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Then by the mean value theorem and because

d 1 2 sin u

du cos’u  cos*u
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is increasing for increasing

it follows that

1 1 T T
m(u) = — - — for 0Zfu<- and u+r<-.
cos“(u+r) cos“u 2 2

In the following we restrict ourselves to these u.
From the above we get

1 4r

cos?(u+r) cos®(u+r)

(K =myr > (

T
r, 0<r<-—-—-—u.
) :

Now choosing r as the smallest positive solution of

r =r(u) = % cos (u+r), which implies u+r < g, we get

1 1
> >—.")
16 cos(u+r) 16

(I &=t =m)r

T :
The same is true for — 5 < u < 0 as can be proved in the

same way. Thus the conditions of Theorem 4.1 are valid. In

: : 1
particular v) is true for c TS

6. INVERSE FUNCTION THEOREMS (continued).

As was indicated by the example tan u = w in the last
chapter, the assumptions of the Theorems 4.1 and 4.1 a are not
sufficient to insure that the operator 7' will have an inverse

1) Here we use the fact that u is real.
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defined on the whole space B, , i.e. that the equation Tu = w
has exactly one solution for each w in B,. We will now obtain
conditions under which the existence of a local inverse implies
the existence of a global inverse.

Tueorem 6.1. Let T satisfy the assumptions of Theorem 4.1
and let 7 be a continuous operator in its domain of definition, D.

Then there exists a finite or infinite number A of open con-
nected domains D, = D with the properties:

UD, = D, for each acA the restriction 7, of 7 on D, is a

aec A4
homeomorphism?!) of D, onto B,, and the sets D, are mutually

disjoint.

Furthermore, if T is defined on the whole Banach space B,
then 7' is itself a homeomorphism of B, onto B,.

This theorem implies that under the assumptions there is for
each weB, the same finite or infinite number A of solutions
of Tu = w, and each solution lies in a domain D, for which the
existence of a local inverse implies that of a global one.

Proof. a) We first prove the following statement: Let w,
and w, be two points of B, with |[w, —w, || < ¢ (¢ from y) in
Theorem 4.1) and let Tu, = w,. The existence of at least one
such u, follows from Theorem 4.1. Furthermore, it is shown
that there exists a sphere § (u;, r;) = §; in which the equa-
tion Tu = w has a unique solution u (w) for all w with
|w—w; || < c. Therefore there exists a unique solution u,
in §; of Tu = w,.

Conversely, let § (u,, ry) = S, the corresponding neighbor-
hood of u, in which a unique solution u of Tu = w for
|Ww—w, || < ¢ exists. Then w = weS (wy, ¢) NS (wy,¢),
ueS (uy, ry), ueS (uy, ry), Tu = w, Tu = w implies u = u.
If ueS, the assertion is true because of the uniqueness of
u = u(w)in S, for ||w—w, | <c Now, let u¢S,. Then we
connect w, with w by the straight line g = w,+ 1 (w —w,),
0 < A £1, and consider the images C; and C, of this line in 5,
and S,, respectively. These images exist and form con-
nected curves ¢;(A)eS;, ¢t =1, 2, using the fact that

1) One-to-one mapping continuous and with continuous inverse.
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geS (w,, ¢) nS(wy, ¢) in B, and applying the theorem that
the continuous image of a connected set is connected, which
holds in our spaces. We also have ¢;(0) = u,, 1t =1, 2,
o, (1) =u, ¢@,(1) =u. In the intersection &3 NS5, the
curves C; coincide because of the uniqueness of u (w), u (w)
in §;, §, respectively.

We proceed with increasing A from u, along C;. Since ugS,
there is a first point u* (with a least A = 1*) on C; which does
not belong to C,eS,. However, in each neighborhood of u*
there are points of C,. Let w* = w,4 A* (w —w,), the corres-
ponding point with 7u* = w*. Then, because of the con-
tinuity of C,, there cannot be another point u on C, with
Tu = w*, ie. u*eS, and C; = C, in contradiction to our
assumption.

b) Let uybe asolution of Tu = 6, which exists by Theorem 4.
This theorem also yields a neighborhood § (u,, r,) = §, such
that the equation 7u = w has a unique solution u (w) in §, for
all w with ||w || <c—€, 0 <e <e¢ and u(w) is continuous
there. |

We choose a number R > 0 arbitrarily large and construct a
continuous mapping 7,7t with 7,71 T = [ defined for all w with
|w || £ R and with range in a certain domain of B;. This can
be done as follows:

For ||w || < ¢—e the equation Tu = w has a unique and
continuous solution, u (w), if u is prescribed to lie in S,. The
(inverse-) images u for these w form a connected closed set in B, .
Let Tu = w be uniquely solvable for all w in the disk ||w || £ R,
by the continuous function u = u (w) and let the set
Dy ={u=u(w): ||[w| £ R} be a connected, closed set
containing the point u,.

Because of the continuity of 7 the restriction of 7 to Dr,)
is a one-to-one mapping of D, onto S (0, R,) = B, which is
continuous in both directions, i.e. a homeomorphism. In
particular, the intersection S (w, ¢) n §(6, R;) has its pre-
image in the corresponding intersection S (i, r) n D, for
each weS (0, R,) with Tu = w.
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Now we consider the sphere ||w || < R, —{—%z R,. Each

w in the shell R, < ||w || £ R, lies in some sphere ||w—w || < ¢
with ||w || £ R;. We assign to these w the u = u (w) with
Tu = w which lies in the corresponding neighborhood S (u, 7)
with Tu = w. This defines u (w) uniquely. This follows
from a) since if w; and w, are two points in S (6, R;) with
|lw—w; || <e¢ i =1, 2, then w, w; and w, lie also in the sphere
S (w*, ¢) with w* = l (wi+w,) and ||w* || < R;. Therefore, it
follows from a) that our assumptions stated for ||[w || £ R, are

true also for |[w || < R, + % .

Thus, we get a homeomorphism between a certain domain
D, = B, and B,. Contrary to the case of a linear operator
there may be more than one such domain. If there is another
solution u*¢D, of Tu = w* for any w*eB, then by the same
construction, with w* as new center, we obtain another
domain D, * and the restriction of 7' to D, * is a homeomorphism
on D * onto B,.

We prove that D, and D, * are disjoint. Let ueD, n D*.
Then we connect u with u* by a curve C* lying in D, *. This
curve has an image 7C* in B, , which 1s also a curve because of
the continuity of 7. 7C* has an inverse image C, = T, ' TC*
in D, given by the homeomorphism D, onto B,, which is also
a curve. C, and C* coincide in D, n D *. Let u’ be the
first point of C* from u lying on the boundary of D,. This
exists since u*¢D,. Then it follows from the continuity of C,
that u'eC, < D, , in contradiction to the Openess of D,. There-
fore, D, and D, * are disjoint.

Let T be defined on the whole space B;. If there is only
one domain D, then the assertion is true. Let there be at least
two such domains. Then by a similar consideration connecting
two points, ueD, and u*eD*, with the same image by a curve
one finds that 7' cannot be defined on the boundary of such
a domain D,. This contradicts the assumption and completes
the proof.

Corollary. If we merely require the assumptions of
Theorem 6.1 to be satisfied on a subdomain D’ < D then all




e
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assertions remain true except the last one that 7' is a homeo-
morphism of B; onto B,. If there exist two subdomains D,
and D, * of D' then the assumptions of Theorem 6.1 cannot hold
on a whole path P in By connecting D, and D, *: Either T 1s not
defined everywhere on P as a continuous operator or there does
not exist an operator K with bounded inverse satisfying «),
p) and y) of Theorem 4.1.

A similar theorem can be stated using the assumpuons of
Theorem 4.1 a as a basis.

7. DIFFERENTIABLE OPERATORS, IMPLICIT FUNCTION THEOREMS.

If the operator 7' 1s assumed to be differentiable in the sense
of Fréchet (section 2 ¢) then the operator T'(uo)can be taken as
operator K in the previous theorems and similar theorems can
be stated.

Turorem 7.1. a) Let T, be defined on the sphere
Sy = S (uy, ry) = B; and let

Toue = 0. (7.1)

b) Let T, have a (not necessarily bounded) derivative
Tow, = K at the point u, and let K have a bounded inverse K 1
defined on B, . |

c) Assume there are positive numbers r’ < r, and
m=m(r')<| K|t with

H To (g +u—v)—T, u+T0v” < mHu

Then an Q = (u,, r, a, b)-neighborhood of T, exists in which
the equation

Tu =0, (7.3)

is uniquely solvable and the solution u (7T) is continuous at
I' =T,. More precisely in Q we have.

|u(T)—uo | £ C| Tug| with a constant C. (7.4)
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, ve8S(ug, ). (7.2)
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