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Then, for the solution u = u (7) in §, the estimate (3.7)
holds.

A unique solution of (3.1 a) in S (u*, r) also exists for
such r and b if (3.6) holds, but in (3.8) the sign “ > ” cannot be
replaced by “ = ”, nor can the constant a in (3.8) be replaced
by any larger one.

The last statement can be proved by simple examples in the

one-dimensional case and with an operator T which 1s linear
in S (u*, r).

4. INVERSE FUNCTION THEOREMS.

Under the conditions of the implicit function Theorem 3.1,
the operator 7 has a local inverse defined in a neighborhood of a
point w, for which

Tu = w. (4.1)

has a solution u,. This inverse has its range in a neighborhood
of u,. For the proof set T*u = Tu—w, in Theorem 3.1.
However, the conditions of this theorem are still not sufficient
for the existence of a solution u of equation (4.1) for all w in B,
even if 7T is defined on the whole Banaech space B; and the
conditions are satisfied at each point u of B;.1)

However, this actually is not necessary for the existence of

at least one solution u of (4.1) for all weB, as is indicated by the
following theorem.

THEOREM 4.1. Let the operator 7, mapping a non-empty
domain D < B into B,, satisfy the following conditions:
For each ueD there exist a sphere § (u, r) < D, a linear

operator K, and a constant m such that the following conditions
hold:

«) K has a bounded inverse K™t on 7§ (u, r)

||TV—T(7 ——‘K(a——?f )| £ m|e—v || for ¢, veS (u, r)

(| K7t || "t=m)r = ¢ > 0 where the constant ¢ is indepen-
dent of ueD.

1) Example: Tu = arctan u = w, with B; = Bs = {real numbers }, is not solvable
for all we B, although the conditions of Theorem 3.1 are satisfied at each point
(u, w = arctan u) for T*u = Tu-w.
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Then the equation (4.1) has at least one solution for every w
in B, and each w,eB, is the center of a sphere ||w—w, || < ¢
for which u = u (w) is continuous and unique in a corresponding
neighborhood S (u,, r,) with Tu, = w, and ry = r (u,).

Remark. In this theorem it is not required that 7T be
defined for all ueB; nor that 7" be continuous, and it cannot be
asserted that 7 has only one solution for each weB,. The
example in the footnote (previous page) shows that the con-
dition y) cannot be improved by deleting = ¢ with constant ¢
independent of u. But y) can be replaced by other conditions.

TaEOREM 4.1 @. In Theorem 4.1 the condition 7y) can be
replaced by

7’) There exists for each R > 0 a constant ¢ = ¢ (R) > 0 such
that

(| K| *=myrzc for |u| <R, and  (4.2)
| Tu| > oo as [ul| > oo and ueD. (4.3)

Proof of Theorem 4.1. a) Let uy,eD and Tu, = w, and

let Ky, my, ry be the corresponding quantities satisfying «),
B) and y) with S, = § (4, , ro) = D.
Then by Theorem 3.1 and supplement with 7*u = Tu—w,,
u* = Uy, r =r* =ryand b = 0, it follows that each equation
Tu = Tu—w = 0 has a unique solution u (w) in S, which
depends continuously on w provided

| Ko Tuo | < (X =mq | Ko* |)ro = | Ko* | (] Ko |7 —mo)ro.
Because of '

| Ko Tuo | < | Ko ||+ | wo—w ],

and y) this inequality holds for |[w—w, || < ¢, i.e. (4.1) has a
solution u (w) for these w. The solution u (w) is unique and
continuous in S, .

b) Let w, be an arbitrary point in B,. Then the non-
empty set A of all real A with 0 < 4 < 1 for which the equation

Tu—wy+A(wg—w,) =0,
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1s solvable is open with respect to the interval [0, 1]. This
follows from a). It is also closed, for if 1 is the supremum
of A then there exists a point A*e A with [1* —A | |[w,—w, || < c.
Thus it follows from a), if w, is replaced by wy,— A* (wy,—wy),

that IEA. Hence A =0, 1] and (4.1) has a solution for
all weB, .

Proof of Theorem 4.1 a. Let w;eB, and uy,eD with Tu, = w,

be given. Then the points w = wy+ A4 (w;—w,), 0 < 4 £ 1,
are bounded:

[w] = max (] wo

wy ) = 4.

b

Because of y’) there exists a number R with ||Tu || > A for

all u in the set { ueD: ||u || = R}.Y)

Then the same conclusion as in the proof of Theorem 4.1
with ¢ = ¢ (R) applied to ||u || < R shows that Tu = w; is
solvable by an element u, with ||, || < R for which the assump-
tions of Theorem 4.1 with ¢ = ¢ (R) hold. This implies the

existence of a sphere ||w—w, || < ¢ with the asserted properties.

5. AN EXAMPLE.

The simple example Tu = tan u, given only for illustration
purposes, shows that Theorem 4.1 is general enough to cover
cases in which either the domain D is not the whole space B; or
Tu = w does not have a unique solution, although this equation
is solvable for all weB,.

Let B, = B, = B be the Banach space of real numbers.
Then by Theorem 4.1 the equation

Tu

I

tanu = w, u, weB,

is solvable for all weB.?)
Proof. We choose

", T T
Ky = for ue<—~,—).

cos?u

1) This set may be empty.
2) This is not true for complex numbers as tan u = i is not solvable.
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