de dérivée dans fensemble Z.

Démonstration. La fonction cp(x) étant périodique, on se

bornera à rapporter les raisonnements à fintervalle < 0,1 >.
Le graphique de la fonction

<Pn(x) <*n<p(bnx) (10)

est une ligne brisée formant avec Taxe Ox des triangles adhérents
dont la base a la longueur b~1 et dont les extrémités sont les zéros

de la fonction cpn (x). Aux milieux des bases la fonction cpn (x)
est maximum avec les valeurs | an. Les deux côtés des dits
triangles ont comme les modules des coefficients angulaires les

produits anbn.

Désignons par n0 une valeur établie de n et par x0 un zéro

choisi de la fonction cpnQ (x). Il est à remarquer que le nombre ß„

étant pair, les points x0 et Xç+'b^1 sont des zéros de toute fonction

(pk (#), où k > n0. Il en résulte

(Pk(x0+b~0^-(Pkjxp) 0 pour k

è"1 ak pour k < n0

OÙ

\cck\ akbk (11)
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et

f (x0+b„Q )—f (x0) 0

^
Pno

2, w
t>n0 fc=l

x0 étant établi, calculons pour n > n0 la valeur du coefficient

différentiel

Pn /(^o+vy/Co) + y % (13)
bn k~no

00

On en déduit que dans le cas où la série Z akbk diverge la fonc-
k= 1

tion / (x) vérifie au point x0 la relation (4) avec <\> (h) h. Ceci

a lieu pour tout point de partage en bn sous-intervalles égaux
de l'intervalle <0,1 >. En désignant par Z l'ensemble de ces

points pour n 1,2,... et ceux qui leur correspondent dans le

partage des intervalles < p, p + 1 > (p entier), la thèse du

théorème se trouve démontrée.
Théorème 2. Si pour toute suite { \ } où | \ \ 1, la série

co

Z MA diverge n), la fonction f (x) est de la classe H00 (0, 1),
fc=l
c'est-à-dire elle n'a en aucun point de dérivée.

Démonstration. La démonstration est presque immédiate.
Il suffit de substituer dans la formule (12) x0 et %+ à"1 respectivement

par les deux extrémités de l'intervalle < r\n >,
formé par le partage de l'intervalle < 0, 1 > en b„0 intervalles
égaux, de remplacer n0 par n et de choisir les intervalles <£„, r}n>
de manière qu'ils contiennent un certain point x choisi
arbitrairement. En s'appuyant sur le lemme avec ^ (h) A, on
aboutira à la proposition avancée.

Exemples. Le théorème 2 trouve des applications dans les

cas suivants: a) an 10~", bn 2nl (exemple de M. Faber);

b) an an, bn bn, où ab > 1, b > 0 pair, 0 < a < 1;

c) an n~a, bn bn, b > 0 pair, oc > 1. Le théorème 2 n'est
pas applicable lorsque an n~ab~n, bn bn, b > 0 pair, oc> 1

mais on peut alors utiliser le théorème 1.

i) Cette hypothèse est équivalente à lim &kbk>0
k go
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§ 2. Exemple d'une fonction continue sans dérivée
COMPRENANT TOUTE L'ÉCHELLE LOGARITHMICO-PUISSANCE

Considérons la fonction / (x) de la forme

00

/(*) Z k-x(b-(14)
k= 1

où (p (x) est une fonction définie par la formule (2) et b > 0

est un nombre pair. Le domaine de variation des paramètres oc,

ß qui y interviennent sera le suivant:

0<j8<l, (15)

et si ß 0, on supposera oc > 1, tandis que si ß 1 on
admettra a < 1. Ceci étant, la continuité de la fonction / (x) et
les hypothèses du théorème 1 sont réalisées.

Remarquons que
pour 0 <ß <u les valeurs du paramètre oc étant arbitraires,
pour ß 0, ôc > 1 et pour ß — 1, a < 0 le produit

akbk k-ab(1-ß)k (16)

est minoré par une constante indépendante de k. La fonction /
étant partout continue est en vertu du théorème 2 partout non
dérivable pour ces valeurs des paramètres ß, a.

Quant aux conditions suffisantes pour qu'une fonction / (x)
de la forme (1) appartienne à la classe H (S, y) lorsque les

coefficients ani bn satisfont aux conditions (7), elles ont été

exprimées par l'inégalité (33) de [4] (p. 26). Si l'on tient compte
de celle-ci ainsi que de la forme de la fonction (14), on peut
formuler la condition suffisante pour que la fonction (14) soit
de la classe if (S, y) moyennant les deux inégalités

n

b(.s-i)nn-y£k-*b(l-ß)k <M(17)
k l

00

foô(K+i)(n _|_ i)-y £ k~xb-ßk<M, (18)
k n + 1

où M est une constante indépendante de n.
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Afin de trouver la limite de f expression à gauche de l'inéga-
lité (17) lorsque n co, on appliquera le théorème de Stolz avec
les suivantes valeurs de paramètres S, y, ß, a:

0 < S <1, y arbitraire ou S 1, y > 0

et simultanément

0 < ß < 1, oc arbitraire ou ß 1, a < 1.

La recherche de la limite de l'expression à gauche de l'inégalité
(17) sera remplacée par la recherche de la limite du produit

(19)

où les paramètres admettent les valeurs considérées ci-dessus.
On voit bien que cette limite est finie dans le cas où

0 < /? < 1 8 ß oc+y >0, (20)

ainsi que dans celui où

ß 1, S ß, y 1 — a (21)

Voyons maintenant si pour les valeurs des paramètres
S, y ainsi établies, la condition (18) est vérifiée. Si l'on pose
k—n—1 p et l'on admet S ß, l'expression à gauche de

l'inégalité (18) peut s'écrire sous la forme

oo

£ b-ß>(n + l)->(p + n + iy (22)
p 0

a) Si 0 < ß < 1, y —a, on a

f n+1 \a
pour a > 0: b~fp[ < b~fp, la série (22) est donc

\p + n + lj
oo

bornée pour chaque n par le nombre M £ b~ßp ;

p o

pour a < 0 on a pour tout n > 1 : (——- +
< (— +

V n+1 J \2 J

w~(a+y) bn (ö~ß) 1-
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Dans ce cas l'inégalité (18) est satisfaite en admettant

M Y, b~ßp j^- + 1^ pour tout n.

b) Si ß 0, oc > 1, la série (22) prend la forme

00

1 (n + iy?(p+n + l)-«
p o

En appliquant le critère intégral de la convergence des séries on
limite la somme delà série par les nombres (a—l)"1 (ft-j-l)~a~y+1,
i+(a-l)-1 (n+l)-«~y+1.

L'inégalité (18) est donc vérifiée indépendamment de la valeur
de n lorsque — oc— y+1 < 0, c'est-à-dire y > 1 —a.

c) Admettons ß l,y l —oc. De même que dans le cas a)
l'inégalité (18) est satisfaite pout tout n: si oc < 0 pour

1 00 (v Va 1 00

M — — Y b P —1~1 et si a > 0 pour M — Y b P
•

^ p o / 2
p q

Si l'on rapproche les cas a), b), c) ainsi que (20) et (21), on
trouve

a) si 0 < ß < 1. a est arbitraire, on a f eH (ß, — a),

b) si ß 0, a > 1, on a / e H (0, 1 — a),

c) si ß =• 1, a ^ 1, on a /eïï(l, 1— a).

Le théorème 1 servira à trouver une condition suffisante

pour que la fonction / (x) définie par la formule (14) satisfasse

aux points de l'ensemble Z1) la relation (4) avec ^ (h)
hô | log h |7 ou, comme nous le dirons dans la suite, pour que la
fonction f (x) soit aux points de l'ensemble Z de la classe

_ff°°(§, y). Cette propriété de la fonction f(x) pourra s'écrire sous
la forme / e H% (S, y).

Prenons un point x0e Z parmi les points du partage des

i) L'ensemble Z a été défmi à la fin de la démonstration du théorème 1 comme
l'ensemble de tous les points du partage de chacun des intervalles < p, p +1 >
(p entier) en ô" intervalles égaux.
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intervalles < p, p+i > (p entier) en &"° sous-intervalles égaux.
Si pour 72 —> co

7^f(x0 + b;l)-f(x0)
_

(b;1)01 log b;1 r
00 '

la fonction / (x) est au point de la classe Hœ (S, y). Si Ton
présente le quotient sous la forme

f(x0+K1)-f(x0) b;1
(b;1)31 log b;1 r

et l'on tient compte des relations (13) et (16), on trouve comme
valeur de ce quotient

l(«5-1)/i l(<5-1)h n-î
Pn + — y k-«b^-ß)k.

«aïog c «7(iog bykïn,

Attendu que le premier composant de cette somme tend vers
zéro, lorsque n ->oo, dans tout le domaine de variation des

paramètres S, y, on pourra se contenter d'examiner uniquement
le second composant» L'étude de la limite de cette expression sera
remplacée par l'étude de la limite du produit

i-i
— l)-(« + V) (ö-ß) + ß~l n \y

-b0'1
n — 1

et l'on y admettra les mêmes valeurs des paramètres que dans le
cas de l'étude de l'expression à gauche de l'inégalité (17).

Considérons les cas qui correspondent h a), b), c) énumérés
ci-dessus. Si

0 < ß < 1, 8 — ß, y< —a
ou bien

ß 0, S ß, y < —a, a > 1

on conclut que / e H% (ß, y).

Dans le cas où ß 1, S ß, y > 0 on trouve / e H£ (1, y)
avec y < 1 —a.



— 188 —

En résumé, il vient:
si 0 < ß < 1, a est arbitraire, on a f e H (ß. —oc),

et si y < — oc on a / e Ef% (ß, y),
si ß 0, oc > 1 on a / e H (0, 1 — a)

et lorsque y < — a, on a / e H% (0, y),
si enfin ß 1, a < 1, on a f e H (1,1 —a),

et lorsque 0 <y <1 —a, on a je (1, y).

Ainsi la fonction de l'exemple de M. G. de Rahm (ß 1,

a 0) est de la classe H (1, 1), sans appartenir à aucune des

classes H (1, y) (y < 1), car pour y < 1 elle est de la classe

m ï)- De même la fonction dont les coefficients sont définis

par (3) ß 0, a 2) appartient simultanément à la classe

H (0,-1) et à Hz (0, y) avec y <—2. Elle n'appartient donc
à aucune des classes H (0, y) avec y < —2. La méthode donne

en deuxième cas ß 0, oc > 1) la localisation de la fonction
f (x) non complète.
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