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assertions remain true except the last one that 7' is a homeo-
morphism of B; onto B,. If there exist two subdomains D,
and D, * of D' then the assumptions of Theorem 6.1 cannot hold
on a whole path P in By connecting D, and D, *: Either T 1s not
defined everywhere on P as a continuous operator or there does
not exist an operator K with bounded inverse satisfying «),
p) and y) of Theorem 4.1.

A similar theorem can be stated using the assumpuons of
Theorem 4.1 a as a basis.

7. DIFFERENTIABLE OPERATORS, IMPLICIT FUNCTION THEOREMS.

If the operator 7' 1s assumed to be differentiable in the sense
of Fréchet (section 2 ¢) then the operator T'(uo)can be taken as
operator K in the previous theorems and similar theorems can
be stated.

Turorem 7.1. a) Let T, be defined on the sphere
Sy = S (uy, ry) = B; and let

Toue = 0. (7.1)

b) Let T, have a (not necessarily bounded) derivative
Tow, = K at the point u, and let K have a bounded inverse K 1
defined on B, . |

c) Assume there are positive numbers r’ < r, and
m=m(r')<| K|t with

H To (g +u—v)—T, u+T0v” < mHu

Then an Q = (u,, r, a, b)-neighborhood of T, exists in which
the equation

Tu =0, (7.3)

is uniquely solvable and the solution u (7T) is continuous at
I' =T,. More precisely in Q we have.

|u(T)—uo | £ C| Tug| with a constant C. (7.4)

L’Enseignement mathém., t. IX, fasc. 3. 2

, ve8S(ug, ). (7.2)
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The easy proof follows immediately from Theorem 3.1 and
supplement if we observe that, by (7.1),

T, (uo+k)— Kk = Rk with Rk = o(||k|),

and, therefore, because of ) and ¢), there exist positive num-
bers r < r’ and m; < || K71 || 71 with

| K (u—v)—Tou+ Ty | = || Toluo +u—v)— Tou + Ty — R (u —v) ||
< my ”u—v ” for u, veS(ugy, 1).

Supplement 7.1 a. Conditions b) and ¢) can be replaced by
the following assumption:

b’') At the point u,, 7T, has a strong derivative 1) T;,(,,O) = K
which has a bounded inverse, i.e. there exists a linear operator K
with the property that to every m > 0 thereis a r > 0 such that

| Tov—Tou—K@—u)| <mlv—u| if u,veS(uy,r), (7.5

and K has a bounded inverse K1

It is easy to show that b’) implies b) and ¢) of Theorem 7.1
or directly «) and ) of Theorem 3.1. Assumption 5’) again
holds if we assume T, to have a derivative in a whole neighbor-
hood of u, and this derivative is continuous and has a bounded
inverse. But less is sufficient. More precisely we have the

Supplement 7.1b. Condition b’) holds if the following is
true:

b”) T, has a (not necessarily bounded) derivative T;,(u) in a
neighborhood S(u,, r) of u, with the property T;,(uo)—To'(u)
is bounded and || Toqwy — Tow || = 0 as [|u—u, || - 0 and Tog,!,
exists as a bounded operator.

The easy proof follows with K = T;)("o) from

| Tov—Tou—K@w—u)| < | Tov—Tou—Toqy (@ —u) |
| +| Towy = Towy | [ov—u]-

1) This notation is introduced by E. B. Leach [13] in connection with an inverse
function theorem.
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This supplement covers differential operators, for example,
which usually are not continuous but have a continuous inverse.
For such differential operators which have a derivative satisfying
the assumptions a) and b’) or b”) the existence of an Q-neigh-
borhood can only fail at a “ point ” (7, u) where T, does not
exist as a bounded linear operator. But the existence of a
bounded inverse T'(;)1 for each ueB;, T being defined every-
where in By, is not sufficient to insure that 7 has an inverse
nor that the equation 7'u = w is solvable for all webB, .

8. ON THE DIFFERENTIABILITY OF THE SOLUTION.

In virtue of Theorem 7.1 and supplements the equation
Tu = 0 1s equivalent to u = u (7) in an Q-neighborhood of
(T, , u,) under the above conditions or, in other words, u (7) is
a unique function of 7 defined in Q by 7u = 6. The conditions
vield also the continuity of u (7) in the sense that u (7') tends to u,
as || Tug || —» 0 or, more precisely, |[u (T)—u (Ty) || £ C || Ty, ||
for some constant C. Therefore,

gw) = o(|u—uyl|) implies gu) = o] Tue|), (8.1

for these solutions u = u (T) of Tu = 0.
In order to get the continuity it is sufficient essentially that
AT = T —T tends to zero at the single point u,. But for the
purpose of calculating a Fréchet-derivative of u (T) we have to
know what the behaviour of 7" is in a neighborhood of z, as
| Tuy ||= || 4Tuy || > 0. According to the definition of the
derivative we are looking for a linear operator L such that the

expression
Uu(To+A4T)—u(Ty) —LAT,

tends to zero faster than of order one as 47 — 0 in a certain
sense. But if we state the formula

u(T)—u(Ty) = —TouydTu+0o(|u—u ) (8.2)

)5

= +Toguy Tou+0(|u—u,|
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