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SUR LES FONCTIONS CONTINUES SANS DERIVEES
CONSIDEREES §
DANS I’ECHELLE LOGARITHMICO-PUISSANCE

par E. Tarvawskr (Gdansk).

M. L. de Vito a montré!) dans sa note [1] que la fonction

f(x) = 2 a,(byx) (1)
n=1
oua,=2""b,=2"et

@(x) = min|x—p| (p entier) (2)
p

qui avait servi & M. G. de Rahm 2) d’exemple de fonction con-
tinue sans dérivée, est une fonction satisfaisant a la condition de
Holder pour tout exposant 3 (0 < d << 1) 3). Dans la méme note
M. de Vito mit en lumiére ’observation de M. G. de Rahm sur
Pexistence de fonctions continues non dérivables ne vérifiant la
condition de Holder pour aucun exposant 3 (0 <3 < 1). Cest la
fonction f (z) de la forme (1) ot1 I'on a posé

a, = n_ 2, b, = 2" (3)

et ¢(x) est une fonction définie par la formule (2), qui en est un
exemple.

Or, M. J.-P. Kahane a pu dans [3] formuler ces remarques
d’une maniere plus précise. Il y dit notamment que « 'exemple
de M. de Rahm, & peine modifié, témoigne qu’aucune condition
de majoration sur le module de continuité d’une fonction, stricte-
ment plus faible que la condition de Lipschitz, n’assure la déri-
vabilité fut-ce en un seul point. Enfin, une modification supplé-

1) Cf. la note 1) page 181.
2) Cf. [2].

3) Cf. (5) ou Y(h) = hS.
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mentaire permet de construire facilement une fonction continue
dont le module de continuité en chaque point est aussi « mauvais |
quon veut »>. Cette proposition de M. Kahane est appuyée par
deux théorémes qu’il établit. Soit (%) une fonction définie pour
h > 0, non décroissante, tendant vers zéro lorsque 2 — 0 et telle
que Y (h) > 0. Par une construction basée sur une modification
appropriée de 'exemple de M. de Rahm, M. Kahane démontre
que dans toute classe de fonctions satisfaisant a la condition
généralisée de Holder () et contenant des fonctions non lipschit-
ziennes, il existe des fonctions n’admettant de dérivées en aucun
point 1). Une autre modification de ’exemple de M. de Rahm
a permis a M. Kahane de démontrer un théoreme qui prouve
I’existence d’une fonction continue f () dont le module de conti-
nuité en chaque point est minoré par une fonction donnée ¢ (k).

Il est & remarquer que le second théoréme de M. Kahane
entraine le théoréme connu 2) sur 'existence d’une fonction con-
tinue f (z) satisfaisant pour tout x & la condition

T /G /() |
im =
o W(IR])

ou U (A) est une fonction donnée.

On retrouve alors la remarque de M. de Rahm en posant dans
la formule (4) par exemple ¢ (x) = [log 2 | pour 0 <h <e™!,
y (h) = 1 pour k> e~ .

On peut d’ailleurs étendre ’observation de M. de Rahm de la
maniére suivante 3). Dans de nombreux travaux on considére une
classification plus générale que celle de Holder. On admet alors
comme ¢ (k) dans la condition généralisée de Holder

[fGe+h)—fx) [ <MY (lh]), (5)

4

1) Ce théoréme était connu. Cf. [4], p. 25, Remark 2.
2) Cf. [4] Remark 1 et l’astérique 7) de la page 25. Afin de le prouver il suffit,

la fonction ¢(h) étant donnée d’avance, de choisir une suite { hy } tendant vers zéro et
une fonction Yo (h) de la maniére suivante: on prend hy; arbitraire et ’on pose
Go(hy) = Y(hi1). On choisit aprés 0 << hpn << hp—1 (n =2, 3, .. ) afin que Y(hn) < £~ " b(hy)
et Yolhn) = 2~ "™¥(hy). Si & présent on interpole linéairement les valeurs de la fonction
©o(h) entre les membres voisins de la suite {hn} et 'on applique le second théoréme de
M. Kahane 34 la fonction ainsi obtenue, on déduit de ce théoréme I’existence d’une fonc-

tion f(x) satisfaisant a la condition (4).
3) La généralisation de ces raisonnements résulte du théoréme de M. W. Orlicz,

cf. [4], p. 12.
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(ou ¢ (k) est une fonction non décroissante, définie et différente
de zéro pour & > 0 et tendant vers zéro lorsque & — 0) la fonction
Wy (h) = h®|log h|" pour 0 <h<ua,

v (h) = ¥ () pour h > a.

« peut y étre choisi de maniére que la fonction ¢ (%) soit pour
h < «une fonetion croissante ). On attribue aux paramétres 3, v
les valeurs suivantes: 0 =3 =1 et

-+(6)

s1 0 <& <1y est arbitraire,
sid=1y>0, s1d=0y <O0.

Considérons maintenant uniquement des fonctions continues,
définies et bornées dans I'intervalle (— oo, o). Une telle fone-
tion f(x) appartiendra a la classe H (3, v) si elle satisfait pour
tout = et pour tout £ a la condition (5) ou ¢ (4) est une fonction
définie par les formules (6). On remarque facilement que

sid; > O, 0on a H (8, v1) « H (3,, v,) indépendamment des
valeurs vy, va,

sid; = 8, ona H (31, v1) < H (3,, vs) pourvu que v; < v,

et que la premiere des deux classes est portion de la seconde au
sens propre du mot. Ainsi on parvient a une classification des
fonctions f (z) d’apres une échelle logarithmico-puissance.

Une fonction continue f (z) satisfaisant pour tout z a la con-
dition (4), ou ¢ (h) est définie par les formules (6), sera dite de
la classe H*®(3, y). Le sens des relations entre les classes
H® (3, v) est opposé a celur des classes H (3, v). Comme la
non-dérivabilité de la fonction f (z) peut s’écrire sous la forme
de fe H* (1,0) et 'on a H* (1,0) > H*® (3, v) pour toutes
les valeurs considérées de 3, v, on conclut que toutes les classes
H®* (3, v) contiennent des fonctions continues non dérivables.
Il est évident que H (3, v) . H* (9, v) = 0.

Ainsi les observations rapportées par M. de Vito peuvent étre
formulées comme il suit: il existe une fonction f (z), & savoir

11)/ Dans le cas ot y >0 on peut poser par exemple « = e¢—9/7 et lorsque y < 0
a = DS
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I'exemple de M. de Rahm, qui tout en appartenant a la classe
H= (1,0) appartient aussi & chaque classe H (3,0) (0 <& < 1)
et d’autre part il existe une fonction f(x) [c’est la fonction

® 1
fx) =Y = ¢ (2° x) ou ¢ (x) est définie par la formule (2)]
k=1

qui appartient & la classe H* (1, 0), mais n’appartient & aucune
des classes H (3,0) (0 <3 =1).

On peut préciser encore ces observations de la maniére sui-
vante. Considérons une fonction de la forme (1) ou

a,>0, 0<b,<b,iy, b,—> 0, Y a,< o, (7)

n=1

et la fonction ¢(z) est une fonction périodique arbitraire, non
constante, vérifiant la condition de Lipschitz. Si I'on définit

1

__ka bn = Azn! s (8)
(nl)

—5-2m! .n!
a, = A - 27

ou 4 > 1, k> 0 on obtient I'exemple d’une fonction f apparte-
nant simultanément dans toute 1’échelle logarithmico-puissance
aux classes H (3, v) et H*(3, v;) pour chaque v; < y. Si dans
les formules (8) on pose 8 = 0, v = 0 on obtient une fonction
fe H*0, y;) pour tout v; <0, en particulier une fonction
continue sans dérivée qul n’appartient a aucune des classes de
Iéchelle logarithmico-puissance 1).

La méthode appliquée dans [4] permet d’établir d’une part
les conditions suffisantes pour qu'une fonction f définie par les
formules (1), (7) [ou o(z) est une fonction périodique arbitraire,
non constante et vérifiant la condition de Lipschitz] appar-
tienne a la classe H (8, v) et d’autre part les conditions suffisantes
pour que la fonction f appartienne a la classe H* (3, v). En
appliquant les premiéres conditions on établit par exemple la pro- |
position affirmant que la fonction f définie par les formules (1), (7)
est de la classe H (1, 1) pourvu que a, = a", b, = b", ab =1 et
o(x) soit une fonction périodique arbitraire non constante, satis-

1) Cet exemple universel pour I’échelle logarithmico-puissance se trouve dans [4],
p. 36, Example 6.
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faisant & la condition de Lipschitz!). Les secondes conditions
ajoutées aux premiéres permettent dans de nombreux cas de
localiser 1a fonction f sur I’échelle logarithmico-puissance, ¢’est-a-
dire de prouver que f e H (3, v) pour certaines valeurs de 9, v
et que simultanément fe H*® (3, v,) pour tout vy, < vy. Clest
grice & cela qu'on a pu construire I’exemple universel donné
plus haut.

La condition suffisante pour que f e H* (3, v), qul résulte de
cette méthode, se compose de trois conditions. L’une d’elles

lim a, b2 (log b,)”" = oo 2)
ne permet pas dans le cas ou a,=a", b,=10" ab =1 de
trancher si f e H® (3, v) ou non. Ceci a lieu aussi dans le cas de
I'exemple de M. de Rahm. Si cependant on applique la méthode
utilisée par M. de Rahm dans la démonstration de la non-dériva-
bilité de la fonction de son exemple, on arrive parfois & trancher
la question.

C’est précisément cette méthode qui a été appliquée au § 2
dans le simple cas d’une fonction continue sans dérivée f (z; o, 8)
de la forme (14) ou la fonction ¢(z) est définie par la relation (2).
Selon la valeur des paramétres «, {8, cette fonction parcourt
toute I'échelle logarithmico-puissance. Ce cas comprend en parti-
culier les exemples donnés par M. de Vito.

§ 1. THEOREMES PRELIMINAIRES

Lemme. S’il existe deux suites { £, }, { , } telles que &, — z,,
T = Yo, &n < Ly < 7, pour tout n et on a

im = 0,
noo Y (1, =)
ol ¢ (k) est une fonction définie et différente de zéro pour 4 > 0,

non décroissante et tendant vers zéro lorsque 2 — 0, la fonction
[ (z) satisfait au point x, & la relation (4).

9)

1) Cf. [4], p. 28, Theorem 10. C’est une généralisation du théoréme de M. de Vito
concernant la fonction de I’exemple de M. de Rahm.
2) Cf. [4] p. 27, formule (34).
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Démonstration. Si ce lemme n’était pas vrai, il existerait
deux constantes M, « telles que pour |h| < a et x = z, I'iné-
galité (5) aurait eu lieu. On aurait donc eu pour n > n,

[ £ () =F (&) | < My (1, —Xo) + MY (%0 — &) < 2MY (n,— &)

ce qui contredit 'hypotheése (9).

A présent on formulera deux théorémes sur la fonction f (x)
définie par (1), ou la fonction ¢(z) est donnée par la relation (2)
et les coefficients a,, b, vérifient les conditions (7), les nombres

b, . , ;
B, = *1 stant des nombres pairs, b; = 1. Il est évident que la

n

fonction f (x) est une fonction continue.

Théoréeme 1. Si la série ), a,b, est divergente, la fonction
k=1

f (x) satisfait dans Pensemble Z dénombrable et dense de ’axe Ox
a la relation (4) avec ¢ (k) = h. La fonction f (x) n’a donc pas
de dérivée dans I’ensemble Z. |

Démonstration. La fonction ¢(x) étant périodique, on se
bornera a rapporter les raisonnements & I'intervalle < 0,1 >.
Le graphique de la fonction

¢n(x) = a, o (b,x) (10)

est une ligne brisée formant avec 'axé Ox des triangles adhérents
dont la base a la longueur b, ' et dont les extrémités sont les zéros
de la fonction ¢, (). Aux milieux des bases la fonction ¢, (z)
est maximum avec les valeurs % a,. Les deux cdtés des dits
triangles ont comme les modules des coefficients angulaires les
produits a,b,.

Désignons par n, une valeur établie de n et par z, un zéro
choisi de la fonction @, (z). Il est & remarquer que le nombre B,
étant pair, les points z, et xo—{—bn—ol sont des zéros de toute fonc-
tion @ (z), ot k > ny. 1l en résulte

@i (Xo +bn,") — @1 (x0) _ 0 pour k>ng

b,." w, pour k <mng,

ou
| oy | = ay by - (11)
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et
-1y ng—1
O, = f(xo +bn0_3 f(XO) _ Z (xk . (12)
° bno k=1

x, 6tant établi, calculons pour n > n, la valeur du coefficient

différentiel
—1

_ fxo b D —f(x0) _ - S ab.  (13)

Pn —1 -
bn k':no

o0

On en déduit que dans le cas ou la série ), a.b, diverge la fone-
k=1

tion f (z) vérifie au point z, la relation (4) avec ¢ (k) = h. Ceci
a lieu pour tout point de partage en b, sous-intervalles égaux
de Vintervalle < 0,1 >. En désignant par Z I'ensemble de ces
points pour n = 1,2, ... et ceux qui leur correspondent dans le
partage des intervalles < p, p+1> (p entier), la theése du
théoréme se trouve démontrée.

Théoréme 2. Si pour toute suite { 2, } ou | &, | = 1, la série

> Magb, diverge 1) la fonction f (x) est de la classe H* (0, 1),
k=1
¢’est-a-dire elle n’a en aucun point de dérivée.

Démonstration. La démonstration est presque immédiate.
11 suffit de substituer dans la formule (12) z, et x0+b;01 respecti-
vement par les deux extrémités de lintervalle <&, 7,>,
formé par le partage de I'intervalle < 0,1 > en b, intervalles
égaux, de remplacer n, par n et de choisir les intervalles <&, n,>
de maniére qu’ils contiennent un certain point z choisi arbi-
trairement. En s’appuyant sur le lemme avec & (h) = A, on
aboutira a la proposition avancée.

Exemples. Le théoréme 2 trouve des applications dans les
cas suivants: a) a, = 107" b, = 2" (exemple de M. Faber);
b) a,=a", b,="0", ou ab>1, b> 0 pair, 0 <a <1;
¢) a,=n"% b,=10" b> 0 pair, « > 1. Le théoréme 2 n’est
pas applicable lorsque a, =n"*"" b, = b", b > 0 pair, o« > 1
mais on peut alors utiliser le théoréme 1.

1) Cette hypothése est équivalente akﬁﬁ agby>0
~> 00
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§ 2. EXEMPLE D’UNE FONCTION CONTINUE SANS DERIVEE
COMPRENANT TOUTE L’ECHELLE LOGARITHMICO-PUISSANCE

Considérons la fonction f () de la forme

0

fx) = Y k(b7 o ('), (14)
k=1 .

ou ¢ (x) est une fonction définie par la formule (2) et 5> 0

est un nombre pair. Le domaine de variation des parameétres a,

B qui y interviennent sera le suivant:

0<p<1, (15)

et s1 B =0, on supposera o > 1, tandis que si 3 =1 on ad-
mettra o < 1. Ceci étant, la continuité de la fonction f(x) et
les hypotheéses du théoréeme 1 sont réalisées.

Remarquons que
pour 0 < B <1, les valeurs du parametre o étant arbitraires,
pour B =0, «> 1 et pour 8 =1, « <0 le produit

a.b, = k™ *bA =Bk (16)

est minoré par une constante indépendante de %. La fonction f
étant partout continue est en vertu du théoréme 2 partout non
dérivable pour ces valeurs des parametres 8, «.

Quant aux conditions suffisantes pour qu'une fonction f (z)
de la forme (1) appartienne a la classe H (3, y) lorsque les
coefficients a,, b, satisfont aux conditions (7), elles ont été
exprimées par l'inégalité (33) de [4] (p. 26). S1 'on tient compte
de celle-ci ainsi que de la forme de la fonction (14), on peut
formuler la condition suffisante pour que la fonction (14) soit
de la classe H (3, v) moyennant les deux inégalités

n

p@—Dmny, =7 Z k=*pA=Pk <« M (17)
' k=1
b? ("“)(n—l—l)”y Z k=*bh P < M, (18)
k=n+1

ou M est une constante indépendante de n.




— 185 —

Afin de trouver la limite de 'expression & gauche de I'inéga-
lité (17) lorsque n — oo, on appliquera le théoréme de Stolz avec
les suivantes valeurs de paramétres 3, v, B8, «

0 <3 <1, v arbitraire ou 3 =1, y> 0
et simultanément
0 <B <1, « arbitraire ou B =1, « < 1.

La recherche de la limite de 'expression & gauche de 1'inégalité
(17) sera remplacée par la recherche de la limite du produit

-1
p~ @) pn (6=5) |:1_<n_1>7 b5~1:| (19)
n

ou les parametres admettent les valeurs considérées ci-dessus.
On voit bien que cette limite est finie dans le cas ou

0<p<1,06=8,a+y>0, (20)
ainsi que dans celui ou
p=106=0y=1—a. (21)

Voyons maintenant si pour les valeurs des paramétres
0, y ainsi établies, la condition (18) est vérifiée. Si I'on pose
k—n—1 = p et I'on admet § = B, 'expression a gauche de
I'inégalité (18) peut s’écrire sous la forme

i b (n+1)""(p+n+1)"* (22)

p=0
a) S10 < B <1,y = —«,0na

n+1

our o >0: b PP ——
d " <p+n+1

> < b7PP la série (22) est donc

bornée pour chaque n par le nombre M = Y p=#7
p=0

1 4
pour « <0 on a pour tout n > 1: <‘D+L—;> <<£+1> .
n+
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Dans ce cas I'inégalité (18) est satisfaite en admettant

M=) b Fr <§ + 1) pour tout 7.

p=0

b) S1 B =0, «> 1, la série (22) prend la forme

i m+D) " (p+n+1)7*.

En appliquant le critére intégral de la convergence des séries on
limite la somme de la série par les nombres (a—1) "1 (n-+1)7*77*1,
3+ (a—1)7" (1) 777

L’inégalité (18) est donc vérifiée indépendamment dela valeur
de n lorsque —a—y-+1 <0, ¢’est-a-dire v > 1—a.

¢) Admettons 8 = 1, v = 1—a. De méme que dans le cas a)
I'inégalité (18) est satisfaite pout tout n: si « < 0 pour

1 o) —a 100
M:—Zb_p<g+1 et si « >0 pour M =— > b7,
2 & 2 2 =

Si ’on rapproche les cas a), b), ¢) ainsi que (20) et (21), on
trouve

a) st <B < 1, o est arbitraire, on a fe H (B,—a),
b) sip=0,a>1,onafeH(0,1—a),
c) siB=1,a=1,onafeH (1, 1—a).

Le théoreme 1 servira a trouver une condition suffisante
pour que la fonction f () définie par la formule (14) satisfasse
aux points de l'ensemble Z1) la relation (4) avec ¢ (h) =
B’ |log k|’ ou, comme nous le dirons dans la suite, pour que la
fonction f(z) soit aux points de lensemble Z de la classe
H*>(3, v). Cette propriété de la fonction f(x) pourra s’écrire sous
la forme f € Hy (3, v).

Prenons un point z,€ Z parmi les points du partage des

1) L’ensemble Z a été défini & la fin de la démonstration du théoréme 1 comme
I’ensemble de tous les points du partage de chacun des intervalles < p,p+1 >
(p entier) en b™ intervalles égaux.
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intervalles < p, p-+1 > (p entier) en 5" sous-intervalles égaux.
Si pour n = o

= (o +by ) =/ (x0) _

o (b1 [ log by L |

la fonction f (z) est au point z, de la classe £ (3, v). St 'on pré-
sente le quotient sous la forme

f(xo +by 1) = (x0) b, '
by’ (b, ')’ [log b, " [

et Uon tient compte des relations (13) et (16), on trouve comme
valeur de ce quotient

b(é—l)n p@=1)n n—1

A . — Y S
n? (log by’ """ W (log by’ Z ‘

Attendu que le premier composant de cette somme tend vers
zéro, lorsque n — oo, dans tout le domaine de variation des
parametres 9, v, on pourra se contenter d’examiner uniquement
le second composant. I’étude de la limite de cette expression sera
remplacée par 'é¢tude de la Iimite du produit

-1
(n— 1)~ @D pr G=H+ =1 " y_ba—1
- n—1

et I'on y admettra les mémes valeurs des paramétres que dans le
cas de I'étude de 'expression a gauche de I'inégalité (17).

Considérons les cas qui correspondent & @), b), ¢) énumeérés
ci-dessus. Si

0 <<, =08 v <—u
ou bien
B:O,SIB,Y<—OC,OC>1,

on conclut que fe Hy (B, v).

Dans le cas ou 8 =1, §= 0, v> 0 on trouve fe H? (I, Y)
avec v < 1l—a.
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En résumé, il vient:

s1 0 < B <1, a« est arbitraire, on a fe H (B, —«),
et siy <—aonafeHyP (B, v),

s13 =0, a>1 onafeH (0 1—«)
et lorsque v < —a«, on a fe H? (0, v,
stenfin B =1, a <1, onafeH(11—a),

et lorsque 0 <y <1—a, on a fe HY (1, v).

Ainsi la fonction de I'exemple de M. G. de Rahm (B =1,
o = 0) est de la classe H (1, 1), sans appartenir a aucune des
classes H (1, v) (v < 1), car pour v <1 elle est de la classe
HZ (1, v). De méme la fonction dont les coefficients sont définis
par (3) (B = 0, o = 2) appartient simultanément & la classe
H (0,—1) et & HZ (0, v) avec v <—2. Elle n’appartient donc
a aucune des classes H (0, v) avec ¥y << —2. La méthode donne
en deuxiéme cas (B = 0, « > 1) la localisation de la fonction
f (x) non compléte.
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