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assertions remain true except the last one that T is a homeo-

morphism of B± onto Z?2. If there exist two subdomains Da
and Da* of D* then the assumptions of Theorem 6.1 cannot hold
on a whole path P in B± connecting Da and Da* : Either T is not
defined everywhere on P as a continuous operator or there does

not exist an operator K with hounded inverse satisfying a),

ß) and y) of Theorem 4.1.

A similar theorem can be stated using the assumptions of
Theorem 4.1 a as a basis.

7. Differentiable operators, implicit function theorems.

If the operator T is assumed to be differentiable in the sense
of Fréchet (section 2 c) then the operator T(Uo)can be taken as

operator K in the previous theorems and similar theorems can
be stated.

Theorem 7.1. a) Let T0 be defined on the sphere
S0 S (u0 r0) cz B1 and let

To u0 0 (7.1)

b) Let T0 have a (not necessarily bounded) derivative
T0(Uq) K at the point u0 and let K have a bounded inverse K_1
defined on B2.

c) Assume there are positive numbers r' ^ r0 and
m m (r') < || A-1 || _1 with

T0(u0+u-v)-T0 u + T0v || S m\\u~v \\ u veS(u0 r'). (7.2)

Then an Q (u0 r, a, b)-neighborhood of T0 exists in which
the equation

Tu 9, (7.3)

is uniquely solvable and the solution u (T) is continuous at
T — T0. More precisely in Q we have.

1 u (T) - i/o || ^ C I Tu0 || with a constant C. (7.4)
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The easy proof follows immediately from Theorem 3.1 and
supplement if we observe that, by (7.1),

T0(u0+k) — Kk Rk with Rk o(||fc||),

and, therefore, because of b) and cj, there exist positive numbers

r ^ r' and m1 < || K~1 || _1 with

|| K(u— v) — T0u + T0v || || T0(u0 +u — v) — T0u + T0v — R(u — v) ||

^ m1 || u —v || for m, veS(u0 r)

Supplement 7.1 a. Conditions b) and c) can be replaced by
the following assumption:

V) At the point u0, T0 has a strong derivative 1) T0(Uo) K
which has a bounded inverse, i.e. there exists a linear operator K
with the property that to every m > 0 there is a r > 0 such that

|| T0v — T0 u — K(v — u) || ^ m || v — u || if u,veS(u0,r), (7.5)

and K has a bounded inverse A-1.
It is easy to show that b') implies b) and c) of Theorem 7.1

or directly a) and ß) of Theorem 3.1. Assumption b') again
holds if we assume T0 to have a derivative in a whole neighborhood

of u0 and this derivative is continuous and has a bounded
inverse. But less is sufficient. More precisely we have the

Supplement 7.1 b. Condition b') holds if the following is

true:

b"j T0 has a (not necessarily bounded) derivative T0{u) in a

neighborhood S (u0, r) of u0 with the property T0(Uq) — T0(u)
is bounded and || T0(Uq) — T0(w) || —> 0 as || u — u0 || -» 0 and T0(~^
exists as a bounded operator.

The easy proof follows with K T0(Uq) from

I T0v-T0u-K(v-u)I ^ || T0v-T)||

|| ||w-M||.

i) This notation is introduced by E. B. Leach [13] in connection with an inverse
function theorem.
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This supplement covers differential operators, for example,
which usually are not continuous but have a continuous inverse.
For such differential operators which have a derivative satisfying
the assumptions a) and b') or b" the existence of an ß-neigh-
borhood can only fail at a " point " (T, u) where T^ does not
exist as a bounded linear operator. But the existence of a

bounded inverse T^ for each ueBx, T being defined everywhere

in B1, is not sufficient to insure that T has an inverse
nor that the equation Tu w is solvable for all weB2

8. On the differentiability of the solution.

In virtue of Theorem 7.1 and supplements the equation
Tu 9 is equivalent to u u (T) in an O-neighborhood of
(T0, u0) under the above conditions or, in other words, u (T) is

a unique function of T defined in Q by Tu 6. The conditions
yield also the continuity of u(T) in the sense that u (T) tends to u0
as || Tu0 II —> 0 or, more precisely, || u (T) — u (T0) || g C |j Tu0 ||

for some constant C. Therefore,

g(u)o([| u-u0I)implies (m) o(|| ||), (8.1)

for these solutions u u (T) of Tu Ö.

In order to get the continuity it is sufficient essentially that
AT T — T0 tends to zero at the single point u0 But for the
purpose of calculating a Fréchet-derivative of u (T) we have to
know what the behaviour of T is in a neighborhood of u0 as

\\Tu0\\= \\ATu0 || 0. According to the definition of the
derivative we are looking for a linear operator L such that the
expression

u (T0 +AT) — u (T0) — LAT,

tends to zero faster than of order one as A T -> 0 in a certain
sense. But if we state the formula

U(T)—U(T0) — T0(Uo)ZlTu +O(|| U ^-U0 ||) (8.2)

0 + ^O(ifo) ^0 u + O (|| u-u0 j|),
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