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AND THE EXISTENCE OF SOLUTIONS

OF NON-LINEAR EQUATIONS *

by Hans H. Ehrmann

CONTENTS

1. Introduction 1

2. Notations and Preliminaries 7

3. The Implicit Function Theorem 12

4. Inverse Function Theorems 15

5. An Example 19

6. Inverse Function Theorems (Continued) 21

7. Differentiable Operator, Implicit Function Theorems 26
8. On the Differentiability of the Solution 29
9. A Global Existence Theorem Using the Differentiability

of the Operator 39
10. Completely Continuous Operators, Neighborhood and

Inverse Function Theorems 46
11. Completely Continuous Operators, Global Existence Theo¬

rems Using the Schauder Fixed Point Theorem 52
12. Non-linear Equations Containing a Linear Completely

Continuous Symmetric Operator 56
References 72

1. Introduction.

This paper presents some existence theorems for the solutions
of certain non-linear equations, both local and global theorems.
The generality, in particular, of the local theorems is determined
largely by the spaces which contain the domain and the range
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of the operator in the equation and the elements the operator
depends on.

For example, in the case of the usual implicit function
theorem for the solution u (x) of an equation

T(x)u T(x, u) 0 (1.1)

we may successively increase the generality by assuming
u, T (x) u, and x to be real or complex numbers, vectors,
elements of Banach spaces, etc. A very general implicit function
theorem for the equation (1.1) in Banach spaces was given by
T. H. Hildebrandt and L. M. Graves [1] in 1927.

Here, we are first dealing with equation

Tu 0 (1.2

where u and Tu are supposed to lie in Banach spaces1. But
we do not assume that the operator T depends on any particular
space and we let the solution u depend only on the equation
itself: u u (T). The resulting implicit function theorem is a

more general form of the Hildebrandt-Graves theorem and

covers theorems known as implicit function, neighborhood, or
perturbation theorems, or theorems for the continuous dependence

of the solutions upon a parameter. There are many
conclusions. It will be shown, for instance, that continuity
of the solution u {T) at a " point " T 7"* can be established
without assuming continuity of T itself, and under further
conditions other local properties of u (T), such as differentiability
in the sense of Fréchet, can be proved and the derivatives may
be calculated by using only the norms in the Banach spaces
of the domain and range of T.

Nevertheless, the main purpose of this paper is to state global
existence theorems. Generally, the conditions of the implicit
function theorems only suffice for the local existence of a solution
in the neighborhood of a given solution of a neighbor equation.
But under suitable further conditions the local theorems can be

i It would often suffice that the range of T lies in a normed space. But this is
not essential here.
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applied to global theorems. This is done in different ways and

some global theorems are stated.
All theorems in this paper, the local as well as the global

theorems, belong to the so-called regular case using certain
" linear " methods which insure the existence of a unique
solution if the equation or an auxiliar equation in the proof is

only disturbed a little. There are no examinations of branch
points of solutions, but some global theorems are stated without
using complete continuity of the operator which most known
theorems do use. In the last three sections complete continuity
is needed only for weakening other assumptions and for a few
theorems of another kind.

In Section 2 we explain some notations used in this paper,
give some definitions of terms which may differ in the literature,
and state some well known theorems to be applied in the other
sections.

The implicit function theorem mentioned above is given
in Section 3. It can be applied immediately to local inverse
function theorems. But its assumptions are still not sufficient
for the existence of a global inverse of T. Nor is the equation

Tu w, Te(Bx - B2), (1.3)

solvable for each weB2 even if the conditions of the inverse
function theorem are satisfied at each point u in Bv But an
additional condition insures the existence. This is the content
of Theorems 4.1 and 4.1 a of Section 4 which are global inverse
function theorems. I presume that the additional condition
(the condition y) in Theorem 4.1) still can be weakened but an
easy example, tan u w, u, w real numbers, discussed in
Section 5, shows that the assumptions are general enough to
cover cases where T is not defined on the whole space B1 and
Tu 6 does not have a unique solution.

For continuous operators T which satisfy the conditions of
Theorem 4.1 we can go into more detail and give an analysis
for such operators. This is done in Section 6. The essential
result, as it is stated in Theorem 6.1, is that these operators can
be split into a number of homeomorphisms of open domains
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onto B2. Unlike the linear case, this number can be greater
than one, even infinite.

The assumptions of the previous theorems can be partially
weakened if we assume that the operator T in (1.2) has a Fréchet-
derivative. This is done for the implicit function theorems
in Section 7. Under special further assumptions there exist
Fréchet-derivatives of certain orders as it is indicated in
Section 8. The derivatives of the first and second order are
actually calculated. The expressions of the derivatives of higher
order of u (T) are more complicated in this generality but the
considerations of this section show their existence under simple
differentiability conditions of T and how to calculate them.

Section 9 gives a global existence theorem using the
differentiability of the operator. No complete continuity is required.
The essential condition is a boundedness condition on the
derivative of a corresponding operator. In particular, in the
special case of the application to inverse function theorems only
the Fréchet-derived equation has to be investigated. The
theorem also states a simple necessary condition that differen-
tiable operators do not assume certain exceptional values. For
example, the values ± i are the only exceptional values of tan x.

Further weakening of the assumptions can be attained if we
assume that the equation can be written in the form

u — Vu

with a completely continuous operator V. As mentioned before,
this case is often treated. Nevertheless, the theorems stated
in Section 10 and 11 may be useful. In particular, if the
operator V is both completely continuous and differentiable,
the hypothesis of the theorem are often satisfied. The Theorems

10.1 and 10.2 are local theorems the proofs of which follow
immediately from previous theorems. Theorem 10.3 is a global
theorem which has a proof similar to the proof of Theorem 4.1 a.

The Theorems 11.1 and 11.2 are of a different kind. They
use the Schauder fixed point theorem. The conditions for the

operator V are both a boundedness condition in a sphere
|| u —Uq I ^ R and a contraction mapping condition in a certain
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shell R ^ || m —m0 || ^ R1 the thickness of which is the smallest

possible.
The last section has a quite different character from the

previous ones. It contains as an essential result a theorem for
the unique solvability of a certain linear equation involving a

completely continuous symmetric linear operator. These

investigations are of a strictly linear kind, using the theory
of eigenvalues of such operators, but applied to special non-linear
equations as, for example, non-linear differentiable integral
equations of Hammerstein type. They enable us to give
explicit conditions on the derivative in order to insure the
existence of a solution. This generalizes known existence
theorems for such equations.

The literature in the field which is treated here is so extensive
that it is impossible to mention all related works.

2. Notations and preliminaries.

a) Throughout this paper the letters Bt, i — 1,2,..., denote
Banach spaces with norms \\u ||i9ueBi9 and zero-elements 0t.

For the sake of simplicity we omit the indices on the norms
and zero-elements if there is no danger of confusion.

The empty set is denoted by 0.
S (m*, r), means an open, and S (m*, r) a closed spherical

neighborhood with center u* and radius r, i.e., the sets

{u: || u — w* || < r} respectively {u: || u — n* || ^ r}

b) We are dealing with (in general non-linear) operators
71, V, defined on (open) domains D, Dv, of Banach
spaces and with ranges R, Rv, in Banach spaces. We
write Te(D -> B) if TD R a B. We assume throughout this
paper that the arguments of the operators always lie in the
domains of definition if no confusion can occur. The operator /
denotes the identity mapping.

II Th II II Th ||

For PHI" ,or pïrfSCas"^'''60'
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we write equivalently

Tho(|| Gh||),or

T is continuous at ueD if T(u+h) — Tu o(l).
c) By a Fréchet-difïerential (F-differential) of an operator T

at a point u gD cB we understand an expression T(u) k with a

(not necessarily boundedx) linear operator T\u) defined on B
for which

T(u + k)-Tu-T(u)k R(u k) o (|| k ||)

T(m) is called the Fréchet-derivative (F-derivative).
Let Thave a bounded F-derivative for all u of the straight

line u u0+tk, 0 ^ t ^ 1, then the mean value theorem 2)

holds:

I T(u+k)-Tu\\gsup I J • 1 k 1 •

o ^ t â 1

If T is continuous and differentiate at u, then T(t/) is a

continuous operator. This follows from

|| T\u)k||^ 1 T(u+k)- Tu- T\u)|| + I +k) - Tu ||

o (1) for k 6

If T\u) k has a F-differential with respect to u, i.e.

T'(u+k2)K- T\u) kl - Tktk2(|| ||),

the operator T'[u) is called the second F-derivative of T. T(u) is

a bilinear operator operating on kx and k2.

d) The operator T is called completely continuous3) or
compact if it maps each bounded set of its domain D c= Bx in a

conditionally compact subset S of its range B a B2l that is,
in a set S c R each infinite sequence of which contains a

subsequence which converges to some element of B2.

1) For applications it is sometimes more convenient to admit unbounded operators
here.

2) See, for example, L. V. Kantorovich [2], p. 162.
s) See ,for example, E. Hille and R. S. Phillips [41, p. 48, or A. E. Taylor [5], p. 274



— 135 —

For compact operators the Schauder fixed point theorem 1)

holds:

Let the compact operator T map the convex, closed

set M a D into M : TM c= M. Then there exists a fixed

point u* of T in M, that is, a point u* Tu*.

e) In the following we often consider equations of the form

Tu (T0+AT)u 0, T, T0, ATe(D -> JB2), (2.1)

with an operator T which lies in a certain neighborhood of ro
with respect to a sphere S (u0, r) of its domain. For thé

purpose of formulating some neighborhood theorems for those

operators we introduce the notation of a (u0, r, a,
^-neighborhood, also called an ^-neighborhood, of an operator T0 with
respect to S (u0 f r):

Definition. T is said to be lying in an Q (u0 r, a, b)-

neighborhood of the operator TQ if and only if

|| (T— T0)m0 || ||zlTt/0|| <a (2.2a)

|| ATu —ATv || ^ b I u — v || for all u, veS(u0, r), (2.2b)

where AT T — T0 and S (u0, r) ci DT n i)ro.
If T has these properties we briefly write TeQ.

f) For some proofs we apply the contraction mapping
theorem in the following well known form:

Theorem of contraction mappings 2). Let F be a contracting
operator which maps a closed region S c Bx into itself, i.e.

|| Vu — Vv || ^ I || u — v || I < 1 for u, veS (2.3)
and

VS cz S (2.4)

Then in S, V has exactly one fixed point, u — Vu.

1) J. Schauder [6], for a generalization see A. Tychonoff [7].
2) See, for example, J. Weissinger [8] who gave a more general form of this theorem.

Without the estimate (2.6), the theorem was used by T. H. Hildebrandt and L. M.
G-raves [11, p. 133, for the proof of implicit function theorems. Nowadays it is basic

.for many error estimates in numerical analysis, see L. Collatz [91, p. 3611'. For
generalizations see, for example, L. Kantorovich [2], [3], J. Schröder [11], H. Ehrmann [12]
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Condition (2.4) is satisfied if (2.3) holds in the sphere

S: I «-iio| ^(l-/)-1 || F«0—u0|| (2.5)

Moreover, u is the limit of the sequence { } where

"u+i Vu„, 0, 1, 2,

and there results the estimate

|| «-«.+! || ^ 1(1 -o_1 II u„+1-unIIg/"+1(i
I "i -"o||- (2-6)

3. The implicit function theorem.

Theorem 3.1. Let T* be an operator with domain D œ B1
and range in J52, let S* S (&*, r*) c D and

T*u* 0. (3.1)

We assume furthermore that there exists a linear operator K
on S* into B2 with the following properties:

a) K has a bounded inverse, X"1, defined on B2 and

ß) There exists a constant m < || K~1 || _1 such that

|| T* v — T* u — K(v — u) || ^ m || v — u || for u, veS* (3.2)

Then there exists an Q (u*, r, a, è)-neighborhood of T*,
such that for all TgQ the equation

Tu 6, (3.1 a)

has a unique solution u u (T) in S (u*, r). This solution is

continuous in T at T T* in the sense

Il u (T) —u* || -> 0 as || Tu* || —> 0 (3.3)

In this theorem the operators T and K need not be
continuous.
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Proof. Let T lie in a (&*, r, a, b)-neighborhood of T* with
r <; r*. Then by (3.2), with AT T-T*s we have

I Tv — Tu — R(v —u) I ^ \\ATv-ATu ||

+ || T*v-T*u-R(v-u) || ^ (b + m)- ||v-w || (3.4)

for u,veS(u*, r) a S*9

and the equation

u Vu K~x (K — T)u, ueS(u*9r) S (3.5)

is equivalent to (3.1 a),
For every b ^ 0 with I || K_1 || < 1, (3.4) yields

I] Vu-Vv || || R-^Kiu^-Tu + Tv] || ^ I || u-v ||

I < 1, for u, veS(u*, r).
If

I Vu*-u* || || R-1 Tu* || < (1 -/)r, (3.6)

then the assumptions of the contraction mapping theorem
[Section 2 /] are satisfied. Thus, under these conditions, there
exists a unique solution u u (T) in S satisfying the condition

II u-u* || ^ (1 -J)"1 || R-1 Tu* || ^ (l-/)"1 II R_1 II • II Tu* ||

(3.7)

This implies the continuity (3.3).
The inequality (3.6) is satisfied if TeQ with

a [ || R'1 I"1 — (b + m)]r

This completes the proof.
This proof also gives quantitative conditions for r, a, b which

are sufficient for the existence of a unique and continuous
solution u of (3.1 a) in S (u*, r).

Supplement. The assertion of Theorem 3.1 is true for each

O-neighborhood of T* with 0 < r ^ r* and a, b satisfying

a [ I [f-1 — (b + m)]r > 0 (3.8)
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Then, for the solution u u (T) in S, the estimate (3.7)
holds.

A unique solution of (3.1 a) in S (&*, r) also exists for
such r and b if (3.6) holds, but in (3.8) the sign " > " cannot be

replaced by " ^ ", nor can the constant a in (3.8) be replaced
by any larger one.

The last statement can be proved by simple examples in the
one-dimensional case and with an operator T which is linear
in S (w*, r).

4. Inverse function theorems.

Under the conditions of the implicit function Theorem 3.1,
the operator T has a local inverse defined in a neighborhood of a

point w0 for which
Tu w (4.1)

has a solution uQ. This inverse has its range in a neighborhood
of u0. For the proof set T*u — Tu — w0 in Theorem 3.1.

However, the conditions of this theorem are still not sufficient
for the existence of a solution u of equation (4.1) for all w in B2

even if T is defined on the whole Banach space B1 and the
conditions are satisfied at each point u of B^1)

However, this actually is not necessary for the existence of
at least one solution u of (4.1) for all weB2 as is indicated by the
following theorem.

Theorem 4.1. Let the operator T, mapping a non-empty
domain D c= B1 into A2, satisfy the following conditions:

For each ueD there exist a sphere S (u, r) <=. D, a linear
operator A, and a constant m such that the following conditions
hold:

a) K has a bounded inverse A"1 on TS (u, r)
ß) || TV-Te - A (v — v) || ^ m || e-c || for e, veS (m, r)
y) (|| A-1 || _1 — m) r ^ c > 0 where the constant c is independent

of ueD.

i) Example: Tu arctan u w, with Ri B2 { real numbers }, is not solvable
for all we B2, although the conditions of Theorem 3.1 are satisfied at each point
(u, w arctan u) for T*u Tu-w.
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Then the equation (4.1) has at least one solution for every w

in B2 and each w0eB2 is the center of a sphere || w — w0 || < c

for which u u (w) is continuous and unique in a corresponding
neighborhood S (u0 r0) with Tu0 — w0 and r0 r (w0).

Bemark. In this theorem it is not required that T be

defined for all ueB1 nor that T be continuous, and it cannot be
asserted that T has only one solution for each weB2. The

example in the footnote (previous page) shows that the
condition y) cannot be improved by deleting ^ c with constant c

independent of u. But y) can be replaced by other conditions.

Theorem 4.1 a. In Theorem 4.1 the condition y) can be

replaced by
y') There exists for each R > 0 a constant c — c (R) > 0 such
that

|| K~l jj""1 — m) r ^ c for || u || ^ R and (4.2)

|| Tu || -» ce as || u || -> oo and ueD (4.3)

Proof of Theorem 4.1. a) Let u0eD and Tu0 — w0 and
let K0 m0, r0 be the corresponding quantities satisfying a),
ß) and y) with S0 S (u0 r0) a D.
Then by Theorem 3.1 and supplement with T*u — Tu — w0
u* u0, r r* r0 and b 0, it follows that each equation
Tu Tu — w= 6 has a unique solution u{w) in S0 which
depends continuously on w provided

Il ^ô1 Tu01| < (1 — m0 1 Kq1||)r0 || || (||

Because of

I Kô'fuoI^ I Kö'lW w0-w||,

and y) this inequality holds for \\w-w0 || < c, i.e. (4.1) has a
solution u (w)forthese w.Thesolution u is unique and
continuous in iS"0

b) Let w1be an arbitrary point in B2. Then the
nonempty set Aof all real A with 0 ^ A ^ 1 for which the equation

Tu — w0+X(w0 — wl) 6,
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is solvable is open with respect to the interval [0, 1]. This
follows from a). It is also closed, for if I is the snpremum
of A then there exists a point X*eA with [ I* — X | || w0 — || < c.

Thus it follows from aj, if w0 is replaced by wQ — A* (cp0~~ u^),
that leA. Hence A — [0, 1] and (4.1) has a solution for
all weB2.

Proof of Theorem 4.1 a. Let wxeB2 and u0eD with Tu0 w0

be given. Then the points w w0+A (wi:-(P0), 0 ^ ^
are bounded:

Il w || g max (|| WqII|| Wj ||) A

Because of y') there exists a number R with || Tu || > A for
all u in the set { ueD: || u || ^ R }.x)

Then the same conclusion as in the proof of Theorem 4.1
with c c (R) applied to || u || ^ R shows that Tu wx is
solvable by an element ux with || ux || < R for which the assumptions

of Theorem 4.1 with c c (R) hold. This implies the
existence of a sphere || w — wx || < c with the asserted properties.

5. An example.

The simple example Tu — tan u, given only for illustration
purposes, shows that Theorem 4.1 is general enough to cover
cases in which either the domain D is not the whole space Bx or
Tu w does not have a unique solution, although this equation
is solvable for all weB2.

Let Bx B2 B be the Banach space of real numbers.
Then by Theorem 4.1 the equation

Tu tan u w u, weB

is solvable for all weB.2)

Proof. We choose

V 71 7l\
Kv —r— for ue -cos2 M \ 2 2]

1) This set may be empty.
2) This is not true for complex numbers as tan u i is not solvable.
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Then by the mean value theorem and because

d 1 2 sin u

du cos2 u cos3 u

is increasing for increasing

n n
Ue{ ~ 2' 2

it follows that

11 71 71

m (u) —^ 3— for 0 u < - and u + r < -
cos (w+r) cos w 2 2

In the following we restrict ourselves to these u.

From the above we get

K-1||-1-m)r >(—-2-
11 7

\cos (w

4r \ 7T

r 0 < r < w

'(n+r) cos3(u+r)J
7

2

Now choosing r as the smallest positive solution of
71

r r (u) I cos (&+r), which implies u-\-r < - we get
À

(Il K'1 ||-1-m)r >
1

>—-1)Ul " ' 16cos(u+r) 16

71

The same is true for — - < u < 0 as can be proved in the
2

same way. Thus the conditions of Theorem 4.1 are valid. In
1

particular y) is true for c — *

6. Inverse function theorems (continued).

As was indicated by the example tan u — w in the last
chapter, the assumptions of the Theorems 4.1 and 4.1 a are not
sufficient to insure that the operator T will have an inverse

i) Here we use the fact that u is real.
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defined on the whole space B2, i.e. that the equation Tu w
has exactly one solution for each w in B2. We will now obtain
conditions under which the existence of a local inverse implies
the existence of a global inverse.

Theorem 6.1. Let T satisfy the assumptions of Theorem 4.1
and let T be a continuous operator in its domain of definition, D.

Then there exists a finite or infinite number A of open
connected domains Da c= D with the properties:

U Da D, for each aeA the restriction Ta of T on Da is a
a e A

homeomorphism1) of Da onto 52, and the sets Da are mutually
disjoint.

Furthermore, if T is defined on the whole Banach space
then T is itself a homeomorphism of Bx onto B2.

This theorem implies that under the assumptions there is for
each weB2 the same finite or infinite number A of solutions
of Tu — (v, and each solution lies in a domain Da for which the
existence of a local inverse implies that of a global one.

Proof, a) We first prove the following statement: Let w±

and w2 be two points of B2 with \\w1 — w2 || < c (c from y) in
Theorem 4.1) and let Tux wv The existence of at least one
such ux follows from Theorem 4.1. Furthermore, it is shown
that there exists a sphere S (ux, rx) S1 in which the equation

Tu w has a unique solution u(w) for all w with
fjw — wx || < c. Therefore there exists a unique solution u2

in S1 of Tu w2.
Conversely, let S (u2, r2) ='S2 the corresponding neighborhood

of u2 in which a unique solution u of Tu — w for
II ^ — w2 || < c exists. Then w — weS (uq-, c) n S (w2, c),

ueS (ux, Tj), ueS (u2, r2), Tu — w, Tu — w implies u u.
If ueS2 the assertion is true because of the uniqueness of

u u (w) in S2 for || w —w2 || < c. Now, let u$S2. Then we
connect w2 with w by the straight line g cv2+^(w — w2),

0^/1^1, and consider the images Cx and C2 of this line in Sx

and S2 respectively. These images exist and form
connected curves (pt (À) eSt, i 1, 2, using the fact that

i) One-to-one mapping continuous and with continuous inverse.
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geS (wx, c) n S (w2, c) in B2 and applying the theorem that
the continuous image of a connected set is connected, which
holds in our spaces. We also have (pt (0) u2 i 1, 2,

(px (1) ^ <p2 (1) u. In the intersection S1 n S2 the

curves Ct coincide because of the uniqueness of u (w)y u {w)

in S1, S2 respectively.
We proceed with increasing X from u2 along Cv Since u$S2

there is a first point u* (with a least X X*) on C1 which does

not belong to C2eS2. However, in each neighborhood of u*
there are points of C2. Let w* w2-\rX* (w — w2), the
corresponding point with Tu* w*. Then, because of the
continuity of C2, there cannot be another point u on C2 with
Tu w*y i.e. u*eS2 and C± C2 in contradiction to our
assumption.

b) Let be a solution of Tu — 6, which exists by Theorem 4.

This theorem also yields a neighborhood S (u0 r0) S0 such
that the equation Tu w has a unique solution u (w) in S0 for
all (v with \\w || ^ c — e, 0 < e < e, and u(w) is continuous
there.

We choose a number R > 0 arbitrarily large and construct a
continuous mapping Ta~1 with Ta~1 T I defined for all w with
|| w || ^ R and with range in a certain domain of Bv This can
be done as follows:

For || (V || ^ c — E the equation Tu w has a unique and
continuous solution, u (w), if u is prescribed to lie in S0 The
(inverse-) images u for these w form a connected closed set in B1.
Let Tu (V be uniquely solvable for all w in the disk || w || ^ R1

by the continuous function u u (w) and let the set
D{Rt) {u= u(w): || (v || ^ Rx} be a connected, closed, set
containing the point u0.

Because of the continuity of T the restriction of T to D{Ri)
is a one-to-one mapping of D(Ri) onto S (0, RJ c: R2 which is
continuous in both directions, i.e. a homeomorphism. In
particular, the intersection S (iv, c) n 5 (0, RJ has its pre-
image in the corresponding intersection 5(5, r) n D(Ä } for
each weS (0, Rx) with Tu vv.
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Now we consider the sphere || w || ^ /?-,_ + -= /?2. Each
2

w in the shell R± < || w || ^ R2 lies in some sphere || w— w || < c

with ||w || g We assign to these w the u u(w) with
Tu w which lies in the corresponding neighborhood S (2, r)
with Tu w. This defines u(w) uniquely. This follows
from a) since if w± and w2 are two points in S (0, RJ with
II wi II < c, i 1, 2, then w, w1 and w2 lie also in the sphere
S (w*, c) with w* \ (tf>i+w2) an(l II II ^1 • Therefore, it
follows from a) that our assumptions stated for || w || ^ Rt are

c
true also for \\w < A, -4— •II II- l-r 2

Thus, we get a homeomorphism between a certain domain
Da cz B1 and B2. Contrary to the case of a linear operator
there may be more than one such domain. If there is another
solution u*$Da of Tu w* for any w*eB2 then by the same
construction, with w* as new center, we obtain another
domain Da*, and the restriction of T to Z)a* is a homeomorphism
on Da* onto B2.

We prove that Da and Dfl* are disjoint. Let ueDa n Da*.
Then we connect u with by a curve C* lying in Da*. This
curve has an image TC* in B2, which is also a curve because of
the continuity of T. TC* has an inverse image Ca T'1 TC*
in Da given by the homeomorphism Da onto B2, which is also

a curve. Ca and C* coincide in Da n D*. Let u' be the
first point of C* from u lying on the boundary of Da. This
exists since u*$Da Then it follows from the continuity of Ca

that u'eCa c Da, in contradiction to the openess of Da. Therefore,

Da and D * are disjoint.
Let T be defined on the whole space Bx If there is only

one domain Da then the assertion is true. Let there be at least
two such domains. Then by a similar consideration connecting
two points, ueDa and u*eDa*, with the same image by a curve
one finds that T cannot be defined on the boundary of such

a domain Da. This contradicts the assumption and completes
the proof.

Corollary. If we merely require the assumptions of
Theorem 6.1 to be satisfied on a subdomain D' a D then all
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assertions remain true except the last one that T is a homeo-

morphism of B± onto Z?2. If there exist two subdomains Da
and Da* of D* then the assumptions of Theorem 6.1 cannot hold
on a whole path P in B± connecting Da and Da* : Either T is not
defined everywhere on P as a continuous operator or there does

not exist an operator K with hounded inverse satisfying a),

ß) and y) of Theorem 4.1.

A similar theorem can be stated using the assumptions of
Theorem 4.1 a as a basis.

7. Differentiable operators, implicit function theorems.

If the operator T is assumed to be differentiable in the sense
of Fréchet (section 2 c) then the operator T(Uo)can be taken as

operator K in the previous theorems and similar theorems can
be stated.

Theorem 7.1. a) Let T0 be defined on the sphere
S0 S (u0 r0) cz B1 and let

To u0 0 (7.1)

b) Let T0 have a (not necessarily bounded) derivative
T0(Uq) K at the point u0 and let K have a bounded inverse K_1
defined on B2.

c) Assume there are positive numbers r' ^ r0 and
m m (r') < || A-1 || _1 with

T0(u0+u-v)-T0 u + T0v || S m\\u~v \\ u veS(u0 r'). (7.2)

Then an Q (u0 r, a, b)-neighborhood of T0 exists in which
the equation

Tu 9, (7.3)

is uniquely solvable and the solution u (T) is continuous at
T — T0. More precisely in Q we have.

1 u (T) - i/o || ^ C I Tu0 || with a constant C. (7.4)

L'Enseignement mathém., t. IX, fasc. 3. 2
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The easy proof follows immediately from Theorem 3.1 and
supplement if we observe that, by (7.1),

T0(u0+k) — Kk Rk with Rk o(||fc||),

and, therefore, because of b) and cj, there exist positive numbers

r ^ r' and m1 < || K~1 || _1 with

|| K(u— v) — T0u + T0v || || T0(u0 +u — v) — T0u + T0v — R(u — v) ||

^ m1 || u —v || for m, veS(u0 r)

Supplement 7.1 a. Conditions b) and c) can be replaced by
the following assumption:

V) At the point u0, T0 has a strong derivative 1) T0(Uo) K
which has a bounded inverse, i.e. there exists a linear operator K
with the property that to every m > 0 there is a r > 0 such that

|| T0v — T0 u — K(v — u) || ^ m || v — u || if u,veS(u0,r), (7.5)

and K has a bounded inverse A-1.
It is easy to show that b') implies b) and c) of Theorem 7.1

or directly a) and ß) of Theorem 3.1. Assumption b') again
holds if we assume T0 to have a derivative in a whole neighborhood

of u0 and this derivative is continuous and has a bounded
inverse. But less is sufficient. More precisely we have the

Supplement 7.1 b. Condition b') holds if the following is

true:

b"j T0 has a (not necessarily bounded) derivative T0{u) in a

neighborhood S (u0, r) of u0 with the property T0(Uq) — T0(u)
is bounded and || T0(Uq) — T0(w) || —> 0 as || u — u0 || -» 0 and T0(~^
exists as a bounded operator.

The easy proof follows with K T0(Uq) from

I T0v-T0u-K(v-u)I ^ || T0v-T)||

|| ||w-M||.

i) This notation is introduced by E. B. Leach [13] in connection with an inverse
function theorem.
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This supplement covers differential operators, for example,
which usually are not continuous but have a continuous inverse.
For such differential operators which have a derivative satisfying
the assumptions a) and b') or b" the existence of an ß-neigh-
borhood can only fail at a " point " (T, u) where T^ does not
exist as a bounded linear operator. But the existence of a

bounded inverse T^ for each ueBx, T being defined everywhere

in B1, is not sufficient to insure that T has an inverse
nor that the equation Tu w is solvable for all weB2

8. On the differentiability of the solution.

In virtue of Theorem 7.1 and supplements the equation
Tu 9 is equivalent to u u (T) in an O-neighborhood of
(T0, u0) under the above conditions or, in other words, u (T) is

a unique function of T defined in Q by Tu 6. The conditions
yield also the continuity of u(T) in the sense that u (T) tends to u0
as || Tu0 II —> 0 or, more precisely, || u (T) — u (T0) || g C |j Tu0 ||

for some constant C. Therefore,

g(u)o([| u-u0I)implies (m) o(|| ||), (8.1)

for these solutions u u (T) of Tu Ö.

In order to get the continuity it is sufficient essentially that
AT T — T0 tends to zero at the single point u0 But for the
purpose of calculating a Fréchet-derivative of u (T) we have to
know what the behaviour of T is in a neighborhood of u0 as

\\Tu0\\= \\ATu0 || 0. According to the definition of the
derivative we are looking for a linear operator L such that the
expression

u (T0 +AT) — u (T0) — LAT,

tends to zero faster than of order one as A T -> 0 in a certain
sense. But if we state the formula

U(T)—U(T0) — T0(Uo)ZlTu +O(|| U ^-U0 ||) (8.2)

0 + ^O(ifo) ^0 u + O (|| u-u0 j|),
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which follows from

T0 u T0 Uq — ToO(«0)("-"o) 0(|| M-M0 I),

observing that T0u06 and Tuwe get the difficulty that
normally u (T) and T0u don't depend linearly on Tu0 or,
equivalently, o || u — u0 || is not o \\ATu || in general.

Therefore, we make the following natural assumption:

A. We assume that all operators T are differentiable at the
point u0 and that T(Uq) tends to an operator f[u for || Tu0 || —> 0
such that

U'(»0)-T'(u0))(u~u0) O(|| Tu0 II) for u (T), u0 (8.3)

and T(llo) has a bounded inverse.
The normal case is T(Uq) T0(Uo) as for example in the

usual implicit function theorems. A is more general.
Under this assumption we have the

Theorem 8.1. Let T0 satisfy the assumptions of Theorem 7.1

and let Q be the (u0, r, a, b)-neighborhood of T0 in which the
equation (7.3) Tu 6 is uniquely and continuously solvable.
Furthermore, we assume that all TsQ satisfy the differentiability
condition A.

Then there exists a unique F'-differential of the solution u (T)
of (7.3) at the u point " T T0 which has the form

u0 u(T0) and AT0u0 (T—T0)u0 Tu0.

Proof. By definition of the F'-differential of T,

AT0u0 Tu0 Tu-T'(uo)(u-||)

-T\Uo)(u-u0) + o(\\u-u0

because Tu 9. Hence it follows by (8.3) and (8.1) that

uf(T0)AT0 — —T(Uo)AT0u0, (8.4)
where

A Tq UQ -r'w(«-«o)+o(|| Tu0I)
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or because of the existence of a bounded inverse that

u(T)-u(T0) + T(;o]AT0u0O (1 A |), (8.5)

which implies (8.4) by definition of the jF-differential. _
There cannot be more than one such derivative. For let L±

and L2 be two linear operators satisfying (8.5). It results

from (8.5) with XAT0u0 (for fixed AT0u0 and real A) instead

of A T0 u0

\\(L1-L2)AT0u0\\ <p(X) with <p(X)-+ 0 as A -> 0

which implies L2. This completes the proof.
In the special case Tu T*u — w, T0u T*u — w0 and

T*u0 w0 the condition A is satisfied with T(Mo) T0(Uq)

because of T[Uq) T0(Uo) and assumption b) of Theorem 7.1.

By writing again T for T* we get the following inverse function
theorem as a corollary:

Theorem 8.2. a) Let T be defined on the sphere
S0 S (u0, r0) c: B1 and let

Tu0 w0

Furthermore, let the assumptions b) and c) of Theorem 7.1 be

satisfied.
Then T has a local inverse T~x defined in a neighborhood

of w0 and T_1 has a bounded derivative at the point w0:

u (w) T_1w, u(w0) T'1 w0

u'(w0)Aw (T_1)'(Wo)dw (T'(„o))_1 (8.6)

with Aw w — w0.

In these theorems it is not required that T and T\u } are
continuous although a continuous derivative of the inverse
function is asserted. Thus certain differential operators like
F (:r, A, u, u', u{r)) plus certain conditions can be treated.

In the special case of an equation

Tu EE T(x)u T(x,u) 9, T0 u0 T(x0 u0) 9
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with x, u, Tu in Banach spaces we get the usual implicit function
theorem with

u(T) u(T(x))<p(x), (p(x0),

if we assume that there are ^-differentials T(u) (x) /c, continuous
in a neighborhood of (x0, uQ) and with bounded operator
T'(û0) (%o), and T\Xq) (u0) h. Then

T(u0) T\u0)(x) and <p'{x0)h u' (T) T\Xq) (w0) h

and there results the well known formula

<P'(*o) ~T(u0)-T(x0)(uo) • (8-7)

In order to calculate the second F-differential of the solution

u (T) of the equation Tu 9 at T F0 we assume that T
has a first and a second F-derivative (with respect to u) which
are continuous1) in a neighborhood of u0. Then also u' (T) is

continuous " around T0 i.e. for fixed h A*T

|| u' (TJ) A-A T0) h — u' (T0) h || 0 as || A T0 u0 || 0

Furthermore, according to the case when the operator T
depends on the elements of a Banach space F3, i.e. Tu T (x) u,
xgB3 where ATu — T (x-\-h) u — T (x) u, we define A to be a

linear operation:

A(TX + T2) u ATxu +AT2u A(ÀTu) XATu
Then

A1(T+A2T)u A1TU+A1A2TU

and A1 A2 Tu is linear in Ax and A2.
With these natural assumptions the calculation of the second

order F-derivative as a bilinear operator is a straight-forward
derivation. We use the formula

A1TH(T) + T[u)u'(T)A1T 9, (8.8)

at the " points " T F0 and T ~ T0-\-A2 and take the

i) Less would suffice here, see below.
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difference of the two expressions retaining only those terms
which are linear in A2. For the sake of brevity we use the
following abbreviations :

u0 u (T0), T T0 +A2 T0, u u(T) u (T0 + A2 T0).,

o2 O (II A2 T0 u0 II)

Then we have

u (T) u0 +u' (To) d2 T0 +02

k uf(T) A±T uf(T0+A2 T0) (A 1 T0+A1A2 T0)

— u' (To +A2 T0) A, T0+u' (T0)A1 A2 T0 + 02

A1Tu(T)—A1T0u0 A1T0u+A1A2TqU— A1T0u0

Ai To(u0)Uf(To)A2 T0+AxA2 T0u0+O2 and

To(u)k T0(Uo) k + T0(Wo) \u' (To) A2 T0] \uf (T0)A, T0] + 02

Hence

T(u)u (T) A1 T (T0 +d2 T0) (M(r0+zi2r0)) (^o +^12 T0) djL (T0 +

^2 lo) [T0(W) +(A2 To) (i<)j k T0(u) k + A2 T 0(Uo) k

T0(u)k+A2 T0iUo)H'(T0)A1T0+o2.

Therefore, by (8.8)

6 ^ Tu + T'(u)U'(T)A1 T-A± T0u0 — T o(Uq) U' (T0) Ax T0

A1 TO(u0)U ' (T0)A2To +At A2T0u0 + T0(„o) T0

-W (T0)A,T0]+ T0(Uo) u'(T0)A, T0 +A2 T0

+ Toe.) (To) A2 T0] [ u'(T0)AtT0]+ o2 •

If we assume as above that ^has a bounded inverse we
finally get

U'(T0+A2 T0)A1 T0-U'(T0)A1 T0

+ Toë0\ T0(„0) W(T0)A2T0 +A2 (T0)A1 T0

+A, A2 T0U0 + T'o(u0)*(T0) A, A2 T0 + [«' (T0)A2 T0]

[u'^A, T0] } + o(|| d2 T0u0 I).
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Therefore, the second order differential of the solution u (T)
of Tu 6 is given by

u" (T0) A2 T0 Ax T0 — T0(Uo) {A1 T0(Mo) u' (T0) A2 T0

+ ^2 T0(Uq)u' (T0) A1 T0+A1A2 T0u0 + T0(Uo) (8.9)

[u' (T0) d2 T0] [u' (T0) A, T0] }-u' (T0)A1 A2 T0

Here

u'(Tq) AT0 —T(UQyAT0u0.

It is obvious that instead of the boundedness of T0(Uq) the
weaker condition A with T[Uo) T0(Uq) and Tu0 A2 T0 u0 is
sufficient for the existence of a differential of second order given
by the formula (8.9). The considerations also show the existence
of an T-derivative of n-th order and how to calculate it if T
has T-derivatives up to the order n which are continuous in a

neighborhood of u0 with the possible exception that T'(Mq) satisfies
condition A instead of the continuity condition. The uniqueness
of the second order derivative can be shown as in the case of
the first order derivative.

Example. For the special case

Tu T(x)u EE T(x,u) 6 T0u T(x0 u) T0u0 0,

we now write Tx(x, &), Tu (x, w), Txx{x, u) etc. for T(JC),

T(u), T'[x) respectively in accordance with the usual notation of

partial derivatives of a function of more than one variable.1)
Assuming x, u, T (x, u) to be elements of Banach spaces we

have with
u(T) w(T(x)) cp(x),

the expressions
cpr (x) h u' (T) Tx h

and

(p"(x)h2hi u"(T(x))(Txh2)(Txh1)+u'(T(x))Txxh2h1, (8.10)

where the differentials are supposed to be Fréchet-differentials.
Furthermore, we have

At T0 T(x0+hd-T(x0)Tx(x0)fti + o(/îi),

i) The previous notation, however, seems to be more usual in functional analysis
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— Ai A2 Tq

T(x0 + h2 + Ä0 - T(x0 + h±) - T(x0 + h2) - T(x0)

— Tx (*0 + hi) h2 ~~ Tx (x0) h2 + O (h2)

Txxh1h2+o(h1) +o(h2)
and

d/^o(M0) Tu(x0 +ht ,u0) — Tu(x0,u0) Txu ht + o(ht), i 1,2.

Hence by (8.9) and (8.10), neglecting the terms o (Aj), it
results

<p" (-V,)) h2/), -(Tu)~1{Txu(h1[(p'(x0)h2'\+ h2[(p'(x0)

+ Txx h1 h2+ Tuu [<p' (x0) ftj] [9' (.v„) h2~\}

where the derivatives of T are taken at the point (x0 u0)

[e.g. Tu — Tu (x0 u0)] and, for example, Txu hk means that the
bilinear operator Txu Txu (x0, u0) applies to the elements h

and k. Here cpf (x0) h can be expressed by — T"1 Tx h according
to (8.7).

9. A GLOBAL EXISTENCE THEOREM USING THE DIFFERENTIABILITY
OF THE OPERATOR

In this chapter a method for the proof of the existence of a

solution of a non-linear equation

Tu 6, (9.1)

is introduced which may be useful in cases where T has a

derivative but cannot be written in the form I-V with completely
continuous operator V or in which the complete continuity
of V is difficult to show.

Theorem 9.1. Assume T is a closed1) operator defined on
an (open) domain D c= B1 and there has a derivative T[u) such
that T{u) — T(v) (u, veD) is bounded and continuous2) with
respect to u. The range of T lies in B2.

1) See, for example, E. Hille and R. S. Phillips [4], p. 40, or N.I. Achieser and I. M.
Grlasmann [14], p. 82.

2) We don't require that T'(u)k is continuous with respect to k.
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Let T0 be any operator on D0 D into B2 with the properties:

a. T0u0 6 for some u0eD. (9..2)

b. T0 has a derivative T0(u) in D satisfying the same conditions
as T\u)

c. The operators
Tk (1 -X)T0+ÂT, 0 < 2 < 1,

are closed.
Denote

U {u: Txu 6, 0 ^ 2 < 1}.

Then either (9.1) has a solution or1) the sets

!*
'
X{u)

S {s: s —1—jj-, keB1 ueU, 0 ^ 2 < 1}, (9.3)
T' 2 (u\ k

and
V {v:v || (T-T0)u || ueU}, (9.4)

are not both bounded.

Proof. Let A be the set of all 2 in 0 2 < 1 for which the
equation Txu 0 has a solution. Then A ^ 0 because QeA.

Let S be bounded:

sS C,or I T'x(u) kI^ — I k | — > 0
1

„ M
1

— M» —cj1 11

Therefore 2), the operator T\{u) has a bounded inverse T\(u)
and

1 T\;u] I(9.5)

Hence the assumptions of Theorem 7.1, supplement 7.1 6,

are satisfied. Therefore, it follows that the set A is open with
respect to [0, 1].

Moreover, Theorem 8.1 says that each " point " (TXl u (TJ),
ueU, has an ß-neighborhood in which u — u (T) is unique,
continuous and difierentiable if assumption A of Chapter 8 is

satisfied. This is obviously true if we restrict ourselves to

1) The statements shall not exclude each other, i.e. at least one of them is true.
2) See, for example, E. Hille and R. S. Phillips [4], p. 42, Theorem 2.11.6.
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Tx e Q. Then the operator T(m) in (8.3) becomes TÄ(U) • From
this it follows that we can construct a unique and continuously
differentiate function cp (1) — u(TÀ) e D with TÀ (p (A) 0

defined on some interval 0 ^ X < 1 if we apply the Theorems 7.1

and 8.1 repeatedly. Let [0, X] be the largest interval for
which cp (X) can be defined by this construction under the
assumption that (9.1) is not solvable, i.e. l£A. Obviously
0 < X < 1 and 1 <£ A.

Then by (8.7) we have

cp'{X) -T'^T^x» — T'x(<p\x))(T— T0) u (Tx) (9.6)

for 0 ^ X < X. And cp' (2) is a bounded linear operator on R1

into B1.
Now let Xv < J, c 1, 2, be a sequence converging to

1 and uv ii (TXv) cp (^v) be the solutions of Tu 6 as

just obtained. Then by the mean value theorem of the
differential calculus we have, for Xß > Xv,

1«v-«MN suP IIp'O) I I.

If we assume that the sets S and V in (9.3), (9.4), respectively,
are bounded with bounds C1 and C2 then by (9.5) and (9.6)

I «v-"„ II ^ C1C2\Xß-Xv\,V 1, 2,

Hence { uv } is a Cauchy sequence and by the completeness
of B1 there exists a limit element u eB1 :

u lim uv.
V-> 00

Because uve DandTXv wv 9, v 1,2, we have

II T~xuvII (T~x-Tx)uv||I (1 -K) (T ~ T0) wv ||

^ I X - Av I ||(T-T0)uv ||

By (9.4) and Xv I, c —> co, we have

II uv j| > 0 for uv g D uv —> u



— 156 —

Since T~x is closed, then

u eD and T^u 0.

Therefore, A also is closed with respect to [0, 1]. Thus
A [0. 1] which completes the proof.

If we choose, in particular, T0u= Tu — Tu0 for some
fixed u0 e D, we get

TÀu Tu— (1 — X)Tu0 and T—T0 Tu0 const. (9.7)

Thus, all assumptions on T0 and also the boundedness of the
set V are satisfied automatically, and we have the

Corollary 9.1. Assume T is a closed operator defined on an
(open) domain D cz B1 and with range in B2. Let T have a

derivative T\u) there such that T[u) — T\v) is a bounded operator
depending continuously on e, (e, veD).

Then either (9.1) has a solution or the set S in (9.3) is not
bounded.

The condition of the boundedness of the set S is equivalent
to the condition

inf { || T\(u) k || : || k || 1, keB1, ueU 0 ^ A < 1 }
m > 0 (9.8)

Since A 0 is not excluded there is no statement if T0(m) k
is 9 for some k; for example, if TQ is constant. As (9.8) or the
boundedness of S is equivalent1) also to the existence of a

bounded inverse of TÀ(u) the existence of a solution of (9.1) can
only fail if TYeo exist as a bounded operator for some

2e[0, 1]. The proof of Theorem 9.1 shows that we even can
restrict ourselves to examine only T^ for u — cp (A) or
according to formula (8.6) to Thus,
writing (9.1) in the form

Tu w1 (9.9)

and choosing T0u=Tu — w0,w0=Tu0, as for (9.7), we get
Txu — Tu — w0 — X (nq — w0) and we have the

i) See, for example, E. Hille and R. S. Phillips [4], p. 42, Theorem 2.11.6.
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Corollary 9.2. The equation (9.9) with T satisfying the

assumptions of Theorem 9.1 has at least one solution if for at
least one u0 e D, with cp (A) the same as in the proof of

Theorem 9.1, and

w (X) w0 4~ X (wi — w0) j (9.10)

the operators

=(T-%W),0A < 1

exist and are bounded uniformly in X, or equivalently, if T(Uq)

exists as a hounded operator and

low»)-1! IK^-Wovca), I,
remains finite with increasing X from 0 to 1.

Example. It is well known that the equation

Tz tan z w, z, w complex numbers,

is not solvable only for w ±i. Theorem 9.1 immediately
shows that the equation is solvable for all w ^ ±i. For

<T~,)"> TTv?'
71

and, with w0± 0 tan 0 and w02 1 tan - all points of

the complex number plane can be reached on straight lines (9.10)
1

from either 0 or 1 such that r remains bounded
1 + (w {X))2

with the only exceptions w ±i.

10. Completely continuous operators,
NEIGHRORHOOD AND INVERSE FUNCTION THEOREMS.

The assumptions of the theorems can be partially weakened
if the non-linear equation can be written in the form

u Vu, (10.1)

with a completely continuous operator V. Complete continuity
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is the most used and most convenient aid for stating existence
theorems. Therefore, very may existence theorems use it in
their proofs and subtle investigations have been made to show
that special operators have this property.1) Two main ways for
using the complete continuity should be emphasized: The fixed
point principle based on the Schauder-Tychonoff fixed point
theorem2) and the Leray-Schauder method3) which is a generalization

of the theory of degree of a mapping due to Brouwer. One

of the main and nicest results which is important for the applications

is the following alternative 4) as basis for a priori estimates:

Theorem 10.1. If V is defined on a Banach space B with
range in B and if V is completely continuous then either (10.1)
has a solution or the set U { u: u XVu, 0 < A < 1 } is

not bounded.
But the boundedness of the set U is, of course, only a sufficient

condition and in many cases Theorem 10.1 is not applicable.
Moreover, the conditions do not imply the existence of a solution
in the neighborhood of a given solution. Therefore, the following
theorems, which are analogous to some of the above theorems,

may be useful.
As the Fréchet derivative of a completely continuous

operator is also completely continuous5) it is no great restriction
of generality if we assume that the linear approximation K
of / — V, which occurs in Theorems 3.1 and 4.1, has the form I —L

with a linear completely continuous operator L. Since a

completely continuous operator has only a point spectrum6),
(/—L)"1 exists as a bounded linear operator defined on the
whole Banach space B2 if and only if L does not have the
eigenvalue7) 1. Therefore, from Theorem 3.1 there follows

immediately the

1) See, for example, M. A. Krasmosel'skii [15].
2) See section 2f.
3) j. Leray et J. Schauder [16].
4) H. Schaefer [17] grave an elegant proof for this theorem in a more general form.
5) If T is differentiate at u and completely continuous the operators A(c):

A{c)k » T^a + ck)~Tu
c > q are alg0 completely continuous and || A(c)k-T'^k||

|| k \\<p( || ck H), <p(à) 0 as <5 -> 0. This implies complete continuity of T'^. See.

for example, A. N. Kolmogorov and S.V. Fomin [18] I, p. 114.
6) See, for example, A. N. Kolmogorov and S.V. Fomin [18] I, p. 117 and 120,
7) X is an eigenvalue of L if Lu A u has a non-trivial solution.
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Neighborhood Theorem 10.2. Let the equation (10.1) have

the solution u0 and let there exist a completely continuous linear

operator L, which does not have the eigenvalue 1, and a number

m < || (/-L)"1 || _1 such that

|| (V-L)v-(V-L)u || ^ m || v-u || for u,veS(u0,r), (r > 0).

Then an Q (u0, r0, a, ^-neighborhood of f I-V
exists for which the equation

Tu 6 TeQ, u e S (u0 r0), (10.2)

is uniquely solvable. The solution u (T) is continuous at
T T, i.e.

|| u (T) - u0 || -> 0 as || Tu0 || - 0

For the special case Tu Tu—w this theorem shows the
existence of a local inverse of T.

Inverse Function Theorem 10.2 a. If Tu0 u0 — Vu0 w0

and if the other assumptions of Theorem 10.1 are satisfied then
T I —V has a local inverse, i.e. there exist positive numbers r
and b such that

u Vu + w || w — w0 I < b || u —u0 || < r

has a unique solution u (w). Moreover u (w) is continuous
at w0.

These theorems mean, in other words, that the existence of a

local neighborhood of T — I —V and u0 in which the equation

(10.1) is uniquely solvable or the existence of a local
inverse T~1 can only fail if the corresponding linear equation
u Lu is not uniquely solvable.

The above theorems are local theorems insuring the existence
of a solution in the neighborhood of a given solution. We now
state a global inverse function theorem for the equation

u Vu + w (10.3)

with completely continuous V:
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Theorem 10.3 a) Let T — I— V with a completely
continuous operator F be defined for all ueB1.

b) For each u0 e B± let there exist a linear operator L L0
with bounded operator (/ — L)-1, defined in a neighborhood of u0,
and a number m mQ < \\ (I — L)"1 || _1 such that

|| (F—L) u —(V—L)v || ^ m || u — v || for u, v e S (u0 r), r > 0

c) Let the sets

U (g) {u:u Vu + w, weg),

for each straight line

g w0 + A wx — w0), 0 ^ X ^ 1, w0 w1eB1 9

be bounded:
|| U(g) || ^ C(g).

Then the equation (10.3) has a solution u= u (w) for all w eB±
and each point (u>, u (w)) has a (u, r, a, b)-neighborhood.

This theorem is related to Theorem 10.1 concerning the fact
that the condition c represents an a priori estimate. However,
it is easy to show that the conditions a and c alone are not
sufficient for the existence of a solution for each weBx.

a) Condition b is satisfied if V has a derivative F(u) for
all ueB1 and (/—exists as a bounded operator. This
holds true if F(m) does not have the eigenvalue 1 since V\u) is

completely continuous.

ß) Condition c is satisfied if there exists an a priori estimate
for the equation (10.3) of the form

|| u || ^ C || w ||

or if the condition

|| Tu ][ \\(I-V)u [J - cx) as J u || -> oo

holds. Therefore, this theorem can be regarded as a certain
" generalization " of Theorem 4.1 a for completely continuous F.
As a matter of fact, the proof is quite analogous.
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Proof of Theorem 10.3. a. Let u0 e B1 and Tu0—(I—V)u0 —

w0. Then from Theorem 3.1 with K I-L it follows that
an open neighborhood of w0, \\w — wQ || < a, exists such

that (10.3) is solvable for these w.

ß. Let w be an arbitrary point of B1 and let u0 w0 be as

above. Then the set A of all 2, for which

Tu + (1-1) w0 O^A^l,
is solvable, is non-void and open with respect to [0, 1] according
to a.

A. We show that A is also closed. Let Art e A, n 1, 2,

be a sequence which converges to A*. According to condition c

the solutions un of u Vu+wn wn Xn w + (1 — A„) w0 are

bounded. Because of the complete continuity of V there exists

a subsequence uni such that Vuni converges to some element s

of the Banach space Bx.
Let (V* A*w + (1-A*) Then the sequence uni

converges to u* s+w* in norm. The element u* is a solution
of the equation u — Vu+w* since

|| uni — Vun. — wn. I =0 for i 1, 2, 3,

and because of the continuity of the norm. Hence A* e A and,
therefore, A [0, 1].

11. Completely continuous operators, gloral existence
THEOREMS USING THE SCHAUDER FIXED POINT THEOREM.

The previous theorems, even the global ones, are derived,
roughly speaking, by applying neighborhood theorems and
exhausting a domain on the boundary of which the assumptions
fail to hold. Here the question suggets itself whether or not
corresponding conditions in a shell near the boundary suffice for
existence. This indeed is possible for equations

u Vu 5 (11.1)

L'Enseignement mathém., t. IX, fasc. 3. 3
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with a completely continuous operator F. The proof of this
statement uses Schauder's fixed point theorem.

Theorem 11.1. Let F be a completely continuous operator
mapping a domain D a B1 into B1 and having the following
property.

There exist a point u0e D and non-negative numbers B and C

such that
|| Vu —Uq II ^ C for u e S(u0 R) a D (11.2)

If R < C let the additional condition be satisfied:
There is a number I < 1 such that

|| Vu — Vv || ^ I || u-v || (11.3)

holds for all u, e in the shell

Ç J

R ^ || u — u0 || ^ ——— Ri and S1 S(u0 R±) ci D

(11.4)

Then the equation (11.1) has at least one solution in
|| u—u0 || ^ i?* where R* R in the case C ^ R and R* R1

for C > R.

Proof, a) If C ^ R then VS c= S and the fixed point
theorem by Schauder [see 2 d] yields the existence of at least

one solution u e S.

ß) Now let C > R. Then obviously R < C ^ R1. Hence
S c S1. We prove FSi c: S±: Let u e then either ueS
or ue — S. In the first case (11.2) implies VS c S1. In the
second case u lies in the shell (11.4). We set

R
V tu0+(l—t)u with t 1 — -TT -TT-

Il m-w0 II

It follows that || e-w0 }| R. Therefore, by (11.2) and (11.3)

we have

|| Fw —w0 I ^ || Vu-Vv I + || Vv —u0 I ^ I I u-v || +C (11.5)
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Furthermore

\\u-v 1 II t(u0-u) I \\u-u0 II — Ä

Hence by (11.4) and (11.5)

MM C - IR
|| Vu —u0 || ^ I || u —u0 || —IR + C S ——— R± >

i.e., again VueS1. The fixed point theorem completes the proof.
In Theorem 11.1 the estimate \\u — u0 || ^ R* cannot be

improved, and the number R1 must not be replaced by a smaller

one. This can be easily shown.
The application of Theorem 11.1 is easiest if the completely

continuons operator V is so constituted that (11.3) with I < 1

holds for all u, v outside a certain sphere S (u0, R).
Theorem 11.1 can be applied to operators of the form

Vu u-(I-K)~1(I-W)u (J-if)-1 (ff -K)u

First of all, equation (11.6) shows that along with W and K
the operator V is also completely continuous if (/ — if)-1 exists,
i.e., if K has not the eigenvalue 1. From this and Theorem 11.1

there follows easily

Theorem 11.2. The equation

u Wu

with a completely continuous operator W has at least one
solution if the conditions of Theorem 11.1 for the operator V
in (11.6) are satisfied with a completely continuous operator K
which has not the eigenvalue 1.

For this the following conditions a) or b) are sufficient:

a) Let || (/ — if)-1 || k. There exist non-negative numbers

c, m < Z-1, and R such that

I (W— K)u —(I — K)u0 || ^ c for || u —u0 |] ^ R

and either ck ^ R or, if ck > i?, then

|| {W-K)v-(W-K)u || ^ m \\v-u ||
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for all », v in the shell

R < \\u — un\\ < k(c — mR).
1 —km

b) Let \\{I — K) 1 || k. There exist numbers R and
m < A-1 such that

|| (W-K)v-(W-K)u || ^ m I u —v || if || u || > R and || v || > R

12. Non-linear equations containing a linear completely
CONTINUOUS SYMMETRIC OPERATOR.

As we have seen in some previous theorems, under certain
general conditions, the existence of a solution of an
approximating equation or the existence of a solution at all, can fail
only if there is no approximating linear operator with bounded
inverse or if there is not everywhere such an operator. In the
cases when the operators considered are differentiable this means
that the derived linear operator does not have a bounded inverse
or the derived linear equation fails to have a unique and bounded
solution.1) It is, therefore, important to have conditions for the
existence of a bounded inverse of a corresponding linear operator.

In the case of an operator I —A, where A is completely
continuous, this is equivalent2) to the fact that u Au has

only the solution u — 0, i.e. 1 is not an eigenvalue of A. Here

we deal only with such cases and assume our non-linear equation
to have the form

u LVu (12.1)

where L is a completely continuous operator and V is an (in
general non-linear) operator. This is, indeed, the most usual
form of non-linear equations with a completely continuous

operator.
Moreover, we now consider the equation (12.1) in a Hilbert

space, that is, the operator LV has its domain and range in a

1) This is, of course, typical for the " regular case " of non-linear equations.
2) See footnote 2 on page 47.
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Hilbert space H. Finally, throughout this section, let L be

a symmetric operator.
Under these general assumptions we will give conditions

that the derived equation

v LV;u)v, (12.2)

have only the trivial solution, u 9.

To this end we first note some well known statements1) on the
eigenvalues of a completely continuous symmetric operator:
Let A be such an operator defined on a Hilbert space H and
with range in LT, A being different from the zero-operator.

Then there exists a finite or infinite orthonormal set2) of

eigenvectors et corresponding to real eigenvalues Xt such that
every ueH can be written uniquely in the form

u — YuaieiJrU' where Au' — 6. (12.3)
i

Let us arrange the sequence of eigenvalues as follows :

^ (12.4)

where the Xn (2_n), n ^ 1, are positive (negative). One of the
two sequences may be empty.

Together with Au Xu vïq consider the equation

u kAu u ^ 9 (12.5)

Then, we have the corresponding sequence 3)

^ K-2 % K-i < 0 < K± g K2 ^ (12.6)

of " characteristic values " — instead of (12.4).

1) See, for example, F. Riesz and B. Sz.-Nagy [19], chapter VI, and A. N. Kolmo-
gorov and S.V. Fomin [18], II, section 27.

2) Aei ^iei, (ei, efc) ^ik.
3) The terminology differs in the literature. We define the " eigenvalues " accordingto the previous sections by Au Au, u * 0.
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By means of the maximum-minimum principle1) we have the
independent representations

X± sup {(Au ü) : || u || 1 } and

(12.7)
Xn inf sup {(Au u) : || u || 1 (u vt) 0, i 1, n — 1 }

u

if Xx and Xn, respectively, exist, that is, if the expressions on
the right hand side are positive. ..For and 1_„ we have
analogous representations, but the supremum and the infinum
must be interchanged.

We now introduce the set P of operators, p e P, which have
the following properties:

a) peP, ueH implies pu exists and pueH.
b) All peP are linear, continuous, and symmetric,
c) (pu, u) is real for all ueH.
If a is a real number, we write p < a, p g p > oc, p ^ oc

when the corresponding product (pu, u) is < ^ > g oc (u, u),
respectively, for all ueH, u ^ 9.

d) If p eP, p ^ 0, then y/peP, (%/p)2 p, and y/p <0(^0)
when p > 0(^0).

Then, obviously, all real numbers a belong to P. It is

easy to show that with A and p ^ 0 also the operator
C y/p A y/p is linear, completely continuous, and symmetric.

Furthermore, if p > 0, then yjpu — 9 implies u 0 and the

eigenvalues of Ap and those of y/p A y/p coincide. In
fact, Apcp Xcp and (p ^ 9 imply y/p A y/pW — XW with
W yjpcp ¥" 9. The operator y/p A yjp is self-adjoint if A is

self-adjoint and p ^ 0, p e P. Therefore, the eigenvalues of Ap
are real. On the other hand, if p > 0 and y/p A y/pW XW

then yjp~1 exists because yjpu — 6 implies u 9 and with
<p Xp'1 y we have y/p Apcp X y/pcp which implies
Apcp X(p. We have the development

u Yj ci^/iJrU' where y/pAyjpu' — 9,

i) Courant-Hilbert [20], chapter III, § 3.
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and { ¥i } is a set of orthonormal eigenvectors of the self-

adjoint operator C y/p A -Jp.
After these considerations we can prove the following

theorem.1)

Theorem 12.1. Let A be a linear completely continuous

symmetric operator on a Hilbert space H into 77, let k{ be its
characteristic values (according to (12.5), (12.6)), and let peP.

Then the equation

u Apu (12.8)

has only the solution u 0, i.e., n 1 is not an eigenvalue
of Ap, if one of the following conditions holds:

a) Kn and Kn+1 (/c_M and 7c_(„+1)), n ^ 1 exist and

Kn < p < Kn+1 (K_n > p > k_(n +1})

b) Kn(K_n) exists as the largest positive (smallest negative)
characteristic value and p > Kn(p < K_n)

c) There is no positive (negative) characteristic value and

p ^ 0 (p s 0)

d) k± (fc-i) exists and 0 A p < Kq (/c_i < p ^ 0)

e) ||p II < min I K; I

i

Proof. %) Let the n-th positive characteristic value Kn of A
exist and let p > Kn> 0. We show that then the n-th positive
eigenvalue jxn of C -Jp A -Jp is greater than 1.

Let { e{} and { } be the sequences of orthogonal and
normed eigenvectors of the operators A and C, respectively,
corresponding to the eigenvalues { } and { fjLt } respectively.

i) In the special case of the boundary value problem (g(x)y'Y4- p(x)ij 0, y(x2) 0,
V(xi) 0, most of the results follow easily from the Sturm comparison theorem.
See, for example, E.A Coddington and N. Levinson [21], chapter 8. In some.cases
of special equations in which stronger conditions such as ku < <xn ^ p ^ an + 1 < Kn + 1

instead of a) hold, the results can be obtained from other well known comparison theorems

for eigenvalues, appearing, for instance, in L. Collal.z [10], §9, and F. Riesz and
B. Sz.-Nagy [19], section 95.



— 168 —

The system
n

u Il ^ Il ^
5 (w Ç>j) 0, Î I, 71 1,

y 1

with q>t s/p'1 Wt, that is

n n

I I 1
5 (^v 5 tyi) 0 7 1, 71 1,

y 1 y 1

is always solvable. For such a w, by (12.4), we have

n

(Au,u) X Av I cv I2 ^
y 1

Hence
n

K ^ sup {(4u w) : uXi cv ev, I m 1 1, (u <p;) 0,
m y 1

} (12.9)

ro4vV,
^sup)—y 7=—:(v> ^i) 0, 1 1, ...,n-l

^9 (VPV. V^)
since (y/pv, cpO(e, ÎP;), i 1, and the first supre-
mum on the right hand side can only become larger if we drop
the condition

n

" X cv ev •

y 1

1
The assumption p > Kn — >0 yields

K

(Ay/pv,y/pv)_(Cv ,v) (Cv ,v)/191m
(sfpVy/pV) O ,V)

Since the bounded set { cv } satisfying (12.9) is compact the

supremum in (12.9) is actually assumed. Therefore, from (12.9)
and (12.10) we get

A„ < A„sup{(Cvv):||v||1, (v 0, 1, 1 }
y

^n P'ti Of Mn ^ 1
•
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a2) If Kn+1 exists and 0 < p < Kn+1 we obtain /in+1 < 1 by a

similar argument where the roles of A and C as well as the roles

of X and fi are interchanged.
Thus the equation (12.8) does not have the eigenvalue 1,

that is, the theorem holds true for the case a) with positive

p e P.

b) If Kn+1 does not exist but rcn does, i.e., the right hand side

of (12.7) is positive for n but not positive for 1, then,

replacing u by yfpu with Kn < p, we obtain that

inf sup {(NfpA^Jpu, u) : || u || 1 (u vt) 0 i 1,... n }
v î u

also cannot be positive, i.e., fin+1> 0 does not exist either.
From ax) it follows that in this case pn > 1 is the smallest

positive eigenvalue, i.e. the theorem holds for the case b) with
positive Kn and p.

c) If there is no positive eigenvalue then (Au, u) S 0 for

all u, which obviously implies (yjp A -Jpu, u) — (A sjpu,
^Jpu) ^ 0 for p ^0. Thus 1 is not an eigenvalue.

d) In this case the proof is similar to ax) and a2) if p ^ 0:
the largest eigenvalue /q becomes less than one here.

The cases of negative eigenvalues and negative p's can be

easily reduced to the positive cases treated above. Let X~

and ky be the eigenvalues and characteristic values, respectively,
of the operator —A. So we have X_n — X~ and the
same with k~. From K_(n+1) < p < K_n it follows that
Kn+i > —p > k~. Because Ap — A (— p) we can, therefore
apply the above results to —A and -p instead of A and p,
respectively.

e) We have1)

min(| K; I) || I"1
\| Ail/ max (I Ai |)

Therefore, it follows under the condition e) that
Il AP11^ \\AII' Il PII< 1

«

Hence, 1 is not an eigenvalue.

i) See, for example, N. I. Acliieser and I. M. G-lasmann [14], p. 47.
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This completes the proof.

Theorem 12.1 can be applied to all previous theorems which
use the fact that the derived linear equation has only the zero-
solution to establish the solvability of the given non-linear
equation, provided that this equation can be written in the form

u LVu (12.11)

with a linear, completely continuous, and symmetric operator L.
In these cases we are able to give explicit conditions on the
derivative V{u) of F as essential conditions for the existence of

a solution of (12.11). This derivative plays the part of the
operator peP in Theorem 12.1. We remember that, in this
sense, V(u) > k is equivalent to (F0O e, e) > k (e, e) for all
ce77, e A 0, and the same with <, and 5L We now give
a few examples, first a neighborhood theorem:

Theorem 12.2. Let the product operator LV with a linear
completely continuous symmetric operator L and a non-linear
continuously differentiable operator F be defined on a Hilbert
space H and have its range in H. Let F(u) ueH, satisfy one
of the conditions a) through e) of Theorem 12.1 with A L
and V(u) p e P.

Then for each point (u0 w0 u0 — LVu0) there exists an
Q (u0, r, a, b)-neighborhood in which the equation

u Tw + w, (w+I — TeQ),

is uniquely and continuously solvable. In particular, the
equation

u LVu + w, (12.12)

has a unique and continuous solution u (w) for w and u in certain
spheres about w0, u0, respectively, i.e., I — LV has a local
inverse there.

The proof follows from Theorem 7.1 and supplements and
the fact that a completely continuous operator has only a point
spectrum. Therefore, the operator (I — LF'(u))_1 is bounded under
the assumptions of Theorem 12.2.
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The conditions of this theorem are not sufficient for the

existence of a solution of (12.12) for each w eH or, in particular,
for w 6. But as in previous sections, simple additional

assumptions assure the existence of a solution of (12.12) for an

arbitrary given w eH.

Theorem 12.3. Let L and V satisfy the conditions of

Theorem 12.2 and let one of the following assumptions be

fulfilled :

a) For some u0 e H and w0 u0 — LVu0 let the set

U {u : u LVu + w0+X(w-w0), 0 ^ 2 < 1 } (12.13)

be bounded.

b) For some u0 e H and w0 — u0 — LVu0 let the set

S {s:s ||fc|| \\(I-LV[u))k\\-\ keH, ueU}, (12.14)

where U is defined in (12.13), be bounded.
Then the equation (12.12) has a solution.
For the proof we set

Txu (I-LV)u + w0+À(w-w0), 0 ^ 2 ^ 1

and denote by A the set of all 2 in [0, 1] for which Txu 9 is

solvable. A is non-empty because 2 0 belongs to A.
Theorem 12.2 proves A is open with respect to [0, 1]. A is also

closed. This can be shown in the case a) in the same way as

in the proof of Theorem 10.3 under 2) where the operator V
is to be replaced by LV, and in the case b) the proof
follows from Theorem 9.1 with Tu (I—LV) u-\-w and

T0u {I — LV) u+Wq
As already remarked in section 9 before corollary 9.2 the

boundedness of S, (12.14), is equivalent to the existence of
the operators (/—LF(M))_1 as uniformly bounded operators
for ueU. The conditions of Theorem 12.1 for p V\u^ are
not strong enough to insure this uniform boundedness with the
one exception of condition c.
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Therefore, we are now going to assume the conditions a)
through e) in the stronger form that p lies in a closed interval
for which these conditions hold:

ä) Kn and Kn+1 (/c_n and K_(n+1)) n ^ 1, exist and

Kn < an SpS CCn+1 < Kn + 1{K_n > a_n ^p^ a_(„ + 1) >K_(b + 1))

Kn (k _ M) exists as the largest positive (smallest negative)
characteristic value and p ^ ocn > Kn(p g a_„ < K_n)

c) There is no positive (negative) characteristic value and

V ^ 0 (p S 0).

d) kx (k_x) exists and 0 ^ p ^ oq < kx (zc_1 < a_1 ^ p ^ 0).

^ ||p II ^ a < min I Kt I

i

Here Kt are the characteristic values of A according to (12.6)
and a, oq are real constants.

Then, instead of Theorem 12.1, we have

Theorem 12.4. Let A be a linear completely continuous
symmetric operator on a Hilbert space H into i/, let Kt be its
characteristic values (according to (12.5), (12.6)), and let peP.
Finally, let one of the above conditions a) through ë) be satisfied.

Then the inequality
\ Pi-1 \ ^ m > 0, (12.14)

holds for the eigenvalues of Ap where m is a constant which
does not depend on p but only on the interval [oq, oq] in which p
is assumed to lie according to the conditions a) ë).

The proof is quite similar to the proof1) of Theorem 12.1 and

may be left to the reader.
From Theorem 12.4 it follows that, under its assumptions,

the norm of I — Ap has a positive lower bound. To prove this

fact we assume first that p > 0, p eP. Then also y]p > 0,

by definition of P, that is, yjpu 6 implies u — B, or ->/p_1

exists.2) Since yjp'1 has a bounded inverse 3), namely Jp1

|| y/p~x u || ^ k || u I k > 0 for all u e H (12.15)

1) For instance, in the first case a) we get the inequality Pn + i â °n +1 < 1 < °n ^ Vn
where m, <rn + i, <fn are the eigenvalues of the operators Ap, A<*n + i, Aa„, respectively.

2) Vp ~1 is not necessarily in P.
3)E. Hille and R. S. Phillips [4], p. 42, Theorem 2.11.6.
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Let { IF,-} be the set of orthonormal eigenvectors of the

operator C \/pA J~pcorresponding to the eigenvalues of C

which are also the eigenvalues of the operator as already-

mentioned above. Let ubean arbitrary element in ||m|| 1,

and Jpu £ c; where the sum includes the term W0 in
i

which CV0 6 and || W0 || 1.

Then (12.14) and (12.15) yield

I (I —Ap) uI2 I Jp-^I-C)JI2^ k2 1 C) I2

k2£I ct|2I 1 —pi |2 ^ k2 min (m2, 1) 0
i

Hence
Il I — Ap I ^ m > 0

If p g 0, i.e. (pu, u) ^ 0 for u # 6, then each ueHis either

in the null space, N, of yfp, i.e. yjpu 0, or it is not. We
then consider classes of elements by defining ux, u2 to belong to
the same class üc, briefly u± u2, if and only if % — u2e N.

Then it follows immediately from % u2 that y/pux yfpu2,
and vice-versa. Since also (I — Ap) N — N we may regard the

operator yfp as an operator on the Hilbert space spanned by the
congruence classes modulo N, represented by one arbitrary
element, ü, of each class. In other words we identify the
elements of each class. Thus we have y/pü — 0 implies ueN,
i.e. that Vp~ 1 exists, and we can repeat our above argument in
the case üc =£ N, i.e. ü £ N.

If ueN we simply have

|| (I — Ap) u || || u ||

The cases p ^ 0 can be treated, as above, by considering the

operator A(—p) —A (—p).
Hence, under the assumptions of Theorem 12.4 we have

|| I — Ap || ^ c > 0 (12.16)
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These considerations together with Theorem 12.3, setting
L A and pv p (u) v V\u) c, yield the

Theorem 12.5. Let the product operator LV with a linear
completely continuous symmetric operator L and a continuously
difïerentiable operator V be defined on a Hilbert space H and
have its range in H.

Let Kt he the characteristic values of L A according to
(12.5) and (12.6), and let F'(u) v pu, peP, satisfy one of the
conditions ä) through e) (as defined for Theorem 12.4) for
each ueH.

Then the equation

u LVu + w

has a solution for each weH.
This theorem generalizes, for example, some existence

theorems for non-linear integral equations of the Hammerstein
type, that is, equations of the form x)

u(x) + jK(x,y)f(y,u(y))dyg (x), (12.17)
J?

where x, y are ^-dimensional vectors and £ is a region in Rn\

viz., no defmiteness of the kernel K is required and the
derivative fu (x, u) need not be bounded by the least characteristic
value Äq.

Example. The problem —y" f (x, y), y (a) A, y (b) B,
(b > a), is solvable if, for instance, the function / is continuous
and continuously difïerentiable with respect to y. in the strip
a ^ x ^ b, I y \ < oo, and if fy (x, y) satisfies there one of the
conditions: 2)

7l2
I fy (x, y) I g a < — -2 ; or f < 0 ;

(b-d)1
or

n2 7i2 (n + l)2n2.
w < a„ gfy(x,y) ^ otn+1 < — -2-.(b-a)2 (b-a)2

1) A. Hammerstein [22], see also F. G-. Tricomi [23], section 4.6.
2) The known theorems usually cover only the first two cases of this special example.

See F. Lettenmeyer [24] and H. Epheser [25]. These papers are more general in
another direction.
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The proof follows immediately from Theorem 12.5 by writing
the problem in the form (12.17). In this case the operator L
happens to be definite. But this is not required or used in
the proof.
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