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This supplement covers differential operators, for example,
which usually are not continuous but have a continuous inverse.
For such differential operators which have a derivative satisfying
the assumptions a) and b’) or b”) the existence of an Q-neigh-
borhood can only fail at a “ point ” (7, u) where T, does not
exist as a bounded linear operator. But the existence of a
bounded inverse T'(;)1 for each ueB;, T being defined every-
where in By, is not sufficient to insure that 7 has an inverse
nor that the equation 7'u = w is solvable for all webB, .

8. ON THE DIFFERENTIABILITY OF THE SOLUTION.

In virtue of Theorem 7.1 and supplements the equation
Tu = 0 1s equivalent to u = u (7) in an Q-neighborhood of
(T, , u,) under the above conditions or, in other words, u (7) is
a unique function of 7 defined in Q by 7u = 6. The conditions
vield also the continuity of u (7) in the sense that u (7') tends to u,
as || Tug || —» 0 or, more precisely, |[u (T)—u (Ty) || £ C || Ty, ||
for some constant C. Therefore,

gw) = o(|u—uyl|) implies gu) = o] Tue|), (8.1

for these solutions u = u (T) of Tu = 0.
In order to get the continuity it is sufficient essentially that
AT = T —T tends to zero at the single point u,. But for the
purpose of calculating a Fréchet-derivative of u (T) we have to
know what the behaviour of 7" is in a neighborhood of z, as
| Tuy ||= || 4Tuy || > 0. According to the definition of the
derivative we are looking for a linear operator L such that the

expression
Uu(To+A4T)—u(Ty) —LAT,

tends to zero faster than of order one as 47 — 0 in a certain
sense. But if we state the formula

u(T)—u(Ty) = —TouydTu+0o(|u—u ) (8.2)

)5

= +Toguy Tou+0(|u—u,|
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which follows from
Tou—Toug— Ti)(uo)(” —up) = O(” i =y H)

observing that T u, = 6 and Tu = 0, we get the difficulty that

normally u (7) and T,u don’t depend linearly on 7Tu, or,

equivalently, O ( [[u—u, ||) is not 0 ( ||4Tu ||) in general.
Therefore, we make the following natural assumption:

A. We assume that all operators 7" are differentiable at the
point u, and that T, tends to an operator Ty, for || Tu, || - 0
such that

‘(TI(uO)—T'(MO))(u-—uO) = O(H Tu, ||) for u =u(T), uy =u(Ty) (8.3)

and T, has a bounded inverse.

The normal case is Ty = Tow,) , as for example in the
usual implicit function theorems. A is more general.

Under this assumption we have the

TureoreM 8.1. Let 7' satisfy the assumptions of Theorem 7.1
and let Q be the (u,, r, @, b)-neighborhood of 7, in which the
equation (7.3) Tu = 0 is uniquely and continuously solvable.
Furthermore, we assume that all T¢Q satisfy the differentiability
condition 4. :

Then there exists a unique F-differential of the solution u (7')
of (7.3) at the “ point ” T = T, which has the form

W (T ATy = =T ATy ug (8.4)
where

Proof. By definition of the F-differential of 7,
ATyug = Tug = Tu—T,u—ue)+0(|u—up|)
= — Ty @—u))+o(|u—u|),
because Tu = 6. Hence it follows by (8.3) and (8.1) that

)>

ATOMO — _T’(uo)(u_uo)_}_O(H TUO
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or because of the existence of a bounded inverse that

), (8.5)

which implies (8.4) by definition of the F-differential.

There cannot be more than one such derivative. For let L,
and L, be two linear operators satisfying (8.5). It results
from (8.5) with 14T, u, (for fixed AT, u, and real 1) instead
of AT, u,

u(T)—u(To) + Ty AToue = O(|| ATy uo |

| (Ly—L))ATou, | = ¢ (1) with @A) —»0 as A-0,

which implies I, = L,. This completes the proof.

In the special case Tu = T*u—w, Tyu = T*u—w, and
T*u, = w, the condition A is satisfied with T(u) To(uo)
because of 7', , = To(uo) and assumption 6) of Theorem 7.1.
By writing again 7" for 7% we get the following inverse function
theorem as a corollary:

Tueorem 8.2. a) Let T be defined on the sphere
Sy = S (uy, ry) < B; and let

Tug = wy.

Furthermore, let the assumptions ) and ¢) .of Theorem 7.1 be
satisfied.

Then 7" has a local inverse 77! defined in a neighborhood
of wy and 77! has a bounded derivative at the point w,:

u(w) = T tw, u(wy) = T 1wy,
u' (wo) dw = (T, dw = (T, 4w, (8.6)

with dw = w—w, .

In these theorems it is not required that 7' and T(u) are
continuous although a continuous derivative of the inverse
function 1s asserted. Thus certain differential operators like
F(z, A u, u', ..., u™) plus certain conditions can be treated.

In the special case of an equation

Tu = Tu = T(x,u) = 0, Tyuo = T(xq, ttg) = 0,
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with z, u, Tu in Banach spaces we get the usual implicit function
theorem with

u(T) = u(T(x)) = ¢ (x), u(Ty) = ¢ (xo),

if we assume that there are F-differentials T '(u) () k, continuous
in a neighborhood of (z,, u,) and with bounded operator
T(u—oi (%), and T, (o) k. Then

Tuy = Ty ® and @' (x0)h = u'(T) Ty, (o) h
and there results the well known formula
@' (xo) = —T,(;(,l)-T,(xo)(uo)- (8.7)

In order to calculate the second F'-differential of the solu-
tion u (7') of the equation Tu = 0 at T = T, we assume that T
has a first and a second F'-derivative (with respect to u) which
are continuous?) in a neighborhood of u,. Then also u’ (7) is
continuous “ around 7,7, i.e. for fixed o = A*T

Hu’(To-i—ATO)h—u’(TO)h ” -0 as ]]ATOuO H — 0.

Furthermore, according to the case when the operator T
depends on the elements of a Banach space B3, i.e. Tu = T (z) u,
xeB; , where ATu = T (x+h) u—1T (x) u, we define 4 to be a
linear operation:

AT, +T)u = ATy u+AT,u, AATu) = AdTu.
Then
AI(T +A2 T)u == Al Tu +A1 Az Tu s

and 4; 4, T'u is linear in 4, and 4, .

With these natural assumptions the calculation of the second
order F-derivative as a bilinear operator is a straight-forward
derivation. Weuse the formula

Ay Tu(T)+ Ty’ (T) 4, T = 6, (8.8)

at the “points” T'= T, and T = T\+4, T, and take the

1) Liess would suffice here, see below.
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difference of the two expressions retaining only those terms
which are linear in 4,. For the sake of brevity we use the
following abbreviations:

ug = u(Ty), T = T§+A2 Ty, u =u(T) =u(Ty+4,T,).,
02 = O([| 4> Touo [})-

Then we have
u(T) = ug+u'(Ty) 4, Ty +0, ,
k =u' (T)A,T = u' (Ty+4, Ty) (4, Ty+4, 4, Tp)
= u' (Ty+4, T) 4y Ty +u'(Tp) 4, 4, Ty +0,,
Ay Tu(T)—A4; Toug = A, Tou+4; 4, Tou—A4, Ty u,
= Ay Towyt' (To) 4y Ty +4, 4, Tyug+0,, and
Towk = Towy k+ Towy [ (To) 4, To][u' (Ty) 41 Ty]+0,.
Hence
Twu' (T4, T = (T, +4, Tp) '(u(T0+A2T0))u/(TO +4, To) 4, (Tp +
A To) = [Tow +d2 To) wlk = Towk+4; Touk
= Tow k445 Towyu' (To) 4 To +0, .
Therefore, by (8.8)
0 = A; Tu+Tyyu (T)Ay T—4; Tyug—Tou,u' (To) 41 T
= Ay Toguyyu' (To) 4y To+4; 4, Tyug + T, [4' (T) 4y Ty
—u' (To) Ay To]+ T oy 4’ (To) 4y 45 To+ 4, T,y u' (To) 4, T,
= T;;(,,O) [u'(Tp) 4, To ] [u' (T,) 4, T0]+Oz .

If we assume as above that 7o, , has a bounded inverse we
finally get

u' (To+4, To) Ay Ty—u' (T 4, T,
+ T;)(_u;) {4, T;)(uo) u'(To)4, Ty + 4, T;)(uo) u' (Ty) 4; T,
+4, 4, Touy + TZ)(uO) u' (To) A, 4, Ty + Tg(uo) [u’ (To) 4, To ]
[u (To) 4; To]}+o(|| 4, Touo |)-
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Therefore, the second order differential of the solution u (7
of Tu = 0 is given by

u'(To) 4, To 4, Ty = —T;)(—u;) {A1 T;)(uo)ul(To)Az T,
+4, T;J(uo)ul(To)A1 To+4,4, T, U0+T8(u0) (8.9)

[“, (Ty) 4, To] [u/(To)A1 To]}‘““/(To)lh 4, Ty .
Here
u,(To)ATO = _T'(;:);ATouo "

It 1s obvious that instead of the boundedness of T'o(uo) the
weaker condition 4 with T,y = Toqy and Tuy = 4y Ty u, is
sufficient for the existence of a differential of second order given
by the formula (8.9). The considerations also show the existence
of an F'-derivative of n-th order and how to calculate it if 7'
has F'-derivatives up to the order »n which are continuous in a
neighborhood of u, with the possible exception that 77, , satisfies
condition A4 instead of the continuity condition. The uniqueness
of the second order derivative can be shown as in the case of
the first order derivative.

Example. For the special case
Tu = Tu = T(x,u) =0, Tou=Tlk,u), Tou, =0,

we now write T, (x, u), T, (x, u), T.,(x, u) etc. for T'(x),
Ty Txy respectively in accordance with the usual notation of
partial derivatives of a function of more than one variable.?)

Assuming z, u, T (x, u) to be elements of Banach spaces we
have with

u(T) = u(TM) = ¢(),
the expressions
o' (X)h = u'(T) T;h,

and
@" (X) hy by = u" (T(x)) (T hy) (T hy) +u' (T(x)) Tex hy by, (8.10)

where the differentials are supposed to be Fréchet-differentials.
Furthermore, we have

4; Ty = T(xo +h)— T(xo) = Ty (x0) by +0(hy), i =1,2,

1) The previous notation, however, seems to be more usual in functional analysis

|
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A, 4, Ty = 4,4, Ty
= T(xq+hy+h))—T(xq+hy)—T(xg+hy)—T(Xo)
= T, (xo +hy) hy — Ty (x0) hy + 0O (h)
= Tyxhy hy +0(hy) +0(hy),

and

AiTIO(uO) = T,(xo +h;,ug) — T, (xo, o) = Ty hy+0(hy), i-=1,2.

Hence by (8.9) and (8.10), neglecting the terms 0O (&), it
results

@" (xo) hy hy = _(Tu)—l{Txu (hy [(P, (Xo) hz] +h, [QDI (Xo) h1])
+ Ty hy hy + T, [QD/ (Xo) h1] [QDl (Xo) hz]}

where the derivatives of T are taken at the point (x,, u,)
[e.g. T, = T, (x,, u,)]and, for example, T',, hk means that the
bilinear operator 7', = T, (z,, u,) applies to the elements A
and k. Here ¢’ (z,) k can be expressed by — 7, ' T', haccording
to (8.7). '

9. A GLOBAL EXISTENCE THEOREM USING THE DIFFERENTIABILITY
OF THE OPERATOR

In this chapter a method for the proof of the existence of a
solution of a non-linear equation

Tu = 0, (9.1)

is introduced which may be useful in cases where 7 has a
derivative but cannot be written in the form 7-V with completely
continuous operator V or in which the complete continuity
of V 1s difficult to show.

THEorEM 9.1. Assume 7' is a closed!) operator defined on
an (open) domain D < B; and there has a derivative Téu) such
that T'(u)—T'(v) (u, veD) is bounded and continuous?2) with
respect to u. The range of T lies in B, . '

1) See, for example, E. Hille and R. S. Phillips [4], p. 40, or N.I. Achieser and I. M.
Glasmann [14], p. 82. :

2) We don’t require that T’(u)k is continuous with respect to k.
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