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is solvable is open with respect to the interval [0, 1]. This
follows from a). It is also closed, for if I is the snpremum
of A then there exists a point X*eA with [ I* — X | || w0 — || < c.

Thus it follows from aj, if w0 is replaced by wQ — A* (cp0~~ u^),
that leA. Hence A — [0, 1] and (4.1) has a solution for
all weB2.

Proof of Theorem 4.1 a. Let wxeB2 and u0eD with Tu0 w0

be given. Then the points w w0+A (wi:-(P0), 0 ^ ^
are bounded:

Il w || g max (|| WqII|| Wj ||) A

Because of y') there exists a number R with || Tu || > A for
all u in the set { ueD: || u || ^ R }.x)

Then the same conclusion as in the proof of Theorem 4.1
with c c (R) applied to || u || ^ R shows that Tu wx is
solvable by an element ux with || ux || < R for which the assumptions

of Theorem 4.1 with c c (R) hold. This implies the
existence of a sphere || w — wx || < c with the asserted properties.

5. An example.

The simple example Tu — tan u, given only for illustration
purposes, shows that Theorem 4.1 is general enough to cover
cases in which either the domain D is not the whole space Bx or
Tu w does not have a unique solution, although this equation
is solvable for all weB2.

Let Bx B2 B be the Banach space of real numbers.
Then by Theorem 4.1 the equation

Tu tan u w u, weB

is solvable for all weB.2)

Proof. We choose

V 71 7l\
Kv —r— for ue -cos2 M \ 2 2]

1) This set may be empty.
2) This is not true for complex numbers as tan u i is not solvable.
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Then by the mean value theorem and because

d 1 2 sin u

du cos2 u cos3 u

is increasing for increasing

n n
Ue{ ~ 2' 2

it follows that

11 71 71

m (u) —^ 3— for 0 u < - and u + r < -
cos (w+r) cos w 2 2

In the following we restrict ourselves to these u.

From the above we get

K-1||-1-m)r >(—-2-
11 7

\cos (w

4r \ 7T

r 0 < r < w

'(n+r) cos3(u+r)J
7

2

Now choosing r as the smallest positive solution of
71

r r (u) I cos (&+r), which implies u-\-r < - we get
À

(Il K'1 ||-1-m)r >
1

>—-1)Ul " ' 16cos(u+r) 16

71

The same is true for — - < u < 0 as can be proved in the
2

same way. Thus the conditions of Theorem 4.1 are valid. In
1

particular y) is true for c — *

6. Inverse function theorems (continued).

As was indicated by the example tan u — w in the last
chapter, the assumptions of the Theorems 4.1 and 4.1 a are not
sufficient to insure that the operator T will have an inverse

i) Here we use the fact that u is real.
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