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This supplement covers differential operators, for example,
which usually are not continuous but have a continuous inverse.
For such differential operators which have a derivative satisfying
the assumptions a) and b') or b" the existence of an ß-neigh-
borhood can only fail at a " point " (T, u) where T^ does not
exist as a bounded linear operator. But the existence of a

bounded inverse T^ for each ueBx, T being defined everywhere

in B1, is not sufficient to insure that T has an inverse
nor that the equation Tu w is solvable for all weB2

8. On the differentiability of the solution.

In virtue of Theorem 7.1 and supplements the equation
Tu 9 is equivalent to u u (T) in an O-neighborhood of
(T0, u0) under the above conditions or, in other words, u (T) is

a unique function of T defined in Q by Tu 6. The conditions
yield also the continuity of u(T) in the sense that u (T) tends to u0
as || Tu0 II —> 0 or, more precisely, || u (T) — u (T0) || g C |j Tu0 ||

for some constant C. Therefore,

g(u)o([| u-u0I)implies (m) o(|| ||), (8.1)

for these solutions u u (T) of Tu Ö.

In order to get the continuity it is sufficient essentially that
AT T — T0 tends to zero at the single point u0 But for the
purpose of calculating a Fréchet-derivative of u (T) we have to
know what the behaviour of T is in a neighborhood of u0 as

\\Tu0\\= \\ATu0 || 0. According to the definition of the
derivative we are looking for a linear operator L such that the
expression

u (T0 +AT) — u (T0) — LAT,

tends to zero faster than of order one as A T -> 0 in a certain
sense. But if we state the formula

U(T)—U(T0) — T0(Uo)ZlTu +O(|| U ^-U0 ||) (8.2)

0 + ^O(ifo) ^0 u + O (|| u-u0 j|),
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which follows from

T0 u T0 Uq — ToO(«0)("-"o) 0(|| M-M0 I),

observing that T0u06 and Tuwe get the difficulty that
normally u (T) and T0u don't depend linearly on Tu0 or,
equivalently, o || u — u0 || is not o \\ATu || in general.

Therefore, we make the following natural assumption:

A. We assume that all operators T are differentiable at the
point u0 and that T(Uq) tends to an operator f[u for || Tu0 || —> 0
such that

U'(»0)-T'(u0))(u~u0) O(|| Tu0 II) for u (T), u0 (8.3)

and T(llo) has a bounded inverse.
The normal case is T(Uq) T0(Uo) as for example in the

usual implicit function theorems. A is more general.
Under this assumption we have the

Theorem 8.1. Let T0 satisfy the assumptions of Theorem 7.1

and let Q be the (u0, r, a, b)-neighborhood of T0 in which the
equation (7.3) Tu 6 is uniquely and continuously solvable.
Furthermore, we assume that all TsQ satisfy the differentiability
condition A.

Then there exists a unique F'-differential of the solution u (T)
of (7.3) at the u point " T T0 which has the form

u0 u(T0) and AT0u0 (T—T0)u0 Tu0.

Proof. By definition of the F'-differential of T,

AT0u0 Tu0 Tu-T'(uo)(u-||)

-T\Uo)(u-u0) + o(\\u-u0

because Tu 9. Hence it follows by (8.3) and (8.1) that

uf(T0)AT0 — —T(Uo)AT0u0, (8.4)
where

A Tq UQ -r'w(«-«o)+o(|| Tu0I)
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or because of the existence of a bounded inverse that

u(T)-u(T0) + T(;o]AT0u0O (1 A |), (8.5)

which implies (8.4) by definition of the jF-differential. _
There cannot be more than one such derivative. For let L±

and L2 be two linear operators satisfying (8.5). It results

from (8.5) with XAT0u0 (for fixed AT0u0 and real A) instead

of A T0 u0

\\(L1-L2)AT0u0\\ <p(X) with <p(X)-+ 0 as A -> 0

which implies L2. This completes the proof.
In the special case Tu T*u — w, T0u T*u — w0 and

T*u0 w0 the condition A is satisfied with T(Mo) T0(Uq)

because of T[Uq) T0(Uo) and assumption b) of Theorem 7.1.

By writing again T for T* we get the following inverse function
theorem as a corollary:

Theorem 8.2. a) Let T be defined on the sphere
S0 S (u0, r0) c: B1 and let

Tu0 w0

Furthermore, let the assumptions b) and c) of Theorem 7.1 be

satisfied.
Then T has a local inverse T~x defined in a neighborhood

of w0 and T_1 has a bounded derivative at the point w0:

u (w) T_1w, u(w0) T'1 w0

u'(w0)Aw (T_1)'(Wo)dw (T'(„o))_1 (8.6)

with Aw w — w0.

In these theorems it is not required that T and T\u } are
continuous although a continuous derivative of the inverse
function is asserted. Thus certain differential operators like
F (:r, A, u, u', u{r)) plus certain conditions can be treated.

In the special case of an equation

Tu EE T(x)u T(x,u) 9, T0 u0 T(x0 u0) 9
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with x, u, Tu in Banach spaces we get the usual implicit function
theorem with

u(T) u(T(x))<p(x), (p(x0),

if we assume that there are ^-differentials T(u) (x) /c, continuous
in a neighborhood of (x0, uQ) and with bounded operator
T'(û0) (%o), and T\Xq) (u0) h. Then

T(u0) T\u0)(x) and <p'{x0)h u' (T) T\Xq) (w0) h

and there results the well known formula

<P'(*o) ~T(u0)-T(x0)(uo) • (8-7)

In order to calculate the second F-differential of the solution

u (T) of the equation Tu 9 at T F0 we assume that T
has a first and a second F-derivative (with respect to u) which
are continuous1) in a neighborhood of u0. Then also u' (T) is

continuous " around T0 i.e. for fixed h A*T

|| u' (TJ) A-A T0) h — u' (T0) h || 0 as || A T0 u0 || 0

Furthermore, according to the case when the operator T
depends on the elements of a Banach space F3, i.e. Tu T (x) u,
xgB3 where ATu — T (x-\-h) u — T (x) u, we define A to be a

linear operation:

A(TX + T2) u ATxu +AT2u A(ÀTu) XATu
Then

A1(T+A2T)u A1TU+A1A2TU

and A1 A2 Tu is linear in Ax and A2.
With these natural assumptions the calculation of the second

order F-derivative as a bilinear operator is a straight-forward
derivation. We use the formula

A1TH(T) + T[u)u'(T)A1T 9, (8.8)

at the " points " T F0 and T ~ T0-\-A2 and take the

i) Less would suffice here, see below.
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difference of the two expressions retaining only those terms
which are linear in A2. For the sake of brevity we use the
following abbreviations :

u0 u (T0), T T0 +A2 T0, u u(T) u (T0 + A2 T0).,

o2 O (II A2 T0 u0 II)

Then we have

u (T) u0 +u' (To) d2 T0 +02

k uf(T) A±T uf(T0+A2 T0) (A 1 T0+A1A2 T0)

— u' (To +A2 T0) A, T0+u' (T0)A1 A2 T0 + 02

A1Tu(T)—A1T0u0 A1T0u+A1A2TqU— A1T0u0

Ai To(u0)Uf(To)A2 T0+AxA2 T0u0+O2 and

To(u)k T0(Uo) k + T0(Wo) \u' (To) A2 T0] \uf (T0)A, T0] + 02

Hence

T(u)u (T) A1 T (T0 +d2 T0) (M(r0+zi2r0)) (^o +^12 T0) djL (T0 +

^2 lo) [T0(W) +(A2 To) (i<)j k T0(u) k + A2 T 0(Uo) k

T0(u)k+A2 T0iUo)H'(T0)A1T0+o2.

Therefore, by (8.8)

6 ^ Tu + T'(u)U'(T)A1 T-A± T0u0 — T o(Uq) U' (T0) Ax T0

A1 TO(u0)U ' (T0)A2To +At A2T0u0 + T0(„o) T0

-W (T0)A,T0]+ T0(Uo) u'(T0)A, T0 +A2 T0

+ Toe.) (To) A2 T0] [ u'(T0)AtT0]+ o2 •

If we assume as above that ^has a bounded inverse we
finally get

U'(T0+A2 T0)A1 T0-U'(T0)A1 T0

+ Toë0\ T0(„0) W(T0)A2T0 +A2 (T0)A1 T0

+A, A2 T0U0 + T'o(u0)*(T0) A, A2 T0 + [«' (T0)A2 T0]

[u'^A, T0] } + o(|| d2 T0u0 I).
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Therefore, the second order differential of the solution u (T)
of Tu 6 is given by

u" (T0) A2 T0 Ax T0 — T0(Uo) {A1 T0(Mo) u' (T0) A2 T0

+ ^2 T0(Uq)u' (T0) A1 T0+A1A2 T0u0 + T0(Uo) (8.9)

[u' (T0) d2 T0] [u' (T0) A, T0] }-u' (T0)A1 A2 T0

Here

u'(Tq) AT0 —T(UQyAT0u0.

It is obvious that instead of the boundedness of T0(Uq) the
weaker condition A with T[Uo) T0(Uq) and Tu0 A2 T0 u0 is
sufficient for the existence of a differential of second order given
by the formula (8.9). The considerations also show the existence
of an T-derivative of n-th order and how to calculate it if T
has T-derivatives up to the order n which are continuous in a

neighborhood of u0 with the possible exception that T'(Mq) satisfies
condition A instead of the continuity condition. The uniqueness
of the second order derivative can be shown as in the case of
the first order derivative.

Example. For the special case

Tu T(x)u EE T(x,u) 6 T0u T(x0 u) T0u0 0,

we now write Tx(x, &), Tu (x, w), Txx{x, u) etc. for T(JC),

T(u), T'[x) respectively in accordance with the usual notation of

partial derivatives of a function of more than one variable.1)
Assuming x, u, T (x, u) to be elements of Banach spaces we

have with
u(T) w(T(x)) cp(x),

the expressions
cpr (x) h u' (T) Tx h

and

(p"(x)h2hi u"(T(x))(Txh2)(Txh1)+u'(T(x))Txxh2h1, (8.10)

where the differentials are supposed to be Fréchet-differentials.
Furthermore, we have

At T0 T(x0+hd-T(x0)Tx(x0)fti + o(/îi),

i) The previous notation, however, seems to be more usual in functional analysis
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— Ai A2 Tq

T(x0 + h2 + Ä0 - T(x0 + h±) - T(x0 + h2) - T(x0)

— Tx (*0 + hi) h2 ~~ Tx (x0) h2 + O (h2)

Txxh1h2+o(h1) +o(h2)
and

d/^o(M0) Tu(x0 +ht ,u0) — Tu(x0,u0) Txu ht + o(ht), i 1,2.

Hence by (8.9) and (8.10), neglecting the terms o (Aj), it
results

<p" (-V,)) h2/), -(Tu)~1{Txu(h1[(p'(x0)h2'\+ h2[(p'(x0)

+ Txx h1 h2+ Tuu [<p' (x0) ftj] [9' (.v„) h2~\}

where the derivatives of T are taken at the point (x0 u0)

[e.g. Tu — Tu (x0 u0)] and, for example, Txu hk means that the
bilinear operator Txu Txu (x0, u0) applies to the elements h

and k. Here cpf (x0) h can be expressed by — T"1 Tx h according
to (8.7).

9. A GLOBAL EXISTENCE THEOREM USING THE DIFFERENTIABILITY
OF THE OPERATOR

In this chapter a method for the proof of the existence of a

solution of a non-linear equation

Tu 6, (9.1)

is introduced which may be useful in cases where T has a

derivative but cannot be written in the form I-V with completely
continuous operator V or in which the complete continuity
of V is difficult to show.

Theorem 9.1. Assume T is a closed1) operator defined on
an (open) domain D c= B1 and there has a derivative T[u) such
that T{u) — T(v) (u, veD) is bounded and continuous2) with
respect to u. The range of T lies in B2.

1) See, for example, E. Hille and R. S. Phillips [4], p. 40, or N.I. Achieser and I. M.
Grlasmann [14], p. 82.

2) We don't require that T'(u)k is continuous with respect to k.
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