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Condition (2.4) is satisfied if (2.3) holds in the sphere
S: l[u—z{0 | =@=D71]| Vug—u, | . (2.5)
Moreover, u is the limit of the sequence { u, } where
Uyp1 = Vu,, n=20,1,2,...,

and there results the estimate

“ U—Uytq “ = l(l—l)_l “ Upt1 —Up ” = ln+1(1__l)—1
|ug—uo | . (2.6

3. THE IMPLICIT FUNCTION THEOREM.

TueorEM 3.1. Let T'* be an operator with domain D < B,
and range in B,, let §* = § (u*, r*) <« D and

T*u* = 0. (3.1)

We assume furthermore that there exists a linear operator K
on $* into B, with the following properties:

«) K has a bounded inverse, K1, defined on B, and
B) There exists a constant m < || K™!| 7! such that

[ T*v—T*u—K(v—u)“§m||v—u|| for u, veS*. (3.2)

Then there exists an Q = (u*, r, a, b)-neighborhood of T*,
such that for all 7eQ the equation ‘

Tu = 0, | (3.1a)

has a unique solution & = u (T) in § (u*, r). This solution is
continuous in 7 at 7 = T* in the sense

| u (T) —u* [0 as |Tu*| 0. (3.3)

In this theorem the operators 7 and K need not be con-
tinuous.
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Proof. Let T lie in a (u*, r, a, b)-neighborhood of 7* with
r < r*. Then by (3.2), with 47 = T —T%*, we have

| To—Tu—K@-u)|| £ |4Tv—4Tu ||
+|T*o-T*u—K@w-w)| £ +m)-|v-u| (3.4

for u,veS@u*, r) « S*,
and the equation

u=Vu=KY K-Tu, ueSu*,r) =S, (3.5)

1s equivalent to (3.1 a), ues.
For every b = 0 with [ = (b+m) || K71 || < 1, (3.4) yields

| Vu-Vv| = | K ' [K@@—v)—Tu+Tv]| £1|u—v I,
I <1, for u, veS(u*, r).
If
| Vu*—u*|| = | K™* Tu*| <(1-Dr, (3.6

then the assumptions of the contraction mapping theorem
[Section 2 f] are satisfied. Thus, under these conditions, there
exists a unique solution u = u (7) in § satisfying the condition

Ju—u | £ A=D" | K Tur | S A=)~ | K7 || Tur].
(3.7)
This implies the continuity (3.3).
The inequality (3.6) is satisfied if TeQ with

a=[|K*'|'-(b+m)]r.

This completes the proof.

This proof also gives quantitative conditions for r, @, b which
are sufficient for the existence of a unique and continuous
solution u of (3.1 a) in S (u*, r).

Supplement. The assertion of Theorem 3.1 is true for each
Q-neighborhood of 7* with 0 < r < r* and a, b satisfying

¢ =[| K| =b+m]r>0. (3.9)
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Then, for the solution u = u (7) in §, the estimate (3.7)
holds.

A unique solution of (3.1 a) in S (u*, r) also exists for
such r and b if (3.6) holds, but in (3.8) the sign “ > ” cannot be
replaced by “ = ”, nor can the constant a in (3.8) be replaced
by any larger one.

The last statement can be proved by simple examples in the

one-dimensional case and with an operator T which 1s linear
in S (u*, r).

4. INVERSE FUNCTION THEOREMS.

Under the conditions of the implicit function Theorem 3.1,
the operator 7 has a local inverse defined in a neighborhood of a
point w, for which

Tu = w. (4.1)

has a solution u,. This inverse has its range in a neighborhood
of u,. For the proof set T*u = Tu—w, in Theorem 3.1.
However, the conditions of this theorem are still not sufficient
for the existence of a solution u of equation (4.1) for all w in B,
even if 7T is defined on the whole Banaech space B; and the
conditions are satisfied at each point u of B;.1)

However, this actually is not necessary for the existence of

at least one solution u of (4.1) for all weB, as is indicated by the
following theorem.

THEOREM 4.1. Let the operator 7, mapping a non-empty
domain D < B into B,, satisfy the following conditions:
For each ueD there exist a sphere § (u, r) < D, a linear

operator K, and a constant m such that the following conditions
hold:

«) K has a bounded inverse K™t on 7§ (u, r)

||TV—T(7 ——‘K(a——?f )| £ m|e—v || for ¢, veS (u, r)

(| K7t || "t=m)r = ¢ > 0 where the constant ¢ is indepen-
dent of ueD.

1) Example: Tu = arctan u = w, with B; = Bs = {real numbers }, is not solvable
for all we B, although the conditions of Theorem 3.1 are satisfied at each point
(u, w = arctan u) for T*u = Tu-w.
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