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for all u, ¢ in the shell

k(c—mR).

R < — N
< Jumuo | £

b) Let |[(I-K)™1| =k. There exist numbers R and
m < k™1 such that

|(W=K)yo—(W—-Kyu| <m|u—v|if[u| >R and ||v] >R.

12. NON-LINEAR EQUATIONS CONTAINING A LINEAR COMPLETELY
CONTINUOUS SYMMETRIC OPERATOR.

As we have seen in some previous theorems, under certain
general conditions, the existence of a solution of an appro-
ximating equation or the existence of a solution at all, can fail
only if there is no approximating linear operator with bounded
inverse or if there is not everywhere such an operator. In the
cases when the operators considered are differentiable this means
that the derived linear operator does not have a bounded inverse
or the derived linear equation fails to have a unique and bounded
solution.!) It is, therefore, important to have conditions for the
existence of a bounded inverse of a corresponding linear operator.

In the case of an operator I —A, where A is completely
continuous, this i1s equivalent?) to the fact that u = Au has
only the solution u = 6, i.e. 1 is not an eigenvalue of A. Here
we deal only with such cases and assume our non-linear equation

to have the form .
u = LVu, (12.1)

where L is a completely continuous operator and V is an (in
general non-linear) operator. This is, indeed, the most usual
form of non-linear equations with a completely continuous
operator.

Moreover, we now consider the equation (12.1) in a Hilbert
space, that is, the operator LV has its domain and range in a

1) This is, of course, typical for the “regular case ” of non-linear equations.
2) See footnote 2 on page 47.
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Hilbert space H. Finally, throughout this section, let L be
a symmetric operator.

Under these general assumptlons we will give oondltlons
that the derived equation

? = LV(,u)U, (12'2)

have only the trivial solution, u = 0.

To this end we first note some well known statements!) on the
eigenvalues of a completely continuous symmetric operator:
Let A be such an operator defined on a Hilbert space A and
with range in H, A being different from the zero-operator.

Then there exists a finite or infinite orthonormal set 2) of
eigenvectors e; corresponding to real eigenvalues A; such that
every u € H can be written uniquely in the form

= Y a;e;+u’ where Au’ = 0. (12.3)

Let us arrange the sequence of eigenvalues as follows:
Ay S A, S0 S 4, S, (12.4)

where the 1, (4-,), n = 1, are positive (negative). One of the
two sequences may be empty.
Together with Au = Au we consider the equation

u =xAu, u # 0. (12.5)
Then, we have the corresponding sequence 3)

EK L, Sk <0<k 2K, £ (12.6)

>

. 1
of “characteristic values ” k; = — instead of (12.4).

i

1) See, for example, F. Riesz and B. Sz.-Nagy [19], chapter VI, and A. N. Kolmo-
gorov and S.V. Fomin [18], II, section 27.

2) Aei = Ajei, (ei, ek) = 5;19

3) The terminology differs in the literature. We define the « eigenvalues ” according
to the previous sections by Au = Au, u # 0.
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By means of the maximum-minimum principle!) we have the
independent representations
Ay = sup {(Au,u): |jul =1} and
" (12.7)
Ay = infsup { (Au,u): ||ul| =1, (u,v) =0,i=1,...,n—1}

if 4, and 1, , respectively, exist, that is, if the expressions on
the right hand side are positive. For A_; and A_, we have
analogous representations, but the supremum and the infinum
must be interchanged.

We now introduce the set P of operators, p € P, which have
the following properties:

a) peP, ueH implies pu exists and pue .

b) All pe P are linear, continuous, and symmetric,

c) (pu, u) is real for all ueH.
- If o is a real number, we write p < o, p < a, p > o, p =
when the corresponding product (pu, u)is <, <, >, = a(u, u),
respectively, for all ue H, u # 0.

d) ltpeP,p 2 0,then/peP, (/p)?=p,and /p <0(=0)
when p > 0 (= 0).

Then, obviously, all real numbers o belong to P. It is
easy to show that with 4 and p = 0 also the operator
G = \/]; A\/E 18 linear, completely continuous, and symmetric.
Furthermore, if p > 0, then \/Eu = 0 implies u = 60 and the
eigenvalues of Ap and those of \/p A \/p coincide. In
fact, App = Ao and ¢ # 0 1mply \/pA \/pr = A¥Y with

Y = \/};qo # 0. The operator \/7 A \/P is self-adjoint if A4 is
self-adjoint and p = 0, pe P. Therefore, the eigenvalues of Ap

are real. On the other hand, if p > 0 and \/E A \/}5'_{’ = 1Y
then \/E"l exists because \/;u = 0 implies u = 0 and with
@ == \/];“1 ¥ we have \/E Apep = 4 \/Ego which implies
App = Ap. We have the development

= > ¢ ¥;+u’ where \/BA\/ELL' =0,

1) Courant-Hilbert [20], chapter III, § 3.

g o e ]
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and { ¥;} is a set of orthonormal eigenvectors of the self-
adjoint operator C = \/p A \/p. .

After these considerations we can prove the following
theorem.?)

TuroreMm 12.1. Let A be a linear completely continuous
symmetric operator on a Hilbert space / into H, let x; be its
characteristic values (according to (12.5), (12.6)), and let pe P.

Then the equation

u = Apu, (12.8)

has only the solution u = 0, i.e., p = 1 is not an eigenvalue
of Ap, if one of the following conditions holds:

a) x, and K, (k_, and K_(,41)), » = 1 exist and
Kn < p < Kn+1 (K—n > p > K—(n+1)) .

b) k,(x_,) exists as the largest positive (smallest negative)
characteristic value and p > x,(p <x_,).

c) There is no positive (negative) characteristic value and
pz0(p=<0).

d) Ky (k_q) exists and 0 < p <wx;(k_; <p £0).

) |1l <min ( |x]).

Proof. a;) Let the n-th positive characteristic value x, of A
exist and let p > x, > 0. We show that then the n-th positive

eigenvalue pu, of C = \/E A \/p 1s greater than 1.

Let {e;} and { ¥;} be the sequences of orthogonal and
normed eigenvectors of the operators A and C, respectively,
corresponding to the eigenvalues { 4;} and { p; } , respectively.

1) In the special case of the boundary value problem (g(x)y")’ + p(x)y = 0, y(xa) = 0,
y(x1) = 0, most of the results follow easily from the Sturm comparison theorem.
See, for example, E.A Coddington and N. Levinson [21], chapter 8. In some .cases
of special equations in which stronger conditions such as kn < @p = p £ ap 44 < Kn 41
instead of a) hold, the results can be obtained from other well known comparison theo-
rems for eigenvalues, appearing, for instance, in L. Collatz [10], §9, and F. Riesz and
B. Sz.-Nagy [19], section 95.
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The system

Yle,* =1, Z‘cv(ev,(pi)=0, i=1,..,n—1,
v=1
is always solvable. For such a u, by (12.4), we have

(Au , u) = Z/Ivlcvl2 = Ay .
v=1
Hence

Iy S sup {(Au,u):u = Zlcvev,“uﬂ =1,@w,qe) =0,
i=1,..,n—1} (12.9)

< {(A\/;‘U, \/E‘Z)) .

< sup - —
(\/pv, </ pv)

since (\/];V, @;) = (v, ¥), 1 =1, ..., n—1, and the first supre-

mum on the right hand side can only become larger if we drop
the condition

(w,¥) =0, i=1, ...,n—-l}

v#0

M:

u =

v

c,¢e

vy

I

1

1
The assumption p > k, = T > 0 yields

n

(AV/J;v, \/g_w) _(Cv,v) - (Cv, v)
(\/I;‘U , \/1_7'0) (pv, v) " (v, v)

(12.10)

Since the bounded set { ¢, } satisfying (12.9) is compact the
supremum in (12.9) is actually assumed. Therefore, from (12.9)
and (12.10) we get

Ay < Aysup{(Cv,v):||v| =1, (v, ¥) =0, i=1,...,n—1}
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a,) Ifx,, existsand 0 < p < k,,, We obtain u,,, < 1bya
similar argument where the roles of A and C as well as the roles
of 4 and u are interchanged.

Thus the equation (12.8) does not have the eigenvalue 1,
that is, the theorem holds true for the case a) with posi-
tive p e P. |

b) If x, ., does not exist but x, does, i.e., the right hand side
of (12.7) is positive for n but not positive for n-1, then,

replacing u by \/Em with x, < p, we obtain that
infsup{(\/;)A\/]_)u,u): |u| =1, (@,v)=0, i=1,...,n}

also cannot be positive, i.e., u,4+; > 0 does not exist either.
From a,) it follows that in this case u, > 1 is the smallest
positive eigenvalue, i.e. the theorem holds for the case b) with
positive k, and p.

c) If there is no positive eigenvalue then (4u, u) <0 1
all u, which obviously implies (\/EA \/Eu, u) = (4 \/Eu,
\/Ey_u) < 0 for p 2 0. Thus 1 is not an eigenvalue.

d) In this case the proof is similar to a,) and a,) if p = 0:
the largest eigenvalue yy becomes less than one here.

The cases of negative eigenvalues and negative p’s can be
easily reduced to the positive cases treated above. Let 1,
and &, be the eigenvalues and characteristic values, respectively,

of the operator —A. So we have A_, = —1, and the
same with x,. From x_,., <p <x_, it follows that
Ket1 > —p > k,. Because Ap = —A (—p) we can, therefore

apply the above results to —A4 and —p instead of A and p,
respectively.

e) We havel)

: . 1 1 _
min (| x; |) = mm<| i |> = ) = ”A |-t

Therefore, it follows under the condition e) that
| 4p =]4]-|p]<1.

Hence, 1 is not an eigenvalue.

1) See, for example, N. I. Achieser and I. M. Glasmann [14], p. 47.
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This completes the proof.

Theorem 12.1 can be applied to all previous theorems which
use the fact that the derived linear equation has only the zero-
solution to establish the solvability of the given non-linear
equation, provided that this equation can be written in the form

u = LVu, (12.11)

with a linear, completely continuous, and symmetric operator L.
In these cases we are able to give explicit conditions on the
derivative V{,, of V as essential conditions for the existence of
a solution of (12.11). This derivative plays the part of the
operator pe P in Theorem 12.1. We remember that, in this
sense, V'(u) > k 1s equivalent to (V’(u) 0, v) > K (v, ¢) for all
veH, v # 0, and the same with =, <, and <. We now give
a few examples, first a neighborhood theorem:

TreorEM 12.2. Let the product operator LV with a linear
completely continuous symmetric operator L and a non-linear
continuously differentiable operator V be defined on a Hilbert
space H and have its range in H. Let V,, , ueH, satisfy one
of the conditions a) through e) of Theorem 12.1 with A = L
and Vi, = peP.

Then for each point (u,, w, = u, — LVu,) there exists an
Q = (u,, r, a, b)-neighborhood in which the equation

u=Tu+w, (W+I-TeQ),

is uniquely and continuously solvable. In particular, the
equation
u=LVu+w, (12.12)

has a unique and continuous solution u (w) for w and u in certain
spheres about w,, u,, respectively, i.e., /—LV has a local
inverse there.

The proof follows from Theorem 7.1 and supplements and
the fact that a completely continuous operator has only a point
spectrum. Therefore, the operator ([—LV'(“))"l 1s bounded under
the assumptions of Theorem 12.2.
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The conditions of this theorem are not sufficient for the
existence of a solution of (12.12) for each w € H or, in particular,
for w — 0. But as in previous sections, simple additional
assumptions assure the existence of a solution of (12.12) for an
arbitrary given w e H.

TuroreM 12.3. Let L and V satisfy the conditions of
Theorem 12.2 and let one of the following assumptions be
fulfilled :

a) For some u, € H and wy, = u, — LVu, let the set
U={u:u=LVu+wo+i(w—wp), 0 =iA<1} (12.13)

be bounded.
b) For some u,e H and w, = u, — LVu, let the set

S={s:s=|k| |U-LVuk|™", keH, ueU}, (12.14)

where U is defined in (12.13), be bounded.
Then the equation (12.12) has a solution.
For the proof we set

T,u =I—-LV)u+wo+i(w—wy), 0=41=51,

and denote by A the set of all 2in [0, 1] for which T, u = 0 1is
solvable. A is non-empty because A = 0 belongs to A.
Theorem 12.2 proves A is open with respect to [0, 1]. A4 1is also
closed. This can be shown in the case @) in the same way as
in the proof of Theorem 10.3 under 1) where the operator V
is to be replaced by LV, and in the case b) the proof

follows from Theorem 9.4 with Tu = (/—-LV) u+w and

Tou= {[I—-LV)u+w,.

As already remarked in section 9 before corollary 9.2 the
boundedness of §, (12.14), is equivalent to the existence of
the operators (/—LV,)"* as uniformly bounded operators
for ueU. The conditions of Theorem 12.1 for p = V,, are
not strong enough to insure this uniform boundedness with the
one exception of condition c.
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Therefore, we are now going to assume the conditions a)
through e) in the stronger form that p lies in a closed interval
for which these conditions hold:

a) x, and K,y (k_, and x_(,4q), n = 1, exist and

Ky <Oy SPS Uyiq <Kypp(Ky> 0, 2Zp= °‘~(n+1) >K_ (n+1)

b) «, (x_,) exists as the largest positive (smallest negative)
characteristic value and p = o, > x,(p £ a_, <K_,)

¢) There is no positive (negative) characteristic value and
pz0(p=0).

d) k, (k_y)existsand 0 < p £ oy <K (ky <y < p £0).

) p =« <min ().

Here «; are the characteristic values of A according to (12.6)
and «, «; are real constants.
Then, instead of Theorem 12.1, we have

Tueorem 12.4. Let A be a linear completely continuous
symmetric operator on a Hilbert space /7 into H, let k; be its
characteristic values (according to (12.5), (12.6)), and let pe P.
Finally, let one of the above conditions @) through €) be satisfied.

Then the inequality '

=1 =m>0, (12.14)

holds for the eigenvalues u; of Ap where m is a constant which
does not depend on p but only on the interval [«;, o;]in which p
is assumed to lie according to the conditions @) ... €).

The proof is quite similar to the proof?) of Theorem 12.1 and
may be left to the reader.

From Theorem 12.4 it follows that, under its assumptions,
the norm of /—Ap has a positive lower bound. To prove this

fact we assume first that p > 0, pe P. Then also \/;> 0,
by definition of P, that is, \/pu = 0 implies u = 0, or \/p~
exists.?) Since \/p"l has a bounded inverse 3), namely v\/p,

| /P ul| zk|u|, k>0, forall ueH. (12.15)

1) For instance, in the first case a) we get the inequality #n4+1 S On41 <1 < 0n S in
where ri, on 11, on are the eigenvalues of the operators Ap, Aan 41, Aan, respectively.

2) J/p —1 is not necessarily in P.
3) BE. Hille and R. S. Phillips [4], D. 42 Theorem 2.11.6.
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Let { ¥,} be the set of orthonormal eigenvectors of the

operator C = \/E?A \/; corresponding to the eigenvalues p; 0f C
which are also the eigenvalues of the operator Ap, as al\r‘eady
mentioned above. Let ube an arbitrary element in H, ||u [[= 1,

and \/Eu = Y ¢; ¥; where the sum includes the term ¢y ¥, in

which C¥P, = 0 and || ¥, || = 1.
Then (12.14) and (12.15) yield

| =apyu | = | /P T=0) Jpu |* 2 12| U =C) /pu|?
=k"'ZIcilzll—,uilzgkzmin(mz, 1) = m*>0.

Hence
|[I—4p| zm>0.

If p =0,i.e. (pu, u) = 0 for u # 0, then each ueH is either

in the null space, IV, of \/E, 1.e. \/ﬁu = 0, or it is not. We
then consider classes of elements by defining u, , u, to belong to
the same class @, , briefly u, = u,, if and only if u; — u, € V.

Then it follows immediately from u, = u, that \/Eul = \/Euz ,
and vice-versa. Since also (/ —Ap) N = NN we may regard the

operator \/; as an operator on the Hilbert space spanned by the
congruence classes modulo /N, represented by one arbitrary
element, i, of each class. In other words we identify the ele-

ments of each class. Thus we have \/Ea = 0 implies ue N,

1.e. that \/;_1 exists, and we can repeat our above argument in
the case i1, # N, i.e. u ¢ IV.
If weN we simply have

|@=4pyu | = |ul.
The cases p = 0 can be treated, as above, by considering the

operator A (—p) = —A(—-p).
Hence, under the assumptions of Theorem 12.4 we have

|1-4p| =c>o0. (12.16)
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These considerations together with Theorem 12.3, setting
= A and pv = p (u) v = V, ¢, yield the ‘

Tueorem 12.5. Let the product operator LV with a linear
completely continuous symmetric operator L and a continuously
differentiable operator V be defined on a Hilbert space H and
have its range in H.

Let x; be the characteristic values of L = A according to
(12.5) and (12.6), and let Vi, ¢ = pu, peP, satisfy one of the
conditions a) through &) (as defined for Theorem 12.4) for
each uelfl. '

Then the equation

u=LVu+w,

has a solution for each wef.

This theorem generalizes, for example, some existence
theorems for non-linear integral equations of the Hammerstein
type, that 1s, equations of the form?)

u (x) +L£K(x,y)f(y,u(y)) dy = g(x), (12.17)

where z, y are n-dimensional vectors and £ is a region in R";
viz., no definiteness of the kernel K is required and the deri-
vative f, (z, u) need not be bounded by the least characteristic
value k.

Example. The problem —y” = f(z,y),y (a) = A4,y (b) = B,
(b > a), is solvable if, for instance, the function f is continuous
and continuously differentiable with respect to y.in the strip
a <z £0b, |y| < oo, and if f, (z, y) satisfies there one of the
conditions: 2)

LG Sa<

2

(b—a)*

, or f, < 0

or
n?n? (n+12n*.
(b_a)z < Uy éfy(x> y) § Lnt1 < (b_a)z

1) A. Hammerstein [22], see also F. G. Tricomi [23], section 4.6.

2) The known theorems usually cover only the first two cases of this special example.
See F. Lettenmever [24] and H. Epheser [25]. These papers are more general in
another direction.
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The proof follows immediately from Theorem 12.5 by writing

the problem in the form (12.17). In this case the operator 'L
happens to be definite. But this is not required or used in
the proof. ~
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