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Condition (2.4) is satisfied if (2.3) holds in the sphere

S: I «-iio| ^(l-/)-1 || F«0—u0|| (2.5)

Moreover, u is the limit of the sequence { } where

"u+i Vu„, 0, 1, 2,

and there results the estimate

|| «-«.+! || ^ 1(1 -o_1 II u„+1-unIIg/"+1(i
I "i -"o||- (2-6)

3. The implicit function theorem.

Theorem 3.1. Let T* be an operator with domain D œ B1
and range in J52, let S* S (&*, r*) c D and

T*u* 0. (3.1)

We assume furthermore that there exists a linear operator K
on S* into B2 with the following properties:

a) K has a bounded inverse, X"1, defined on B2 and

ß) There exists a constant m < || K~1 || _1 such that

|| T* v — T* u — K(v — u) || ^ m || v — u || for u, veS* (3.2)

Then there exists an Q (u*, r, a, è)-neighborhood of T*,
such that for all TgQ the equation

Tu 6, (3.1 a)

has a unique solution u u (T) in S (u*, r). This solution is

continuous in T at T T* in the sense

Il u (T) —u* || -> 0 as || Tu* || —> 0 (3.3)

In this theorem the operators T and K need not be
continuous.
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Proof. Let T lie in a (&*, r, a, b)-neighborhood of T* with
r <; r*. Then by (3.2), with AT T-T*s we have

I Tv — Tu — R(v —u) I ^ \\ATv-ATu ||

+ || T*v-T*u-R(v-u) || ^ (b + m)- ||v-w || (3.4)

for u,veS(u*, r) a S*9

and the equation

u Vu K~x (K — T)u, ueS(u*9r) S (3.5)

is equivalent to (3.1 a),
For every b ^ 0 with I || K_1 || < 1, (3.4) yields

I] Vu-Vv || || R-^Kiu^-Tu + Tv] || ^ I || u-v ||

I < 1, for u, veS(u*, r).
If

I Vu*-u* || || R-1 Tu* || < (1 -/)r, (3.6)

then the assumptions of the contraction mapping theorem
[Section 2 /] are satisfied. Thus, under these conditions, there
exists a unique solution u u (T) in S satisfying the condition

II u-u* || ^ (1 -J)"1 || R-1 Tu* || ^ (l-/)"1 II R_1 II • II Tu* ||

(3.7)

This implies the continuity (3.3).
The inequality (3.6) is satisfied if TeQ with

a [ || R'1 I"1 — (b + m)]r

This completes the proof.
This proof also gives quantitative conditions for r, a, b which

are sufficient for the existence of a unique and continuous
solution u of (3.1 a) in S (u*, r).

Supplement. The assertion of Theorem 3.1 is true for each

O-neighborhood of T* with 0 < r ^ r* and a, b satisfying

a [ I [f-1 — (b + m)]r > 0 (3.8)
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Then, for the solution u u (T) in S, the estimate (3.7)
holds.

A unique solution of (3.1 a) in S (&*, r) also exists for
such r and b if (3.6) holds, but in (3.8) the sign " > " cannot be

replaced by " ^ ", nor can the constant a in (3.8) be replaced
by any larger one.

The last statement can be proved by simple examples in the
one-dimensional case and with an operator T which is linear
in S (w*, r).

4. Inverse function theorems.

Under the conditions of the implicit function Theorem 3.1,
the operator T has a local inverse defined in a neighborhood of a

point w0 for which
Tu w (4.1)

has a solution uQ. This inverse has its range in a neighborhood
of u0. For the proof set T*u — Tu — w0 in Theorem 3.1.

However, the conditions of this theorem are still not sufficient
for the existence of a solution u of equation (4.1) for all w in B2

even if T is defined on the whole Banach space B1 and the
conditions are satisfied at each point u of B^1)

However, this actually is not necessary for the existence of
at least one solution u of (4.1) for all weB2 as is indicated by the
following theorem.

Theorem 4.1. Let the operator T, mapping a non-empty
domain D c= B1 into A2, satisfy the following conditions:

For each ueD there exist a sphere S (u, r) <=. D, a linear
operator A, and a constant m such that the following conditions
hold:

a) K has a bounded inverse A"1 on TS (u, r)
ß) || TV-Te - A (v — v) || ^ m || e-c || for e, veS (m, r)
y) (|| A-1 || _1 — m) r ^ c > 0 where the constant c is independent

of ueD.

i) Example: Tu arctan u w, with Ri B2 { real numbers }, is not solvable
for all we B2, although the conditions of Theorem 3.1 are satisfied at each point
(u, w arctan u) for T*u Tu-w.
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