8. ON THE DIFFERENTIABILITY OF THE SOLUTION.

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr):
9 (1963)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
28.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

This supplement covers differential operators, for example, which usually are not continuous but have a continuous inverse. For such differential operators which have a derivative satisfying the assumptions a) and b^{\prime}) or $b^{\prime \prime}$) the existence of an Ω-neighborhood can only fail at a " point " (T, u) where $T_{(u)}^{\prime-1}$ doès not exist as a bounded linear operator. But the existence of a bounded inverse $T_{(u)}^{\prime-1}$ for each $u \in B_{1}, T$ being defined everywhere in B_{1}, is not sufficient to insure that T has an inverse nor that the equation $T u=w$ is solvable for all $\mathfrak{w} \in B_{2}$.

8. On the differentiability of the solution.

In virtue of Theorem 7.1 and supplements the equation $T u=\theta$ is equivalent to $u=u(T)$ in an Ω-neighborhood of $\left(T_{0}, u_{0}\right)$ under the above conditions or, in other words, $u(T)$ is a unique function of T defined in Ω by $T u=\theta$. The conditions yield also the continuity of $u(T)$ in the sense that $u(T)$ tends to u_{0} as $\left\|T u_{0}\right\| \rightarrow 0$ or, more precisely, $\left\|u(T)-u\left(T_{0}\right)\right\| \leqq C\left\|T u_{0}\right\|$ for some constant C. Therefore,

$$
\begin{equation*}
g(u)=\circ\left(\left\|u-u_{0}\right\|\right) \text { implies } g(u)=\bigcirc\left(\left\|T u_{0}\right\|\right) \tag{8.1}
\end{equation*}
$$

for these solutions $u=u(T)$ of $T u=\theta$.
In order to get the continuity it is sufficient essentially that $\Delta T=T-T_{0}$ tends to zero at the single point u_{0}. But for the purpose of calculating a Fréchet-derivative of $u(T)$ we have to know what the behaviour of T is in a neighborhood of u_{0} as $\left\|T u_{0}\right\|=\left\|\Delta T u_{0}\right\| \rightarrow 0$. According to the definition of the derivative we are looking for a linear operator L such that the expression

$$
u\left(T_{0}+\Delta T\right)-u\left(T_{0}\right)-L \Delta T
$$

tends to zero faster than of order one as $\Delta T \rightarrow 0$ in a certain sense. But if we state the formula

$$
\begin{align*}
u(T)-u\left(T_{0}\right) & =-T_{0\left(u_{0}\right)}^{\prime-1} \Delta T u+\bigcirc\left(\left\|u-u_{0}\right\|\right) \tag{8.2}\\
& =+T_{0\left(u_{0}\right)}^{\prime-1} T_{0} u+\bigcirc\left(\left\|u-u_{0}\right\|\right)
\end{align*}
$$

which follows from

$$
T_{0} u-T_{0} u_{0}-T_{0\left(u_{0}\right)}^{\prime}\left(u-u_{0}\right)=\bigcirc\left(\left\|u-u_{0}\right\|\right)
$$

observing that $T_{0} u_{0}=\theta$ and $T u=\theta$, we get the difficulty that normally $u(T)$ and $T_{0} u$ don't depend linearly on $T u_{0}$ or, equivalently, $\circ\left(\left\|u-u_{0}\right\|\right)$ is not $\circ(\|\Delta T u\|)$ in general.

Therefore, we make the following natural assumption:
A. We assume that all operators T are differentiable at the point u_{0} and that $T_{\left(u_{0}\right)}^{\prime}$ tends to an operator $\widetilde{T}_{\left(u_{0}\right)}^{\prime}$ for $\left\|T u_{0}\right\| \rightarrow 0$ such that
$\left(\widetilde{T}_{\left(u_{0}\right)}^{\prime}-T_{\left(u_{0}\right)}^{\prime}\right)\left(u-u_{0}\right)=O\left(\left\|T u_{0}\right\|\right)$ for $\quad u=u(T), u_{0}=u\left(T_{0}\right)$
and $\tilde{T}_{\left(u_{0}\right)}^{\prime}$ has a bounded inverse.
The normal case is $\widetilde{T}_{\left(u_{0}\right)}^{\prime}=T_{0\left(u_{0}\right)}^{\prime}$, as for example in the usual implicit function theorems. A is more general.

Under this assumption we have the
Theorem 8.1. Let T_{0} satisfy the assumptions of Theorem 7.1 and let Ω be the ($\left.u_{0}, r, a, b\right)$-neighborhood of T_{0} in which the equation (7.3) $T u=\theta$ is uniquely and continuously solvable. Furthermore, we assume that all $T \varepsilon \Omega$ satisfy the differentiability condition A.

Then there exists a unique F-differential of the solution $u(T)$ of (7.3) at the "point" $T=T_{0}$ which has the form

$$
\begin{equation*}
u^{\prime}\left(T_{0}\right) \Delta T_{0}=-\widetilde{T}_{\left(u_{0}\right)}^{\prime-1} \Delta T_{0} u_{0} \tag{8.4}
\end{equation*}
$$

where

$$
u_{0}=u\left(T_{0}\right) \quad \text { and } \quad \Delta T_{0} u_{0}=\left(T-T_{0}\right) u_{0}=T u_{0}
$$

Proof. By definition of the F-differential of T,

$$
\begin{aligned}
\Delta T_{0} u_{0} & =T u_{0}=T u-T_{\left(u_{0}\right)}^{\prime}\left(u-u_{0}\right)+\bigcirc\left(\left\|u-u_{0}\right\|\right) \\
& =-T_{\left(u_{0}\right)}^{\prime}\left(u-u_{0}\right)+\circ\left(\left\|u-u_{0}\right\|\right)
\end{aligned}
$$

because $T u=\theta$. Hence it follows by (8.3) and (8.1) that

$$
\Delta T_{0} u_{0}=-\tilde{T}_{\left(u_{0}\right)}^{\prime}\left(u-u_{0}\right)+\bigcirc\left(\left\|T u_{0}\right\|\right)
$$

or because of the existence of a bounded inverse that

$$
\begin{equation*}
u(T)-u\left(T_{0}\right)+\widetilde{T}_{\left(u_{0}\right)}^{\prime-1} \Delta T_{0} u_{0}=O\left(\left\|\Delta T_{0} u_{0}\right\|\right), \tag{8.5}
\end{equation*}
$$

which implies (8.4) by definition of the F-differential.
There cannot be more than one such derivative. For let L_{1} and L_{2} be two linear operators satisfying (8.5). It results from (8.5) with $\lambda \Delta T_{0} u_{0}$ (for fixed $\Delta T_{0} u_{0}$ and real λ) instead of $\Delta T_{0} u_{0}$

$$
\left\|\left(L_{1}-L_{2}\right) \Delta T_{0} u_{0}\right\|=\varphi(\lambda) \quad \text { with } \quad \varphi(\lambda) \rightarrow 0 \quad \text { as } \quad \lambda \rightarrow 0,
$$

which implies $L_{1}=L_{2}$. This completes the proof.
In the special case $T u=T^{*} u-w, T_{0} u=T^{*} u-w_{0}$ and $T^{*} u_{0}=w_{0}$ the condition A is satisfied with $\widetilde{T}_{\left(u_{0}\right)}^{\prime}=T_{0\left(u_{0}\right)}^{\prime}$ because of $T_{\left(u_{0}\right)}^{\prime}=T_{0\left(u_{0}\right)}^{\prime}$ and assumption b) of Theorem 7.1. By writing again T for T^{*} we get the following inverse function theorem as a corollary:

Theorem 8.2. a) Let T be defined on the sphere $S_{0}=S\left(u_{0}, r_{0}\right) \subset B_{1}$ and let

$$
T u_{0}=w_{0} .
$$

Furthermore, let the assumptions b) and c) of Theorem 7.1 be satisfied.

Then T has a local inverse T^{-1} defined in a neighborhood of w_{0} and T^{-1} has a bounded derivative at the point w_{0} :

$$
\begin{gather*}
u(w)=T^{-1} w, \quad u\left(w_{0}\right)=T^{-1} w_{0}, \\
u^{\prime}\left(w_{0}\right) \Delta w=\left(T^{-1}\right)_{\left(w_{0}\right)}^{\prime} \Delta w=\left(T_{\left(u_{0}\right)}^{\prime}\right)^{-1} \Delta w \tag{8.6}
\end{gather*}
$$

with $\Delta \mathscr{w}=W-W_{0}$.
In these theorems it is not required that T and $T_{\left(u_{0}\right)}^{\prime}$ are continuous although a continuous derivative of the inverse function is asserted. Thus certain differential operators like $F\left(x, \lambda, u, u^{\prime}, \ldots, u^{(r)}\right)$ plus certain conditions can be treated.

In the special case of an equation

$$
T u \equiv T(x) u \equiv T(x, u)=\theta, \quad T_{0} u_{0}=T\left(x_{0}, u_{0}\right)=\theta
$$

with $x, u, T u$ in Banach spaces we get the usual implicit function theorem with

$$
u(T)=u(T(x))=\varphi(x), \quad u\left(T_{0}\right)=\varphi\left(x_{0}\right)
$$

if we assume that there are F-differentials $T_{(u)}^{\prime}(x) k$, continuous in a neighborhood of $\left(x_{0}, u_{0}\right)$ and with bounded operator $T_{\left(u_{0}\right)}^{\prime-1}\left(x_{0}\right)$, and $T_{\left(x_{0}\right)}^{\prime}\left(u_{0}\right) h$. Then

$$
\tilde{T}_{\left(u_{0}\right)}^{\prime}=T_{\left(u_{0}\right)}^{\prime}(x) \quad \text { and } \quad \varphi^{\prime}\left(x_{0}\right) h=u^{\prime}(T) T_{\left(x_{0}\right)}^{\prime}\left(u_{0}\right) h,
$$

and there results the well known formula

$$
\begin{equation*}
\varphi^{\prime}\left(x_{0}\right)=-T_{\left(u_{0}\right)}^{\prime-1} \cdot T_{\left(x_{0}\right)}^{\prime}\left(u_{0}\right) . \tag{8.7}
\end{equation*}
$$

In order to calculate the second F-differential of the solution $u(T)$ of the equation $T u=\theta$ at $T=T_{0}$ we assume that T has a first and a second F-derivative (with respect to u) which are continuous ${ }^{1}$) in a neighborhood of u_{0}. Then also $u^{\prime}(T)$ is continuous " around T_{0} ", i.e. for fixed $h=\Delta^{*} T$

$$
\left\|u^{\prime}\left(T_{0}+\Delta T_{0}\right) h-u^{\prime}\left(T_{0}\right) h\right\| \rightarrow 0 \quad \text { as } \quad\left\|\Delta T_{0} u_{0}\right\| \rightarrow 0
$$

Furthermore, according to the case when the operator T depends on the elements of a Banach space B_{3}, i.e. $T u=T(x) u$, $x \in B_{3}$, where $\Delta T u=T(x+h) u-T(x) u$, we define Δ to be a linear operation:

$$
\Delta\left(T_{1}+T_{2}\right) u=\Delta T_{1} u+\Delta T_{2} u, \quad \Delta(\lambda T u)=\lambda \Delta T u .
$$

Then

$$
\Delta_{1}\left(T+\Delta_{2} T\right) u=\Delta_{1} T u+\Delta_{1} \Delta_{2} T u
$$

and $\Delta_{1} \Delta_{2} T u$ is linear in Δ_{1} and Δ_{2}.
With these natural assumptions the calculation of the second order F-derivative as a bilinear operator is a straight-forward derivation. We use the formula

$$
\begin{equation*}
\Delta_{1} T u(T)+T_{(u)}^{\prime} u^{\prime}(T) \Delta_{1} T=\theta \tag{8.8}
\end{equation*}
$$

at the "points" $T=T_{0}$ and $T=T_{0}+\Delta_{2} T_{0}$ and take the

[^0]difference of the two expressions retaining only those terms which are linear in Δ_{2}. For the sake of brevity we use the following abbreviations:
\[

$$
\begin{aligned}
& u_{0}=u\left(T_{0}\right), \quad T=T_{0}+\Delta_{2} T_{0}, \quad u=u(T)=u\left(T_{0}+\Delta_{2} T_{0}\right) \\
& O_{2}=\circ\left(\left\|\Delta_{2} T_{0} u_{0}\right\|\right)
\end{aligned}
$$
\]

Then we have

$$
\begin{aligned}
u(T) & =u_{0}+u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}+O_{2}, \\
k & =u^{\prime}(T) \Delta_{1} T=u^{\prime}\left(T_{0}+\Delta_{2} T_{0}\right)\left(\Delta_{1} T_{0}+\Delta_{1} \Delta_{2} T_{0}\right) \\
& =u^{\prime}\left(T_{0}+\Delta_{2} T_{0}\right) \Delta_{1} T_{0}+u^{\prime}\left(T_{0}\right) \Delta_{1} \Delta_{2} T_{0}+O_{2}, \\
\Delta_{1} T u(T) & -\Delta_{1} T_{0} u_{0}=\Delta_{1} T_{0} u+\Delta_{1} \Delta_{2} T_{0} u-\Delta_{1} T_{0} u_{0} \\
& =\Delta_{1} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}+\Delta_{1} \Delta_{2} T_{0} u_{0}+O_{2}, \quad \text { and } \\
T_{0(u)}^{\prime} k & =T_{0\left(u_{0}\right)}^{\prime} k+T_{0\left(u_{0}\right)}^{\prime \prime}\left[u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}\right]\left[u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}\right]+O_{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
T_{(u)}^{\prime} u^{\prime}(T) \Delta_{1} T & =\left(T_{0}+\Delta_{2} T_{0}\right)_{\left(u\left(T_{0}+\Delta_{2} T_{0}\right)\right)} u^{\prime}\left(T_{0}+\Delta_{2} T_{0}\right) \Delta_{1}\left(T_{0}+\right. \\
\left.\Delta_{2} T_{0}\right) & =\left[T_{0(u)}^{\prime}+\left(\Delta_{2} T_{0}\right)_{(u)}^{\prime}\right] k=T_{0(u)}^{\prime} k+\Delta_{2} T_{0\left(u_{0}\right)}^{\prime} k \\
& =T_{0(u)}^{\prime} k+\Delta_{2} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}+O_{2} .
\end{aligned}
$$

Therefore, by (8.8)

$$
\begin{aligned}
\theta & =\Delta_{1} T u+T_{(u)}^{\prime} u^{\prime}(T) \Delta_{1} T-\Delta_{1} T_{0} u_{0}-T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0} \\
& =\Delta_{1} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}+\Delta_{1} \Delta_{2} T_{0} u_{0}+T_{0\left(u_{0}\right)}^{\prime}\left[u^{\prime}(T) \Delta_{1} T_{0}\right. \\
& \left.-u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}\right]+T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} \Delta_{2} T_{0}+\Delta_{2} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0} \\
& +T_{0\left(u_{0}\right)}^{\prime \prime}\left[u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}\right]\left[u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}\right]+O_{2} .
\end{aligned}
$$

If we assume as above that $T_{0\left(u_{0}\right)}^{\prime}$ has a bounded inverse we finally get

$$
\begin{aligned}
u^{\prime}\left(T_{0}+\right. & \left.\Delta_{2} T_{0}\right) \Delta_{1} T_{0}-u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0} \\
& +T_{0\left(u_{0}\right)}^{\prime-1}\left\{\Delta_{1} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}+\Delta_{2} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}\right. \\
+ & \Delta_{1} \Delta_{2} T_{0} u_{0}+T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} \Delta_{2} T_{0}+T_{0\left(u_{0}\right)}^{\prime \prime}\left[u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}\right] \\
& \left.\quad\left[u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}\right]\right\}+O\left(\left\|\Delta_{2} T_{0} u_{0}\right\|\right) .
\end{aligned}
$$

Therefore, the second order differential of the solution $u(T)$ of $T u=\theta$ is given by

$$
\begin{gather*}
u^{\prime \prime}\left(T_{0}\right) \Delta_{2} T_{0} \Delta_{1} T_{0}=-T_{0\left(u_{0}\right)}^{\prime-1}\left\{\Delta_{1} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}\right. \\
+\Delta_{2} T_{0\left(u_{0}\right)}^{\prime} u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}+\Delta_{1} \Delta_{2} T_{0} u_{0}+T_{0\left(u_{0}\right)}^{\prime \prime} \tag{8.9}\\
\left.\left[u^{\prime}\left(T_{0}\right) \Delta_{2} T_{0}\right]\left[u^{\prime}\left(T_{0}\right) \Delta_{1} T_{0}\right]\right\}-u^{\prime}\left(T_{0}\right) \Delta_{1} \Delta_{2} T_{0} .
\end{gather*}
$$

Here

$$
u^{\prime}\left(T_{0}\right) \Delta T_{0}=-T_{\left(u_{0}\right)}^{\prime-1} \Delta T_{0} u_{0} .
$$

It is obvious that instead of the boundedness of $T_{0\left(u_{0}\right)}^{\prime}$ the weaker condition A with $\widetilde{T}_{\left(u_{0}\right)}^{\prime}=T_{0\left(u_{0}\right)}^{\prime}$ and $T u_{0}=\Delta_{2} T_{0} u_{0}$ is sufficient for the existence of a differential of second order given by the formula (8.9). The considerations also show the existence of an F-derivative of n-th order and how to calculate it if T has F-derivatives up to the order n which are continuous in a neighborhood of u_{0} with the possible exception that $T_{\left(u_{0}\right)}^{\prime}$ satisfies condition A instead of the continuity condition. The uniqueness of the second order derivative can be shown as in the case of the first order derivative.

Example. For the special case
$T u \equiv T(x) u \equiv T(x, u)=\theta, \quad T_{0} u \equiv T\left(x_{0}, u\right), \quad T_{0} u_{0}=\theta$, we now write $T_{x}(x, u), T_{u}(x, u), T_{x x}(x, u)$ etc. for $T_{(x)}^{\prime}$, $T_{(u)}^{\prime}, T_{(x)}^{\prime \prime}$ respectively in accordance with the usual notation of partial derivatives of a function of more than one variable. ${ }^{1}$)

Assuming $x, u, T(x, u)$ to be elements of Banach spaces we have with

$$
u(T)=u(T(x))=\varphi(x)
$$

the expressions

$$
\begin{equation*}
\varphi^{\prime}(x) h=u^{\prime}(T) T_{x} h, \tag{8.10}
\end{equation*}
$$

and
$\varphi^{\prime \prime}(x) h_{2} h_{1}=u^{\prime \prime}(T(x))\left(T_{x} h_{2}\right)\left(T_{x} h_{1}\right)+u^{\prime}(T(x)) T_{x x} h_{2} h_{1}$,
where the differentials are supposed to be Fréchet-differentials. Furthermore, we have

$$
\Delta_{i} T_{0}=T\left(x_{0}+h_{i}\right)-T\left(x_{0}\right)=T_{x}\left(x_{0}\right) h_{i}+\circ\left(h_{i}\right), \quad i=1,2
$$

[^1]\[

$$
\begin{aligned}
\Delta_{2} \Delta_{1} T_{0} & =\Delta_{1} \Delta_{2} T_{0} \\
& =T\left(x_{0}+h_{2}+h_{1}\right)-T\left(x_{0}+h_{1}\right)-T\left(x_{0}+h_{2}\right)-T\left(x_{0}\right) \\
& =T_{x}\left(x_{0}+h_{1}\right) h_{2}-T_{x}\left(x_{0}\right) h_{2}+\circ\left(h_{2}\right) \\
& =T_{x x} h_{1} h_{2}+\circ\left(h_{1}\right)+O\left(h_{2}\right),
\end{aligned}
$$
\]

and
$\Delta_{i} T_{0\left(u_{0}\right)}^{\prime}=T_{u}\left(x_{0}+h_{i}, u_{0}\right)-T_{u}\left(x_{0}, u_{0}\right)=T_{x u} h_{i}+\circ\left(h_{i}\right), \quad i=1,2$.
Hence by (8.9) and (8.10), neglecting the terms $\bigcirc\left(h_{i}\right)$, it results

$$
\begin{gathered}
\varphi^{\prime \prime}\left(x_{0}\right) h_{2} h_{1}=-\left(T_{u}\right)^{-1}\left\{T_{x u}\left(h_{1}\left[\varphi^{\prime}\left(x_{0}\right) h_{2}\right]+h_{2}\left[\varphi^{\prime}\left(x_{0}\right) h_{1}\right]\right)\right. \\
\left.+T_{x x} h_{1} h_{2}+T_{u u}\left[\varphi^{\prime}\left(x_{0}\right) h_{1}\right]\left[\varphi^{\prime}\left(x_{0}\right) h_{2}\right]\right\}
\end{gathered}
$$

where the derivatives of T are taken at the point $\left(x_{0}, u_{0}\right)$ [e.g. $\left.T_{u}=T_{u}\left(x_{0}, u_{0}\right)\right]$ and, for example, $T_{x u} h k$ means that the bilinear operator $T_{x u}=T_{x u}\left(x_{0}, u_{0}\right)$ applies to the elements h and k. Here $\varphi^{\prime}\left(x_{0}\right) h$ can be expressed by $-T_{u}^{-1} T_{x} h$ according to (8.7).
9. A global existence theorem using the differentiability of the operator

In this chapter a method for the proof of the existence of a solution of a non-linear equation

$$
\begin{equation*}
T u=\theta, \tag{9.1}
\end{equation*}
$$

is introduced which may be useful in cases where T has a derivative but cannot be written in the form $I-V$ with completely continuous operator V or in which the complete continuity of V is difficult to show.

Theorem 9.1. Assume T is a closed ${ }^{1}$) operator defined on an (open) domain $D \subset B_{1}$ and there has a derivative $T_{(u)}^{\prime}$ such that $T_{(u)}^{\prime}-T_{(v)}^{\prime}(u, v \in D)$ is bounded and continuous $\left.{ }^{2}\right)$ with respect to u. The range of T lies in B_{2}.

[^2]
[^0]: 1) Less would suffice here, see below.
[^1]: 1) The previous notation, however, seems to be more usual in functional analysis
[^2]: ${ }^{1)}$ See, for example, E. Hille and R. S. Phillips [4], p. 40, or N.I. Achieser and I. M. Glasmann [14], p. 82.
 ${ }^{2}$) We don't require that $T^{\prime}(\mathrm{u})^{\mathrm{k}}$ is continuous with respect to k .

