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1. INTRODUCTION.

This paper presents some existence theorems for the solutions
of certain non-linear equations, both local and global theorems.
The generality, in particular, of the local theorems is determined
largely by the spaces which contain the domain and the range
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of the operator in the equation and the elements the operator
depends on.

For example, in the case of the usual implicit function
theorem for the solution u (z) of an equation

T()u = T(x, u) = 0 (1.1)

we may successively increase the generality by assuming
u, T (z) u, and x to be real or complex numbers, vectors, ele-
ments of Banach spaces, etc. A very general implicit function
theorem for the equation (1.1) in Banach spaces was given by

T. H. HitpeBranDpT and L. M. Graves [1] in 1927.
Here, we are first dealing with equation

Tu =0 (1.2
)

where u and Tu are supposed to lie in Banach spaces®. But
we do not assume that the operator T depends on any particular
space and we let the solution u depend only on the equation
itself: w = u (7). The resulting implicit function theorem is a
more general form of the Hildebrandt-Graves theorem and
covers theorems known as implicit function, neighborhood, or
perturbation theorems, or theorems for the continuous depen-
dence of the solutions upon a parameter. There are many
conclusions. It will be shown, for instance, that continuity
of the solution u (T) at a “ point ” T = T* can be established
without assuming continuity of 7' itself, and under further
conditions other local properties of u (7'), such as differentiability
in the sense of Fréchet, can be proved and the derivatives may
be calculated by using only the norms in the Banach spaces
of the domain and range of 7. "

Nevertheless, the main purpose of this paper is to state global
existence theorems. Generally, the conditions of the implicit
function theorems only suffice for the local existence of a solution
in the neighborhood of a given solution of a neighbor equation.
But under suitable further conditions the local theorems can be

1 It would often suffice that the range of T lies in a normed space. But this is
not essential here.
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applied to global theorems. This is done in different ways and
some global theorems are stated.

All theorems in this paper, the local as well as the global
theorems, belong to the so-called regular case using certain
“linear ” methods which insure the existence of a unique
solution if the equation or an auxiliar equation in the proof is
only disturbed a little. There are no examinations of branch
points of solutions, but some global theorems are stated without
using complete continuity of the operator which most known
theorems do use. In the last three sections complete continuity
is needed only for weakening other assumptions and for a few
theorems of another kind. |

In Section 2 we explain some notations used in this paper,
give some definitions of terms which may differ in the literature,
and state some well known theorems to be applied in the other
sections.

The implicit function theorem mentioned above is given
in Section 3. It can be applied immediately to local inverse
function theorems. But its assumptions are still not sufficient -
for the existence of a global inverse of 7. Nor is the equation

Tu = W, TE(B]_ _)Bz), (1.3)

solvable for each weB, even if the conditions of the inverse
function theorem are satisfied at each point u in B,. But an
additional condition insures the existence. This is the content
of Theorems 4.1 and 4.1 a of Section 4 which are global inverse
function theorems. I presume that the additional condition
(the condition ) in Theorem 4.1) still can be weakened but an
easy example, tan u = w, u, w real numbers, discussed in
Section 5, shows that the assumptions are general enough to
cover cases where 7' is not defined on the whole space B, and
Tuw = 0 does not have a unique solutivn.

For continuous operators 7 which satisfy the conditions of
Theorem 4.1 we can go into more detail and give an analysis
for such operators. This is done in Section 6. The essential
result, as it 1s stated in Theorem 6.1, is that these operators can
be split into a number of homeomorphisms of open domains
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onto B,. Unlike the linear case, this number can be greater
than one, even infinite.

The assumptions of the previous theorems can be partially
weakened if we assume that the operator 7 in (1.2) has a Fréchet-
derivative. This is done for the implicit function theorems
in Section 7. Under special further assumptions there exist
Fréchet-derivatives of certain orders as it is indicated in
Section 8. The derivatives of the first and second order are
actually calculated. The expressions of the derivatives of higher
order of u (7) are more complicated in this generality but the
considerations of this section show their existence under simple
differentiability conditions of 7' and how to calculate them.

Section 9 gives a global existence theorem using the diffe-
rentiability of the operator. No complete continuity is required.
The essential condition is a boundedness condition on the
derivative of a corresponding operator. In particular, in the
special case of the application to inverse function theorems only
the Fréchet-derived equation has to be investigated. The
theorem also states a simple necessary condition that differen-
tiable operators do not assume certain exceptional values. For
example, the values +1 are the only exceptional values of tan z.

Further weakening of the assumptions can be attained if we
assume that the equation can be written in the form

u = Vu

with a completely continuous operator V. As mentioned before,
- this case is often treated. Nevertheless, the theorems stated
in Section 10 and 11 may be useful. In particular, if the
operator V is both completely continuous and differentiable,
the hypothesis of the theorem are often satisfied. The Theo-
rems 10.1 and 10.2 are local theorems the proofs of which follow
immediately from previous theorems. Theorem 10.3 is a global
theorem which has a proof similar to the proof of Theorem 4.1 a.

The Theorems 11.1 and 11.2 are of a different kind. They
use the Schauder fixed point theorem. The conditions for the
operator V are both a boundedness condition in a sphere
|u—uo || < R and a contraction mapping condition in a certain
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shell R < || u—u, | < R;, the thickness of which is the smallest
possnble

The last section has a quite different character from the
previous ones. It contains as an essential result a theorem for
the unique solvability of a certain linear equation involving a
completely continuous symmetric linear operator. These
investigations are of a strictly linear kind, using the theory
of eigenvalues of such operators, but applied to special non-linear
equations as, for example, non-linear differentiable integral
equations of Hammerstein type. They enable us to give
explicit conditions on the derivative in order to insure the
existence of a solution. This generalizes known existence
theorems for such equations.

The literature in the field which is treated here is so extensive
that it is impossible to mention all related works.

2. NOTATIONS AND PRELIMINARIES.

a) Throughout this paper the letters B;, i = 1, 2, ..., denote
Banach spaces with norms ||u |;, u€B;, and zero-elements 6.
For the sake of simplicity we omit the indices on the norms
and zero-elements if there is no danger of confusion.

The empty set is denoted by g.

S (u*, r), means an open, and S (u*, r) a closed spherical
neighborhood with center u* and radius r, i.e., the sets

{u: |u—u*| <r}, respectively {u:|u—u*| <r}.

b) We are dealing with (in general non-linear) operators
T, V, ... defined on (open) domains D, D,, ... of Banach
spaces and with ranges R, Ry, ... in Banach spaces. We
write Te(D — B) if TD = R =« B. We assume throughout this
paper that the arguments of the operators always lie in the
domains of definition if no confusion can occur. The operator I
denotes the identity mapping.

| 7h | R

S T AR T

<Cas h—->0, heD,
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we write equivalently

‘Th = o(” Ghl

), or Th=0(Ghl).

T is continuous at ueD if Tu+h)—Tu = o(1).

c) By a Fréchet-differential (F—differential) of an operator T
at a point ueD B we understand an expression T’(u) k with a

(not necessarily bounded 1) linear operator T, defined on B
for which

T(u4+K) = Tu—T ok = R(u, &) = o(| k).

T o is called the Fréchet-derivative (F-derivative).
Let T have a bounded F-derivative for all u of the straight

line u = uy+tk, 0 <t <1, then: the mean value theorem 2)
holds:

| TG+l =Tul = sup | Touw |- [ 5]

0sts1

If T is continuous and differentiable at u, then T, is a
continuous operator. This follows from

| Tk | < | Tw+k)—Tu—Ty k| +]| Tu+k)—Tu |
= o(1) for k—20.

If T\, k has a F-differential with respect to u, i.e.

T’(u-i-kg) ky — T’(u) ky — T'(’u) kik, = o (” k, !) )

the operator 7, is called the second F-derivative of T. T, is
a bilinear operator operating on k&, and £,.

d) The operator 7' is called completely continuous 3) or
compact if it maps each bounded set of its domain D < B, in a
conditionally compact subset § of its range R < B,, that is,
in a set § < R each infinite sequence of which contains a sub-
sequence which converges to some element of B,.

1) For applicationsit is sometimes more convenient to admit unbounded operators
here.

2) See, for example, L. V. Kantorovich [2], p. 162.

3) See ,for example, E. Hille and R. S. Phillips [4], p. 48, or A. E. Taylor [5],p.274.

R AT SRR
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For compact operators the Schauder fixed point theorem ')
holds:

Let the compact operator 7 map the convex, closed
set M <D into M:TM < M. Then there exists a fixed
point u* of 7" in M, that is, a point u* = Tu*.

e) In the following we often consider equations of the form

Tu = (T, +AT)u = 0, T, Ty, ATe(D > B,), (2.1

with an operator 7' which lies in a certain neighborhood of T
with respect to a sphere § (u,, r) of its domain. For the

- purpose of formulating some neighborhood theorems for those

operators we introduce the notation of a (u,, r, @, b)-neigh-
borhood, also called an Q-neighborhood, of an operator 7'y with
respect to § (u,, r): |

Definitien. T is said to be lying in an Q = (u,, 1, @, b)-
neighborhood of the operator 7', if and only if

“ (T—T5) ug ” = ” ATu, H <a, (2.2a)
| ATu —ATv | < b||u—v| for all u,veS (uy,7), (2.2b)

where AT = T—T, and S (4, 1) = Dy 0 Dy,
If T has these properties we briefly write TeQ.

f) For some proofs we apply the contraction mapping
theorem in the following well known form:

Theorem of contraction mappings ). Let V be a contracting
operator which maps a closed region § < B into itself, i.e.

|Vu—ww| <l|u—v|,l<1, for u,veS, (2.3)
and

VScS. (2.4)

Then in §, V has exactly one fixed point, u = Vu.

1) J. Schauder [6], for a generalization see A. Tychonoff [7].

2) See, for example, J. Weissinger [8] who gave a more general form of this theorem.
Without the estimate (2.6), the theorem was used by T.H. Hildebrandt and L. M.
Graves (1], p. 133, for the proof of implicit function theorems. Nowadays it is basic

for many error estimates in numerical analysis, see L. Collatz [9]1, p. 36ff. For genera-

lizations see, for example, L. Kantorovich {21, [3], J. Schroder [11], H. Ehrmann [12].
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Condition (2.4) is satisfied if (2.3) holds in the sphere
S: l[u—z{0 | =@=D71]| Vug—u, | . (2.5)
Moreover, u is the limit of the sequence { u, } where
Uyp1 = Vu,, n=20,1,2,...,

and there results the estimate

“ U—Uytq “ = l(l—l)_l “ Upt1 —Up ” = ln+1(1__l)—1
|ug—uo | . (2.6

3. THE IMPLICIT FUNCTION THEOREM.

TueorEM 3.1. Let T'* be an operator with domain D < B,
and range in B,, let §* = § (u*, r*) <« D and

T*u* = 0. (3.1)

We assume furthermore that there exists a linear operator K
on $* into B, with the following properties:

«) K has a bounded inverse, K1, defined on B, and
B) There exists a constant m < || K™!| 7! such that

[ T*v—T*u—K(v—u)“§m||v—u|| for u, veS*. (3.2)

Then there exists an Q = (u*, r, a, b)-neighborhood of T*,
such that for all 7eQ the equation ‘

Tu = 0, | (3.1a)

has a unique solution & = u (T) in § (u*, r). This solution is
continuous in 7 at 7 = T* in the sense

| u (T) —u* [0 as |Tu*| 0. (3.3)

In this theorem the operators 7 and K need not be con-
tinuous.
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Proof. Let T lie in a (u*, r, a, b)-neighborhood of 7* with
r < r*. Then by (3.2), with 47 = T —T%*, we have

| To—Tu—K@-u)|| £ |4Tv—4Tu ||
+|T*o-T*u—K@w-w)| £ +m)-|v-u| (3.4

for u,veS@u*, r) « S*,
and the equation

u=Vu=KY K-Tu, ueSu*,r) =S, (3.5)

1s equivalent to (3.1 a), ues.
For every b = 0 with [ = (b+m) || K71 || < 1, (3.4) yields

| Vu-Vv| = | K ' [K@@—v)—Tu+Tv]| £1|u—v I,
I <1, for u, veS(u*, r).
If
| Vu*—u*|| = | K™* Tu*| <(1-Dr, (3.6

then the assumptions of the contraction mapping theorem
[Section 2 f] are satisfied. Thus, under these conditions, there
exists a unique solution u = u (7) in § satisfying the condition

Ju—u | £ A=D" | K Tur | S A=)~ | K7 || Tur].
(3.7)
This implies the continuity (3.3).
The inequality (3.6) is satisfied if TeQ with

a=[|K*'|'-(b+m)]r.

This completes the proof.

This proof also gives quantitative conditions for r, @, b which
are sufficient for the existence of a unique and continuous
solution u of (3.1 a) in S (u*, r).

Supplement. The assertion of Theorem 3.1 is true for each
Q-neighborhood of 7* with 0 < r < r* and a, b satisfying

¢ =[| K| =b+m]r>0. (3.9)
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Then, for the solution u = u (7) in §, the estimate (3.7)
holds.

A unique solution of (3.1 a) in S (u*, r) also exists for
such r and b if (3.6) holds, but in (3.8) the sign “ > ” cannot be
replaced by “ = ”, nor can the constant a in (3.8) be replaced
by any larger one.

The last statement can be proved by simple examples in the

one-dimensional case and with an operator T which 1s linear
in S (u*, r).

4. INVERSE FUNCTION THEOREMS.

Under the conditions of the implicit function Theorem 3.1,
the operator 7 has a local inverse defined in a neighborhood of a
point w, for which

Tu = w. (4.1)

has a solution u,. This inverse has its range in a neighborhood
of u,. For the proof set T*u = Tu—w, in Theorem 3.1.
However, the conditions of this theorem are still not sufficient
for the existence of a solution u of equation (4.1) for all w in B,
even if 7T is defined on the whole Banaech space B; and the
conditions are satisfied at each point u of B;.1)

However, this actually is not necessary for the existence of

at least one solution u of (4.1) for all weB, as is indicated by the
following theorem.

THEOREM 4.1. Let the operator 7, mapping a non-empty
domain D < B into B,, satisfy the following conditions:
For each ueD there exist a sphere § (u, r) < D, a linear

operator K, and a constant m such that the following conditions
hold:

«) K has a bounded inverse K™t on 7§ (u, r)

||TV—T(7 ——‘K(a——?f )| £ m|e—v || for ¢, veS (u, r)

(| K7t || "t=m)r = ¢ > 0 where the constant ¢ is indepen-
dent of ueD.

1) Example: Tu = arctan u = w, with B; = Bs = {real numbers }, is not solvable
for all we B, although the conditions of Theorem 3.1 are satisfied at each point
(u, w = arctan u) for T*u = Tu-w.
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Then the equation (4.1) has at least one solution for every w
in B, and each w,eB, is the center of a sphere ||w—w, || < ¢
for which u = u (w) is continuous and unique in a corresponding
neighborhood S (u,, r,) with Tu, = w, and ry = r (u,).

Remark. In this theorem it is not required that 7T be
defined for all ueB; nor that 7" be continuous, and it cannot be
asserted that 7 has only one solution for each weB,. The
example in the footnote (previous page) shows that the con-
dition y) cannot be improved by deleting = ¢ with constant ¢
independent of u. But y) can be replaced by other conditions.

TaEOREM 4.1 @. In Theorem 4.1 the condition 7y) can be
replaced by

7’) There exists for each R > 0 a constant ¢ = ¢ (R) > 0 such
that

(| K| *=myrzc for |u| <R, and  (4.2)
| Tu| > oo as [ul| > oo and ueD. (4.3)

Proof of Theorem 4.1. a) Let uy,eD and Tu, = w, and

let Ky, my, ry be the corresponding quantities satisfying «),
B) and y) with S, = § (4, , ro) = D.
Then by Theorem 3.1 and supplement with 7*u = Tu—w,,
u* = Uy, r =r* =ryand b = 0, it follows that each equation
Tu = Tu—w = 0 has a unique solution u (w) in S, which
depends continuously on w provided

| Ko Tuo | < (X =mq | Ko* |)ro = | Ko* | (] Ko |7 —mo)ro.
Because of '

| Ko Tuo | < | Ko ||+ | wo—w ],

and y) this inequality holds for |[w—w, || < ¢, i.e. (4.1) has a
solution u (w) for these w. The solution u (w) is unique and
continuous in S, .

b) Let w, be an arbitrary point in B,. Then the non-
empty set A of all real A with 0 < 4 < 1 for which the equation

Tu—wy+A(wg—w,) =0,
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1s solvable is open with respect to the interval [0, 1]. This
follows from a). It is also closed, for if 1 is the supremum
of A then there exists a point A*e A with [1* —A | |[w,—w, || < c.
Thus it follows from a), if w, is replaced by wy,— A* (wy,—wy),

that IEA. Hence A =0, 1] and (4.1) has a solution for
all weB, .

Proof of Theorem 4.1 a. Let w;eB, and uy,eD with Tu, = w,

be given. Then the points w = wy+ A4 (w;—w,), 0 < 4 £ 1,
are bounded:

[w] = max (] wo

wy ) = 4.

b

Because of y’) there exists a number R with ||Tu || > A for

all u in the set { ueD: ||u || = R}.Y)

Then the same conclusion as in the proof of Theorem 4.1
with ¢ = ¢ (R) applied to ||u || < R shows that Tu = w; is
solvable by an element u, with ||, || < R for which the assump-
tions of Theorem 4.1 with ¢ = ¢ (R) hold. This implies the

existence of a sphere ||w—w, || < ¢ with the asserted properties.

5. AN EXAMPLE.

The simple example Tu = tan u, given only for illustration
purposes, shows that Theorem 4.1 is general enough to cover
cases in which either the domain D is not the whole space B; or
Tu = w does not have a unique solution, although this equation
is solvable for all weB,.

Let B, = B, = B be the Banach space of real numbers.
Then by Theorem 4.1 the equation

Tu

I

tanu = w, u, weB,

is solvable for all weB.?)
Proof. We choose

", T T
Ky = for ue<—~,—).

cos?u

1) This set may be empty.
2) This is not true for complex numbers as tan u = i is not solvable.

|
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Then by the mean value theorem and because

d 1 2 sin u

du cos’u  cos*u

2

is increasing for increasing

it follows that

1 1 T T
m(u) = — - — for 0Zfu<- and u+r<-.
cos“(u+r) cos“u 2 2

In the following we restrict ourselves to these u.
From the above we get

1 4r

cos?(u+r) cos®(u+r)

(K =myr > (

T
r, 0<r<-—-—-—u.
) :

Now choosing r as the smallest positive solution of

r =r(u) = % cos (u+r), which implies u+r < g, we get

1 1
> >—.")
16 cos(u+r) 16

(I &=t =m)r

T :
The same is true for — 5 < u < 0 as can be proved in the

same way. Thus the conditions of Theorem 4.1 are valid. In

: : 1
particular v) is true for c TS

6. INVERSE FUNCTION THEOREMS (continued).

As was indicated by the example tan u = w in the last
chapter, the assumptions of the Theorems 4.1 and 4.1 a are not
sufficient to insure that the operator 7' will have an inverse

1) Here we use the fact that u is real.
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defined on the whole space B, , i.e. that the equation Tu = w
has exactly one solution for each w in B,. We will now obtain
conditions under which the existence of a local inverse implies
the existence of a global inverse.

Tueorem 6.1. Let T satisfy the assumptions of Theorem 4.1
and let 7 be a continuous operator in its domain of definition, D.

Then there exists a finite or infinite number A of open con-
nected domains D, = D with the properties:

UD, = D, for each acA the restriction 7, of 7 on D, is a

aec A4
homeomorphism?!) of D, onto B,, and the sets D, are mutually

disjoint.

Furthermore, if T is defined on the whole Banach space B,
then 7' is itself a homeomorphism of B, onto B,.

This theorem implies that under the assumptions there is for
each weB, the same finite or infinite number A of solutions
of Tu = w, and each solution lies in a domain D, for which the
existence of a local inverse implies that of a global one.

Proof. a) We first prove the following statement: Let w,
and w, be two points of B, with |[w, —w, || < ¢ (¢ from y) in
Theorem 4.1) and let Tu, = w,. The existence of at least one
such u, follows from Theorem 4.1. Furthermore, it is shown
that there exists a sphere § (u;, r;) = §; in which the equa-
tion Tu = w has a unique solution u (w) for all w with
|w—w; || < c. Therefore there exists a unique solution u,
in §; of Tu = w,.

Conversely, let § (u,, ry) = S, the corresponding neighbor-
hood of u, in which a unique solution u of Tu = w for
|Ww—w, || < ¢ exists. Then w = weS (wy, ¢) NS (wy,¢),
ueS (uy, ry), ueS (uy, ry), Tu = w, Tu = w implies u = u.
If ueS, the assertion is true because of the uniqueness of
u = u(w)in S, for ||w—w, | <c Now, let u¢S,. Then we
connect w, with w by the straight line g = w,+ 1 (w —w,),
0 < A £1, and consider the images C; and C, of this line in 5,
and S,, respectively. These images exist and form con-
nected curves ¢;(A)eS;, ¢t =1, 2, using the fact that

1) One-to-one mapping continuous and with continuous inverse.
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geS (w,, ¢) nS(wy, ¢) in B, and applying the theorem that
the continuous image of a connected set is connected, which
holds in our spaces. We also have ¢;(0) = u,, 1t =1, 2,
o, (1) =u, ¢@,(1) =u. In the intersection &3 NS5, the
curves C; coincide because of the uniqueness of u (w), u (w)
in §;, §, respectively.

We proceed with increasing A from u, along C;. Since ugS,
there is a first point u* (with a least A = 1*) on C; which does
not belong to C,eS,. However, in each neighborhood of u*
there are points of C,. Let w* = w,4 A* (w —w,), the corres-
ponding point with 7u* = w*. Then, because of the con-
tinuity of C,, there cannot be another point u on C, with
Tu = w*, ie. u*eS, and C; = C, in contradiction to our
assumption.

b) Let uybe asolution of Tu = 6, which exists by Theorem 4.
This theorem also yields a neighborhood § (u,, r,) = §, such
that the equation 7u = w has a unique solution u (w) in §, for
all w with ||w || <c—€, 0 <e <e¢ and u(w) is continuous
there. |

We choose a number R > 0 arbitrarily large and construct a
continuous mapping 7,7t with 7,71 T = [ defined for all w with
|w || £ R and with range in a certain domain of B;. This can
be done as follows:

For ||w || < ¢—e the equation Tu = w has a unique and
continuous solution, u (w), if u is prescribed to lie in S,. The
(inverse-) images u for these w form a connected closed set in B, .
Let Tu = w be uniquely solvable for all w in the disk ||w || £ R,
by the continuous function u = u (w) and let the set
Dy ={u=u(w): ||[w| £ R} be a connected, closed set
containing the point u,.

Because of the continuity of 7 the restriction of 7 to Dr,)
is a one-to-one mapping of D, onto S (0, R,) = B, which is
continuous in both directions, i.e. a homeomorphism. In
particular, the intersection S (w, ¢) n §(6, R;) has its pre-
image in the corresponding intersection S (i, r) n D, for
each weS (0, R,) with Tu = w.
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Now we consider the sphere ||w || < R, —{—%z R,. Each

w in the shell R, < ||w || £ R, lies in some sphere ||w—w || < ¢
with ||w || £ R;. We assign to these w the u = u (w) with
Tu = w which lies in the corresponding neighborhood S (u, 7)
with Tu = w. This defines u (w) uniquely. This follows
from a) since if w; and w, are two points in S (6, R;) with
|lw—w; || <e¢ i =1, 2, then w, w; and w, lie also in the sphere
S (w*, ¢) with w* = l (wi+w,) and ||w* || < R;. Therefore, it
follows from a) that our assumptions stated for ||[w || £ R, are

true also for |[w || < R, + % .

Thus, we get a homeomorphism between a certain domain
D, = B, and B,. Contrary to the case of a linear operator
there may be more than one such domain. If there is another
solution u*¢D, of Tu = w* for any w*eB, then by the same
construction, with w* as new center, we obtain another
domain D, * and the restriction of 7' to D, * is a homeomorphism
on D * onto B,.

We prove that D, and D, * are disjoint. Let ueD, n D*.
Then we connect u with u* by a curve C* lying in D, *. This
curve has an image 7C* in B, , which 1s also a curve because of
the continuity of 7. 7C* has an inverse image C, = T, ' TC*
in D, given by the homeomorphism D, onto B,, which is also
a curve. C, and C* coincide in D, n D *. Let u’ be the
first point of C* from u lying on the boundary of D,. This
exists since u*¢D,. Then it follows from the continuity of C,
that u'eC, < D, , in contradiction to the Openess of D,. There-
fore, D, and D, * are disjoint.

Let T be defined on the whole space B;. If there is only
one domain D, then the assertion is true. Let there be at least
two such domains. Then by a similar consideration connecting
two points, ueD, and u*eD*, with the same image by a curve
one finds that 7' cannot be defined on the boundary of such
a domain D,. This contradicts the assumption and completes
the proof.

Corollary. If we merely require the assumptions of
Theorem 6.1 to be satisfied on a subdomain D’ < D then all




e
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assertions remain true except the last one that 7' is a homeo-
morphism of B; onto B,. If there exist two subdomains D,
and D, * of D' then the assumptions of Theorem 6.1 cannot hold
on a whole path P in By connecting D, and D, *: Either T 1s not
defined everywhere on P as a continuous operator or there does
not exist an operator K with bounded inverse satisfying «),
p) and y) of Theorem 4.1.

A similar theorem can be stated using the assumpuons of
Theorem 4.1 a as a basis.

7. DIFFERENTIABLE OPERATORS, IMPLICIT FUNCTION THEOREMS.

If the operator 7' 1s assumed to be differentiable in the sense
of Fréchet (section 2 ¢) then the operator T'(uo)can be taken as
operator K in the previous theorems and similar theorems can
be stated.

Turorem 7.1. a) Let T, be defined on the sphere
Sy = S (uy, ry) = B; and let

Toue = 0. (7.1)

b) Let T, have a (not necessarily bounded) derivative
Tow, = K at the point u, and let K have a bounded inverse K 1
defined on B, . |

c) Assume there are positive numbers r’ < r, and
m=m(r')<| K|t with

H To (g +u—v)—T, u+T0v” < mHu

Then an Q = (u,, r, a, b)-neighborhood of T, exists in which
the equation

Tu =0, (7.3)

is uniquely solvable and the solution u (7T) is continuous at
I' =T,. More precisely in Q we have.

|u(T)—uo | £ C| Tug| with a constant C. (7.4)

L’Enseignement mathém., t. IX, fasc. 3. 2

, ve8S(ug, ). (7.2)
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The easy proof follows immediately from Theorem 3.1 and
supplement if we observe that, by (7.1),

T, (uo+k)— Kk = Rk with Rk = o(||k|),

and, therefore, because of ) and ¢), there exist positive num-
bers r < r’ and m; < || K71 || 71 with

| K (u—v)—Tou+ Ty | = || Toluo +u—v)— Tou + Ty — R (u —v) ||
< my ”u—v ” for u, veS(ugy, 1).

Supplement 7.1 a. Conditions b) and ¢) can be replaced by
the following assumption:

b’') At the point u,, 7T, has a strong derivative 1) T;,(,,O) = K
which has a bounded inverse, i.e. there exists a linear operator K
with the property that to every m > 0 thereis a r > 0 such that

| Tov—Tou—K@—u)| <mlv—u| if u,veS(uy,r), (7.5

and K has a bounded inverse K1

It is easy to show that b’) implies b) and ¢) of Theorem 7.1
or directly «) and ) of Theorem 3.1. Assumption 5’) again
holds if we assume T, to have a derivative in a whole neighbor-
hood of u, and this derivative is continuous and has a bounded
inverse. But less is sufficient. More precisely we have the

Supplement 7.1b. Condition b’) holds if the following is
true:

b”) T, has a (not necessarily bounded) derivative T;,(u) in a
neighborhood S(u,, r) of u, with the property T;,(uo)—To'(u)
is bounded and || Toqwy — Tow || = 0 as [|u—u, || - 0 and Tog,!,
exists as a bounded operator.

The easy proof follows with K = T;)("o) from

| Tov—Tou—K@w—u)| < | Tov—Tou—Toqy (@ —u) |
| +| Towy = Towy | [ov—u]-

1) This notation is introduced by E. B. Leach [13] in connection with an inverse
function theorem.
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This supplement covers differential operators, for example,
which usually are not continuous but have a continuous inverse.
For such differential operators which have a derivative satisfying
the assumptions a) and b’) or b”) the existence of an Q-neigh-
borhood can only fail at a “ point ” (7, u) where T, does not
exist as a bounded linear operator. But the existence of a
bounded inverse T'(;)1 for each ueB;, T being defined every-
where in By, is not sufficient to insure that 7 has an inverse
nor that the equation 7'u = w is solvable for all webB, .

8. ON THE DIFFERENTIABILITY OF THE SOLUTION.

In virtue of Theorem 7.1 and supplements the equation
Tu = 0 1s equivalent to u = u (7) in an Q-neighborhood of
(T, , u,) under the above conditions or, in other words, u (7) is
a unique function of 7 defined in Q by 7u = 6. The conditions
vield also the continuity of u (7) in the sense that u (7') tends to u,
as || Tug || —» 0 or, more precisely, |[u (T)—u (Ty) || £ C || Ty, ||
for some constant C. Therefore,

gw) = o(|u—uyl|) implies gu) = o] Tue|), (8.1

for these solutions u = u (T) of Tu = 0.
In order to get the continuity it is sufficient essentially that
AT = T —T tends to zero at the single point u,. But for the
purpose of calculating a Fréchet-derivative of u (T) we have to
know what the behaviour of 7" is in a neighborhood of z, as
| Tuy ||= || 4Tuy || > 0. According to the definition of the
derivative we are looking for a linear operator L such that the

expression
Uu(To+A4T)—u(Ty) —LAT,

tends to zero faster than of order one as 47 — 0 in a certain
sense. But if we state the formula

u(T)—u(Ty) = —TouydTu+0o(|u—u ) (8.2)

)5

= +Toguy Tou+0(|u—u,|
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which follows from
Tou—Toug— Ti)(uo)(” —up) = O(” i =y H)

observing that T u, = 6 and Tu = 0, we get the difficulty that

normally u (7) and T,u don’t depend linearly on 7Tu, or,

equivalently, O ( [[u—u, ||) is not 0 ( ||4Tu ||) in general.
Therefore, we make the following natural assumption:

A. We assume that all operators 7" are differentiable at the
point u, and that T, tends to an operator Ty, for || Tu, || - 0
such that

‘(TI(uO)—T'(MO))(u-—uO) = O(H Tu, ||) for u =u(T), uy =u(Ty) (8.3)

and T, has a bounded inverse.

The normal case is Ty = Tow,) , as for example in the
usual implicit function theorems. A is more general.

Under this assumption we have the

TureoreM 8.1. Let 7' satisfy the assumptions of Theorem 7.1
and let Q be the (u,, r, @, b)-neighborhood of 7, in which the
equation (7.3) Tu = 0 is uniquely and continuously solvable.
Furthermore, we assume that all T¢Q satisfy the differentiability
condition 4. :

Then there exists a unique F-differential of the solution u (7')
of (7.3) at the “ point ” T = T, which has the form

W (T ATy = =T ATy ug (8.4)
where

Proof. By definition of the F-differential of 7,
ATyug = Tug = Tu—T,u—ue)+0(|u—up|)
= — Ty @—u))+o(|u—u|),
because Tu = 6. Hence it follows by (8.3) and (8.1) that

)>

ATOMO — _T’(uo)(u_uo)_}_O(H TUO
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or because of the existence of a bounded inverse that

), (8.5)

which implies (8.4) by definition of the F-differential.

There cannot be more than one such derivative. For let L,
and L, be two linear operators satisfying (8.5). It results
from (8.5) with 14T, u, (for fixed AT, u, and real 1) instead
of AT, u,

u(T)—u(To) + Ty AToue = O(|| ATy uo |

| (Ly—L))ATou, | = ¢ (1) with @A) —»0 as A-0,

which implies I, = L,. This completes the proof.

In the special case Tu = T*u—w, Tyu = T*u—w, and
T*u, = w, the condition A is satisfied with T(u) To(uo)
because of 7', , = To(uo) and assumption 6) of Theorem 7.1.
By writing again 7" for 7% we get the following inverse function
theorem as a corollary:

Tueorem 8.2. a) Let T be defined on the sphere
Sy = S (uy, ry) < B; and let

Tug = wy.

Furthermore, let the assumptions ) and ¢) .of Theorem 7.1 be
satisfied.

Then 7" has a local inverse 77! defined in a neighborhood
of wy and 77! has a bounded derivative at the point w,:

u(w) = T tw, u(wy) = T 1wy,
u' (wo) dw = (T, dw = (T, 4w, (8.6)

with dw = w—w, .

In these theorems it is not required that 7' and T(u) are
continuous although a continuous derivative of the inverse
function 1s asserted. Thus certain differential operators like
F(z, A u, u', ..., u™) plus certain conditions can be treated.

In the special case of an equation

Tu = Tu = T(x,u) = 0, Tyuo = T(xq, ttg) = 0,
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with z, u, Tu in Banach spaces we get the usual implicit function
theorem with

u(T) = u(T(x)) = ¢ (x), u(Ty) = ¢ (xo),

if we assume that there are F-differentials T '(u) () k, continuous
in a neighborhood of (z,, u,) and with bounded operator
T(u—oi (%), and T, (o) k. Then

Tuy = Ty ® and @' (x0)h = u'(T) Ty, (o) h
and there results the well known formula
@' (xo) = —T,(;(,l)-T,(xo)(uo)- (8.7)

In order to calculate the second F'-differential of the solu-
tion u (7') of the equation Tu = 0 at T = T, we assume that T
has a first and a second F'-derivative (with respect to u) which
are continuous?) in a neighborhood of u,. Then also u’ (7) is
continuous “ around 7,7, i.e. for fixed o = A*T

Hu’(To-i—ATO)h—u’(TO)h ” -0 as ]]ATOuO H — 0.

Furthermore, according to the case when the operator T
depends on the elements of a Banach space B3, i.e. Tu = T (z) u,
xeB; , where ATu = T (x+h) u—1T (x) u, we define 4 to be a
linear operation:

AT, +T)u = ATy u+AT,u, AATu) = AdTu.
Then
AI(T +A2 T)u == Al Tu +A1 Az Tu s

and 4; 4, T'u is linear in 4, and 4, .

With these natural assumptions the calculation of the second
order F-derivative as a bilinear operator is a straight-forward
derivation. Weuse the formula

Ay Tu(T)+ Ty’ (T) 4, T = 6, (8.8)

at the “points” T'= T, and T = T\+4, T, and take the

1) Liess would suffice here, see below.
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difference of the two expressions retaining only those terms
which are linear in 4,. For the sake of brevity we use the
following abbreviations:

ug = u(Ty), T = T§+A2 Ty, u =u(T) =u(Ty+4,T,).,
02 = O([| 4> Touo [})-

Then we have
u(T) = ug+u'(Ty) 4, Ty +0, ,
k =u' (T)A,T = u' (Ty+4, Ty) (4, Ty+4, 4, Tp)
= u' (Ty+4, T) 4y Ty +u'(Tp) 4, 4, Ty +0,,
Ay Tu(T)—A4; Toug = A, Tou+4; 4, Tou—A4, Ty u,
= Ay Towyt' (To) 4y Ty +4, 4, Tyug+0,, and
Towk = Towy k+ Towy [ (To) 4, To][u' (Ty) 41 Ty]+0,.
Hence
Twu' (T4, T = (T, +4, Tp) '(u(T0+A2T0))u/(TO +4, To) 4, (Tp +
A To) = [Tow +d2 To) wlk = Towk+4; Touk
= Tow k445 Towyu' (To) 4 To +0, .
Therefore, by (8.8)
0 = A; Tu+Tyyu (T)Ay T—4; Tyug—Tou,u' (To) 41 T
= Ay Toguyyu' (To) 4y To+4; 4, Tyug + T, [4' (T) 4y Ty
—u' (To) Ay To]+ T oy 4’ (To) 4y 45 To+ 4, T,y u' (To) 4, T,
= T;;(,,O) [u'(Tp) 4, To ] [u' (T,) 4, T0]+Oz .

If we assume as above that 7o, , has a bounded inverse we
finally get

u' (To+4, To) Ay Ty—u' (T 4, T,
+ T;)(_u;) {4, T;)(uo) u'(To)4, Ty + 4, T;)(uo) u' (Ty) 4; T,
+4, 4, Touy + TZ)(uO) u' (To) A, 4, Ty + Tg(uo) [u’ (To) 4, To ]
[u (To) 4; To]}+o(|| 4, Touo |)-
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Therefore, the second order differential of the solution u (7
of Tu = 0 is given by

u'(To) 4, To 4, Ty = —T;)(—u;) {A1 T;)(uo)ul(To)Az T,
+4, T;J(uo)ul(To)A1 To+4,4, T, U0+T8(u0) (8.9)

[“, (Ty) 4, To] [u/(To)A1 To]}‘““/(To)lh 4, Ty .
Here
u,(To)ATO = _T'(;:);ATouo "

It 1s obvious that instead of the boundedness of T'o(uo) the
weaker condition 4 with T,y = Toqy and Tuy = 4y Ty u, is
sufficient for the existence of a differential of second order given
by the formula (8.9). The considerations also show the existence
of an F'-derivative of n-th order and how to calculate it if 7'
has F'-derivatives up to the order »n which are continuous in a
neighborhood of u, with the possible exception that 77, , satisfies
condition A4 instead of the continuity condition. The uniqueness
of the second order derivative can be shown as in the case of
the first order derivative.

Example. For the special case
Tu = Tu = T(x,u) =0, Tou=Tlk,u), Tou, =0,

we now write T, (x, u), T, (x, u), T.,(x, u) etc. for T'(x),
Ty Txy respectively in accordance with the usual notation of
partial derivatives of a function of more than one variable.?)

Assuming z, u, T (x, u) to be elements of Banach spaces we
have with

u(T) = u(TM) = ¢(),
the expressions
o' (X)h = u'(T) T;h,

and
@" (X) hy by = u" (T(x)) (T hy) (T hy) +u' (T(x)) Tex hy by, (8.10)

where the differentials are supposed to be Fréchet-differentials.
Furthermore, we have

4; Ty = T(xo +h)— T(xo) = Ty (x0) by +0(hy), i =1,2,

1) The previous notation, however, seems to be more usual in functional analysis

|
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A, 4, Ty = 4,4, Ty
= T(xq+hy+h))—T(xq+hy)—T(xg+hy)—T(Xo)
= T, (xo +hy) hy — Ty (x0) hy + 0O (h)
= Tyxhy hy +0(hy) +0(hy),

and

AiTIO(uO) = T,(xo +h;,ug) — T, (xo, o) = Ty hy+0(hy), i-=1,2.

Hence by (8.9) and (8.10), neglecting the terms 0O (&), it
results

@" (xo) hy hy = _(Tu)—l{Txu (hy [(P, (Xo) hz] +h, [QDI (Xo) h1])
+ Ty hy hy + T, [QD/ (Xo) h1] [QDl (Xo) hz]}

where the derivatives of T are taken at the point (x,, u,)
[e.g. T, = T, (x,, u,)]and, for example, T',, hk means that the
bilinear operator 7', = T, (z,, u,) applies to the elements A
and k. Here ¢’ (z,) k can be expressed by — 7, ' T', haccording
to (8.7). '

9. A GLOBAL EXISTENCE THEOREM USING THE DIFFERENTIABILITY
OF THE OPERATOR

In this chapter a method for the proof of the existence of a
solution of a non-linear equation

Tu = 0, (9.1)

is introduced which may be useful in cases where 7 has a
derivative but cannot be written in the form 7-V with completely
continuous operator V or in which the complete continuity
of V 1s difficult to show.

THEorEM 9.1. Assume 7' is a closed!) operator defined on
an (open) domain D < B; and there has a derivative Téu) such
that T'(u)—T'(v) (u, veD) is bounded and continuous?2) with
respect to u. The range of T lies in B, . '

1) See, for example, E. Hille and R. S. Phillips [4], p. 40, or N.I. Achieser and I. M.
Glasmann [14], p. 82. :

2) We don’t require that T’(u)k is continuous with respect to k.
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Let T, be any operator on D, o D into B, with the proper-
ties:
a. Toug = 0 for some ugeD. (9.2)

/

b. T, has a derivative Ti)(u) in D satisfying the same conditions
as T,
(u)

c. The operators
T, =1-A)T,+AT, 0<i<l1,
are closed.
Denote
U={uTu=0,0=<1<1}.

Then either (9.1) has a solution or?l) the sets

| k|
| T3y K |

S ={ss = , keBy, ueU, 0 <1 <1}, (9.3)

and
V={vv=|(T-T))u

, uelU}, (9.4)

are not both bounded.

Proof. Let A be the set of all 1in 0 £ 4 < 1 for which the
equation 7T, u = 6 has a solution. Then A # O because 0.
Let S be bounded:

1
, — > 0.
Cy

. , 1
s=Coor [T wk| 25|k
1

Therefore 2), the operator T',l(u) has a bounded inverse T,l(_uﬁ
and |
” T s H =Gy : (9.5)

Hence the assumptions of Theorem 7.1, supplement 7.1 5,
are satisfied. Therefore, 1t follows that the set A is open with
respect to [0, 1]. .

Moreover, Theorem 8.1 says that each “ point ” (T';, u(T,)),
uelU, has an Q-neighborhood in which u = u (7) is unique,
continuous and differentiable if assumption A of Chapter & is
satisfied. This is obviously true if we restrict ourselves to

1) The statements shall not exclude each other, i.e. at least one of them is true.
2) See, for example, E. Hille and R. S. Phillips [4], p. 42, Theorem 2.11.6.
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T, e Q. Then the operator T, in (8.3) becomes T,y. From
this it follows that we can construct a unique and continuously
differentiable function ¢ (A) = u (7,) e D with T, ¢ (1) = 0
defined on some interval 0 £ A < 71if we apply the Theorems 7.1
and 8.1 repeatedly. Let [0, 4] be the largest interval for
which ¢ (1) can be defined by this construction under the
assumption that (9.1) is not solvable, i.e. 1¢ 4. Obviously
0 <1 <1 and1¢A.
Then by (8.7) we have

o' () = — Tl/l(—(pl(l)) T,(/l‘)((p(/l)) = - T’}L(_(pl(/l))(T— Ty) u (T)) (9.6)

for 0 < 4 < 4. And ¢’ (1) is a bounded linear operator on Rl
into B, .

Now let A, < 4, ¢ = 1, 2, ..., be a sequence converging to
A and u, = u(T,) = ¢ () be the solutions of 7, u = 0 as
just obtained. Then by the mean value theorem of the diffe-
rential calculus we have, for 1, > 4,,

le—u s s [0 D] 1A-Al

vE4 i

A

If we assume that the sets S and V in (9.3), (9.4), respectively,
are bounded with bounds C; and C, then by (9.5) and (9.6)

” U, —u, ” =C Gl A, — 4], w,v =1,2, ...

Hence { u, } is a Cauchy sequence and by the completeness
of B, there exists a limit element u € B, :

~

u = limu,.

Because u, € D and T, u,=0,¢v=1,2, .., we have
| Tru, | = (T3 =T )u, | = |(A=A)(T - To)u, |

é lz—lvl ” (T_TO)uv “ s
By (9.4) and 4, » 1, ¢ - o, we have

| T5u,|| >0 for u,eD, u, - u.
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Since. T 1s closed, then
ueD and Tyu = 0.

Therefore, A also is closed with respect to [0, 1]. Thus
A =[0. 1] which completes the proof.

If we choose, in particular, 7,u = Tu—Tu, for some
fixed uy,e D, we get

T)ou =Tu—(1—-A)Tu, and T-T, = Tu, = const. (9.7)

Thus, all assumptions on T, and also the boundedness of the
set V are satisfied automatically, and we have the

Corollary 9.1. Assume T is a closed operator defined on an
(open) domain D < B; and with range in B,. Let 7 have a
derivative T'(u) there such that T'(u) — T'(v) 1s a bounded operator
depending continuously on u, (u, ¢ € D).

Then either (9.1) has a solution or the set S in (9.3) is not
bounded.

The condition of the boundedness of the set S is equivalent
to the condition

inf {|Tiwk|:|k| =1, keBy, ueU, 0<1<1}
» =m>0. (9.8)

Since A = 0 1s not excluded there is no statement if T;,(u) k
is 6 for some k; for example, if 7' is constant. As (9.8) or the
boundedness of § is equivalent!) also to the existence of a
bounded inverse of T',l(u) the existence of a solution of (9.1) can
only fail if T'[(ul) fails to exist as a bounded operator for some
2€[0, 1]. The proof of Theorem 9.1 shows that we even can
restrict ourselves to examine only T'[(ul) for uw= @ (1) or
according to formula (8.6) to (77 %)) = (Taecayy) % Thus,
writing (9.1) in the form

Tu = Wl ) (9.9)

and choosing Tyu = Tu—w,, wy = Tu,, as for (9.7), we get
T,u=Tu—w, — A(w; — w,) and we have the

1) See, for example, E. Hille and R. S. Phillips [4], p. 42, Theorem 2.11.6.
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Corollary 9.2. The equation (9.9) with T satisfying the
assumptions of Theorem 9.1 has at least one solution if for at
least one u, e D, with ¢ (4) the same as in the proof of
Theorem 9.1, and

w(A) = wo+4(w, —wo), (9.10)
the operators

(Tio )™ = (T Dway, 05i<1,

exist and are bounded uniformly in 2, or equivalently, if T(,;j
exists as a bounded operator and

| (T )™ | = (T Dew ay)

remains finite with increasing A from 0 to 1.

5

Example. It is well known that the equation
Tz = tan z = w, 2z, w complex numbers,

is not solvable only for w = =+i. Theorem 9.1 immediately
shows that the equation is solvable for all w # +:i. For

1

T_l ,W = )
(T Dew 1+ w?

T
and, with w,, = 0 = tan 0 and w,, = 1 = tan 1 all points of

the complex number plane can be reached on straight lines (9.10)

from either O or 1 such that remains bounded
1+ (w(A)?

with the only exceptions w = +1.

10. COMPLETELY CONTINUOUS OPERATORS,
NEIGHBORHOOD AND INVERSE FUNCTION THEOREMS.

The assumptions of the theorems can be partially weakened
if the non-linear equation can be written in the form

u=Vu, (10.1)

with a completely continuous operator V. Complete continuity
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1s the most used and most convenient aid for stating existence
theorems. Therefore, very may existence theorems use it in
their proofs and subtle investigations have been made to show
that special operators have this property.!) Two main ways for
using the complete continuity should be emphasized: The fixed
point principle based on the Schauder-Tychonoff fixed point
theorem?) and the Leray-Schauder method?®) which is a generaliza-
tion of the theory of degree of a mapping due to Brouwer. One
of the main and nicest results which is important for the applica-
tions is the following alternative ¢) as basis for a priori estimates:

Tarorem 10.1. If V is defined on a Banach space B with
range in B and if V is completely continuous then either (10.1)
has a solution or the set U = {u:u= AVu, 0 < 1 <1} is
not bounded.

But the boundedness of the set U is, of course, only a sufficient,
condition and in many cases Theorem 10.1 1s not applicable.
Moreover, the conditions do not imply the existence of a solution
in the neighborhood of a given solution. Therefore, the following
theorems, which are analogous to some of the above theorems,
may be useful.

As the Fréchet derivative of a completely continuous
operator is also completely continuous ®) it 1s no great restriction
of generality if we assume that the linear approximation K
of I —V, which occurs in Theorems 3.1 and 4.1, has the form 7 — L
with a linear completely continuous operator L. Since a com-
pletely continuous operator has only a point spectrum 9),
(I —L)~1 exists as a bounded linear operator defined on the
whole Banach space B, if and only if L does not have the
eigenvalue 7) 1. Therefore, from Theorem 3.1 there follows

immediately the

1) See, for example, M. A. Krasmosel’skii [15].
2) See section 2f.

3) J. Leray et J. Schauder [16].
4) H. Schaefer [17] grave an elegant proof for this theorem in a more general form.

5) If T is differentiable at u and completely continuous the operators A(c):

A(0)k = _Tﬁ‘_“%w with real ¢ > 0 are also completely continuous and || A(c)k-T’(u)hH

= I klle(ll ck 1), ®(®) — 0 as & > 0. This implies complete continuity of T{,). See.

for example, A. N. Kolmogorov and S. V. Fomin [18] I, p. 114.
6) See, for example, A. N. Kolmogorov and S.V. Fomin [18] I, p. 117 and 120,
7) A is an eigenvalue of L if Lu = 4 u has a non-trivial solution.
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Neighborhood Theorem 10.2. Let the equation (10.1) have
the solution u, and let there exist a completely continuous linear
operator L, which does not have the eigenvalue 1, and a number
m < ||({—L)71 || 71 such that

|(V=Lyv—(V=L)u| £m|v—u| for u,veS(uo,r, (> 0).

Then an Q = (u,, 1y, &, b)—neighborhbod of T=1-V
exists for which the equation

Tu =0, TeQ, ueS(ugy, ry), - (10.2)

is uniquely solvable. The solution u (T) is continuous at
T =T, ie.
|u(T)~uo || >0 as | Tuy| —0.

For the special case Tu = Tu—w this theorem shows the
existence of a local inverse of 7.

Inverse Function Theorem 10.2 a. If Tu, = uy,— Vu, = w,
and if the other assumptions of Theorem 10.1 are satisfied then
T = I—V has a local inverse, i.e. there exist positive numbers r
and b such that

u="Vut+w, [[w—wo|<b, [u—ul| <r,

has a unique solution u (w). Moreover u (w) 1s continuous
at w, . _

These theorems mean, in other words, that the existence of a
local neighborhood of 7 = I—V and u, in which the equa-
tion (10.1) 1s uniquely solvable or the existence of a local
inverse 7! can only fail if the corresponding linear equation
u = Lu 1s not uniquely solvable.

The above theorems are local theorems insuring the existence
of a solution in the neighborhood of a given solution. We now
state a global inverse function theorem for the equation

u="Vut+w, (10.3)

with completely continuous V':
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Turorem 10.3 @) Let T = I—V with a completely con-
tinuous operator V be defined for all ue B, .

b) For each u, e B, let there exist a linear operator L = L,
with bounded operator (/ — L) 7%, defined in a neighborhood of u, ,
and a number m = m, < ||(/=L)7! || 7 such that

|(V=Lyu—(V-L)yv|| <m|u—v]| for u,veSuy,r),r>0.
c) Let the sets
U(g) = {uiu = Vu+w, weg},
for each straight line

g = WO+]'(WI—WO)9 Oé/lé]-a Wo WleBla

be bounded:
| U@ | =C.

Then the equation (10.3) has a solution u = u (w) for all w € B,
and each point (w, u (w)) has a (u, r, a, b)-neighborhood.

This theorem is related to Theorem 10.1 concerning the fact
that the condition ¢ represents an a priori estimate. However,
it is easy to show that the conditions ¢ and ¢ alone are not
sufficient for the existence of a solution for each we B, .

«) Condition b is satisfied if V has a derivative V'(u) for
all ueB; and (I—V'(u))‘l exists as a bounded operator. This
holds true if V{,, does not have the eigenvalue 1 since V|, is
completely continuous.

B) Condition c is satisfied if there exists an a priori estimate
for the equation (10.3) of the form

Jul =cfw

P

or if the condition

[ Tul = [d=Vyu] >0 as Ju]- e

holds. Therefore, this theorem can be regarded as a certain
“ generalization ” of Theorem 4.1 a for completely continuous V.
As a matter of fact, the proof is quite analogous.
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Proof of Theorem 10.3. a. Let u,e Byand Tuy = (I — V) u, =
= w,. Then from Theorem 3.1 with K = I—L it follows that
an open neighborhood of w,, [[w—w, | <a, exists such
that (10.3) is solvable for these w.

B. Let w be an arbitrary point of B; and let uy, w, be as
above. Then the set A of all 4, for which

Tu = A +(1 =N w,, 0=<AZT,

is solvable, is non-void and open with respect to [0, 1] according
to o.

4. We show that A1is alsoclosed. Let A, A, n =1,2, ...,
be a sequence which converges to A*. According to condition ¢
the solutions u, of u = Vu+t+w,, w, = 4, w -+ (1 —1,) w,, are
bounded. Because of the complete continuity of V there exists
a subsequence u,, such that Vu,, converges to some element s
of the Banach space B . ’

Let w* = A*w 4+ (1 —A*) w,. Then the sequence u,, con-
verges to u* = s+w* in norm. The element u* is a solution
of the equation u = Vu-+w* since

|y, —Vu,,—w,, | =0 for i=1,2,3, ..,

and because of the continuity of the norm. Hence A* € 4 and,
- therefore, 4 = [0, 1].

11. COMPLETELY CONTINUOUS OPERATORS, GLOBAL EXISTENCE
THEOREMS USING THE SCHAUDER FIXED POINT THEOREM.

The previous theorems, even the global ones, are derived,
roughly speaking, by applying neighborhood theorems and
exhausting a domain on the boundary of which the assumptions
fail to hold. Here the question suggets itself whether or not
corresponding conditions in a shell near the boundary suffice for
existence. This indeed is possible for equations

u=Vu, (11.1)

I’Enseignement mathém., t. IX, fasc. 3. 3
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with a completely continuous operator V. The proof of this
statement uses Schauder’s fixed point theorem.

TueoreEM 11.1. Let V be a completely continuous operator
mapping a domain D < B, into B; and having the following
property. "

There exist a point u, € D and non-negative numbers R and C
such that |

|Vu—u, | <C for ueS(u,, R)=D. (11.2)

If R < C let the additional condition be satisfied:
There is a number [ < 1 such that

| Vu=Vo| 2l|u—v], (11.3)
holds for all u, ¢ in the shell

C—IR

< — <
RS u—u| s

=R1 and g1=§(uo,R1)CD.

(11.4)

Then the equation (11.1) has at least one solution in
|lu—u, || £ R* where R* = R in the case C £ R and R* = R,
for C > R.

Proof. «) If C < R then VS = S and the fixed point
theorem by Schauder [see 2 d] yields the existence of at least
one solution ueS.

B) Now let C > R. Then obviously R < C £ R;. Hence
S<S8,. We prove VS, = S;: Let ueS;; then either ueS
or ue S, — S. In the first case (11.2) implies VS = S;. In the
second case u lies in the shell (11.4). We set

R

v = tug+(1—1Hu with t = 1——A———,——.
Iy

It follows that ||¢—u, ||= R. Therefore, by (11.2) and (11.3)
we have

”VW4MH§”Vu—Vﬂ[+“VW%%H§thwH+C.(uj)
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Furthermore
Ju—v] = [t@-w] = [u—u|-R.

Hence by (11.4) and (11.5)

C—IR
| Vu—uo | £1|u—u| —IR+C = —7 = Re

i.e.,again VueS;. Thefixed point theorem completes the proof.

In Theorem 11.1 the estimate |[u—u, || < R* cannot be
improved, and the number R; must not be replaced by a smaller
one. This can be easily shown.

The application of Theorem 11.1 is easiest if the completely
continuous operator V is so constituted that (11.3) with [ < 1
holds for all u, ¢ outside a certain sphere § (u,, R).

Theorem 11.1 can be applied to operators of the form

Vu =u—(I—-K)*U-W)u =(I—-K)"*(W-K)u.

First of all, equation (11.6) shows that along with W and K
the operator V is also completely continuous if (/ — K) ™1 exists,
i.e., 1f K has not the eigenvalue 1. From this and Theorem 11.1
there follows easily

Tueorem 11.2. The equation
u = Wu,

with a completely continuous operator W has at least one
solution if the conditions of Theorem 11.1 for the operator V
in (11.6) are satisfied with a completely continuous operator K
which has not the eigenvalue 1. »

For this the following conditions @) or b) are sufficient:

a) Let ||[(/—K) 1| = k. There exist non-negative num-
bers ¢, m < k™1, and R such that

|(W=K)u—(I—-Ku, | ¢ for [u—uy| <R,
and either ck < R or, if ¢k > R, then

| W= Kyo—(W=K)u | < m |[o—u

P
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for all u, ¢ in the shell

k(c—mR).

R < — N
< Jumuo | £

b) Let |[(I-K)™1| =k. There exist numbers R and
m < k™1 such that

|(W=K)yo—(W—-Kyu| <m|u—v|if[u| >R and ||v] >R.

12. NON-LINEAR EQUATIONS CONTAINING A LINEAR COMPLETELY
CONTINUOUS SYMMETRIC OPERATOR.

As we have seen in some previous theorems, under certain
general conditions, the existence of a solution of an appro-
ximating equation or the existence of a solution at all, can fail
only if there is no approximating linear operator with bounded
inverse or if there is not everywhere such an operator. In the
cases when the operators considered are differentiable this means
that the derived linear operator does not have a bounded inverse
or the derived linear equation fails to have a unique and bounded
solution.!) It is, therefore, important to have conditions for the
existence of a bounded inverse of a corresponding linear operator.

In the case of an operator I —A, where A is completely
continuous, this i1s equivalent?) to the fact that u = Au has
only the solution u = 6, i.e. 1 is not an eigenvalue of A. Here
we deal only with such cases and assume our non-linear equation

to have the form .
u = LVu, (12.1)

where L is a completely continuous operator and V is an (in
general non-linear) operator. This is, indeed, the most usual
form of non-linear equations with a completely continuous
operator.

Moreover, we now consider the equation (12.1) in a Hilbert
space, that is, the operator LV has its domain and range in a

1) This is, of course, typical for the “regular case ” of non-linear equations.
2) See footnote 2 on page 47.
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Hilbert space H. Finally, throughout this section, let L be
a symmetric operator.

Under these general assumptlons we will give oondltlons
that the derived equation

? = LV(,u)U, (12'2)

have only the trivial solution, u = 0.

To this end we first note some well known statements!) on the
eigenvalues of a completely continuous symmetric operator:
Let A be such an operator defined on a Hilbert space A and
with range in H, A being different from the zero-operator.

Then there exists a finite or infinite orthonormal set 2) of
eigenvectors e; corresponding to real eigenvalues A; such that
every u € H can be written uniquely in the form

= Y a;e;+u’ where Au’ = 0. (12.3)

Let us arrange the sequence of eigenvalues as follows:
Ay S A, S0 S 4, S, (12.4)

where the 1, (4-,), n = 1, are positive (negative). One of the
two sequences may be empty.
Together with Au = Au we consider the equation

u =xAu, u # 0. (12.5)
Then, we have the corresponding sequence 3)

EK L, Sk <0<k 2K, £ (12.6)

>

. 1
of “characteristic values ” k; = — instead of (12.4).

i

1) See, for example, F. Riesz and B. Sz.-Nagy [19], chapter VI, and A. N. Kolmo-
gorov and S.V. Fomin [18], II, section 27.

2) Aei = Ajei, (ei, ek) = 5;19

3) The terminology differs in the literature. We define the « eigenvalues ” according
to the previous sections by Au = Au, u # 0.
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By means of the maximum-minimum principle!) we have the
independent representations
Ay = sup {(Au,u): |jul =1} and
" (12.7)
Ay = infsup { (Au,u): ||ul| =1, (u,v) =0,i=1,...,n—1}

if 4, and 1, , respectively, exist, that is, if the expressions on
the right hand side are positive. For A_; and A_, we have
analogous representations, but the supremum and the infinum
must be interchanged.

We now introduce the set P of operators, p € P, which have
the following properties:

a) peP, ueH implies pu exists and pue .

b) All pe P are linear, continuous, and symmetric,

c) (pu, u) is real for all ueH.
- If o is a real number, we write p < o, p < a, p > o, p =
when the corresponding product (pu, u)is <, <, >, = a(u, u),
respectively, for all ue H, u # 0.

d) ltpeP,p 2 0,then/peP, (/p)?=p,and /p <0(=0)
when p > 0 (= 0).

Then, obviously, all real numbers o belong to P. It is
easy to show that with 4 and p = 0 also the operator
G = \/]; A\/E 18 linear, completely continuous, and symmetric.
Furthermore, if p > 0, then \/Eu = 0 implies u = 60 and the
eigenvalues of Ap and those of \/p A \/p coincide. In
fact, App = Ao and ¢ # 0 1mply \/pA \/pr = A¥Y with

Y = \/};qo # 0. The operator \/7 A \/P is self-adjoint if A4 is
self-adjoint and p = 0, pe P. Therefore, the eigenvalues of Ap

are real. On the other hand, if p > 0 and \/E A \/}5'_{’ = 1Y
then \/E"l exists because \/;u = 0 implies u = 0 and with
@ == \/];“1 ¥ we have \/E Apep = 4 \/Ego which implies
App = Ap. We have the development

= > ¢ ¥;+u’ where \/BA\/ELL' =0,

1) Courant-Hilbert [20], chapter III, § 3.

g o e ]
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and { ¥;} is a set of orthonormal eigenvectors of the self-
adjoint operator C = \/p A \/p. .

After these considerations we can prove the following
theorem.?)

TuroreMm 12.1. Let A be a linear completely continuous
symmetric operator on a Hilbert space / into H, let x; be its
characteristic values (according to (12.5), (12.6)), and let pe P.

Then the equation

u = Apu, (12.8)

has only the solution u = 0, i.e., p = 1 is not an eigenvalue
of Ap, if one of the following conditions holds:

a) x, and K, (k_, and K_(,41)), » = 1 exist and
Kn < p < Kn+1 (K—n > p > K—(n+1)) .

b) k,(x_,) exists as the largest positive (smallest negative)
characteristic value and p > x,(p <x_,).

c) There is no positive (negative) characteristic value and
pz0(p=<0).

d) Ky (k_q) exists and 0 < p <wx;(k_; <p £0).

) |1l <min ( |x]).

Proof. a;) Let the n-th positive characteristic value x, of A
exist and let p > x, > 0. We show that then the n-th positive

eigenvalue pu, of C = \/E A \/p 1s greater than 1.

Let {e;} and { ¥;} be the sequences of orthogonal and
normed eigenvectors of the operators A and C, respectively,
corresponding to the eigenvalues { 4;} and { p; } , respectively.

1) In the special case of the boundary value problem (g(x)y")’ + p(x)y = 0, y(xa) = 0,
y(x1) = 0, most of the results follow easily from the Sturm comparison theorem.
See, for example, E.A Coddington and N. Levinson [21], chapter 8. In some .cases
of special equations in which stronger conditions such as kn < @p = p £ ap 44 < Kn 41
instead of a) hold, the results can be obtained from other well known comparison theo-
rems for eigenvalues, appearing, for instance, in L. Collatz [10], §9, and F. Riesz and
B. Sz.-Nagy [19], section 95.
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The system

Yle,* =1, Z‘cv(ev,(pi)=0, i=1,..,n—1,
v=1
is always solvable. For such a u, by (12.4), we have

(Au , u) = Z/Ivlcvl2 = Ay .
v=1
Hence

Iy S sup {(Au,u):u = Zlcvev,“uﬂ =1,@w,qe) =0,
i=1,..,n—1} (12.9)

< {(A\/;‘U, \/E‘Z)) .

< sup - —
(\/pv, </ pv)

since (\/];V, @;) = (v, ¥), 1 =1, ..., n—1, and the first supre-

mum on the right hand side can only become larger if we drop
the condition

(w,¥) =0, i=1, ...,n—-l}

v#0

M:

u =

v

c,¢e

vy

I

1

1
The assumption p > k, = T > 0 yields

n

(AV/J;v, \/g_w) _(Cv,v) - (Cv, v)
(\/I;‘U , \/1_7'0) (pv, v) " (v, v)

(12.10)

Since the bounded set { ¢, } satisfying (12.9) is compact the
supremum in (12.9) is actually assumed. Therefore, from (12.9)
and (12.10) we get

Ay < Aysup{(Cv,v):||v| =1, (v, ¥) =0, i=1,...,n—1}
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a,) Ifx,, existsand 0 < p < k,,, We obtain u,,, < 1bya
similar argument where the roles of A and C as well as the roles
of 4 and u are interchanged.

Thus the equation (12.8) does not have the eigenvalue 1,
that is, the theorem holds true for the case a) with posi-
tive p e P. |

b) If x, ., does not exist but x, does, i.e., the right hand side
of (12.7) is positive for n but not positive for n-1, then,

replacing u by \/Em with x, < p, we obtain that
infsup{(\/;)A\/]_)u,u): |u| =1, (@,v)=0, i=1,...,n}

also cannot be positive, i.e., u,4+; > 0 does not exist either.
From a,) it follows that in this case u, > 1 is the smallest
positive eigenvalue, i.e. the theorem holds for the case b) with
positive k, and p.

c) If there is no positive eigenvalue then (4u, u) <0 1
all u, which obviously implies (\/EA \/Eu, u) = (4 \/Eu,
\/Ey_u) < 0 for p 2 0. Thus 1 is not an eigenvalue.

d) In this case the proof is similar to a,) and a,) if p = 0:
the largest eigenvalue yy becomes less than one here.

The cases of negative eigenvalues and negative p’s can be
easily reduced to the positive cases treated above. Let 1,
and &, be the eigenvalues and characteristic values, respectively,

of the operator —A. So we have A_, = —1, and the
same with x,. From x_,., <p <x_, it follows that
Ket1 > —p > k,. Because Ap = —A (—p) we can, therefore

apply the above results to —A4 and —p instead of A and p,
respectively.

e) We havel)

: . 1 1 _
min (| x; |) = mm<| i |> = ) = ”A |-t

Therefore, it follows under the condition e) that
| 4p =]4]-|p]<1.

Hence, 1 is not an eigenvalue.

1) See, for example, N. I. Achieser and I. M. Glasmann [14], p. 47.
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This completes the proof.

Theorem 12.1 can be applied to all previous theorems which
use the fact that the derived linear equation has only the zero-
solution to establish the solvability of the given non-linear
equation, provided that this equation can be written in the form

u = LVu, (12.11)

with a linear, completely continuous, and symmetric operator L.
In these cases we are able to give explicit conditions on the
derivative V{,, of V as essential conditions for the existence of
a solution of (12.11). This derivative plays the part of the
operator pe P in Theorem 12.1. We remember that, in this
sense, V'(u) > k 1s equivalent to (V’(u) 0, v) > K (v, ¢) for all
veH, v # 0, and the same with =, <, and <. We now give
a few examples, first a neighborhood theorem:

TreorEM 12.2. Let the product operator LV with a linear
completely continuous symmetric operator L and a non-linear
continuously differentiable operator V be defined on a Hilbert
space H and have its range in H. Let V,, , ueH, satisfy one
of the conditions a) through e) of Theorem 12.1 with A = L
and Vi, = peP.

Then for each point (u,, w, = u, — LVu,) there exists an
Q = (u,, r, a, b)-neighborhood in which the equation

u=Tu+w, (W+I-TeQ),

is uniquely and continuously solvable. In particular, the
equation
u=LVu+w, (12.12)

has a unique and continuous solution u (w) for w and u in certain
spheres about w,, u,, respectively, i.e., /—LV has a local
inverse there.

The proof follows from Theorem 7.1 and supplements and
the fact that a completely continuous operator has only a point
spectrum. Therefore, the operator ([—LV'(“))"l 1s bounded under
the assumptions of Theorem 12.2.
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The conditions of this theorem are not sufficient for the
existence of a solution of (12.12) for each w € H or, in particular,
for w — 0. But as in previous sections, simple additional
assumptions assure the existence of a solution of (12.12) for an
arbitrary given w e H.

TuroreM 12.3. Let L and V satisfy the conditions of
Theorem 12.2 and let one of the following assumptions be
fulfilled :

a) For some u, € H and wy, = u, — LVu, let the set
U={u:u=LVu+wo+i(w—wp), 0 =iA<1} (12.13)

be bounded.
b) For some u,e H and w, = u, — LVu, let the set

S={s:s=|k| |U-LVuk|™", keH, ueU}, (12.14)

where U is defined in (12.13), be bounded.
Then the equation (12.12) has a solution.
For the proof we set

T,u =I—-LV)u+wo+i(w—wy), 0=41=51,

and denote by A the set of all 2in [0, 1] for which T, u = 0 1is
solvable. A is non-empty because A = 0 belongs to A.
Theorem 12.2 proves A is open with respect to [0, 1]. A4 1is also
closed. This can be shown in the case @) in the same way as
in the proof of Theorem 10.3 under 1) where the operator V
is to be replaced by LV, and in the case b) the proof

follows from Theorem 9.4 with Tu = (/—-LV) u+w and

Tou= {[I—-LV)u+w,.

As already remarked in section 9 before corollary 9.2 the
boundedness of §, (12.14), is equivalent to the existence of
the operators (/—LV,)"* as uniformly bounded operators
for ueU. The conditions of Theorem 12.1 for p = V,, are
not strong enough to insure this uniform boundedness with the
one exception of condition c.
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Therefore, we are now going to assume the conditions a)
through e) in the stronger form that p lies in a closed interval
for which these conditions hold:

a) x, and K,y (k_, and x_(,4q), n = 1, exist and

Ky <Oy SPS Uyiq <Kypp(Ky> 0, 2Zp= °‘~(n+1) >K_ (n+1)

b) «, (x_,) exists as the largest positive (smallest negative)
characteristic value and p = o, > x,(p £ a_, <K_,)

¢) There is no positive (negative) characteristic value and
pz0(p=0).

d) k, (k_y)existsand 0 < p £ oy <K (ky <y < p £0).

) p =« <min ().

Here «; are the characteristic values of A according to (12.6)
and «, «; are real constants.
Then, instead of Theorem 12.1, we have

Tueorem 12.4. Let A be a linear completely continuous
symmetric operator on a Hilbert space /7 into H, let k; be its
characteristic values (according to (12.5), (12.6)), and let pe P.
Finally, let one of the above conditions @) through €) be satisfied.

Then the inequality '

=1 =m>0, (12.14)

holds for the eigenvalues u; of Ap where m is a constant which
does not depend on p but only on the interval [«;, o;]in which p
is assumed to lie according to the conditions @) ... €).

The proof is quite similar to the proof?) of Theorem 12.1 and
may be left to the reader.

From Theorem 12.4 it follows that, under its assumptions,
the norm of /—Ap has a positive lower bound. To prove this

fact we assume first that p > 0, pe P. Then also \/;> 0,
by definition of P, that is, \/pu = 0 implies u = 0, or \/p~
exists.?) Since \/p"l has a bounded inverse 3), namely v\/p,

| /P ul| zk|u|, k>0, forall ueH. (12.15)

1) For instance, in the first case a) we get the inequality #n4+1 S On41 <1 < 0n S in
where ri, on 11, on are the eigenvalues of the operators Ap, Aan 41, Aan, respectively.

2) J/p —1 is not necessarily in P.
3) BE. Hille and R. S. Phillips [4], D. 42 Theorem 2.11.6.
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Let { ¥,} be the set of orthonormal eigenvectors of the

operator C = \/E?A \/; corresponding to the eigenvalues p; 0f C
which are also the eigenvalues of the operator Ap, as al\r‘eady
mentioned above. Let ube an arbitrary element in H, ||u [[= 1,

and \/Eu = Y ¢; ¥; where the sum includes the term ¢y ¥, in

which C¥P, = 0 and || ¥, || = 1.
Then (12.14) and (12.15) yield

| =apyu | = | /P T=0) Jpu |* 2 12| U =C) /pu|?
=k"'ZIcilzll—,uilzgkzmin(mz, 1) = m*>0.

Hence
|[I—4p| zm>0.

If p =0,i.e. (pu, u) = 0 for u # 0, then each ueH is either

in the null space, IV, of \/E, 1.e. \/ﬁu = 0, or it is not. We
then consider classes of elements by defining u, , u, to belong to
the same class @, , briefly u, = u,, if and only if u; — u, € V.

Then it follows immediately from u, = u, that \/Eul = \/Euz ,
and vice-versa. Since also (/ —Ap) N = NN we may regard the

operator \/; as an operator on the Hilbert space spanned by the
congruence classes modulo /N, represented by one arbitrary
element, i, of each class. In other words we identify the ele-

ments of each class. Thus we have \/Ea = 0 implies ue N,

1.e. that \/;_1 exists, and we can repeat our above argument in
the case i1, # N, i.e. u ¢ IV.
If weN we simply have

|@=4pyu | = |ul.
The cases p = 0 can be treated, as above, by considering the

operator A (—p) = —A(—-p).
Hence, under the assumptions of Theorem 12.4 we have

|1-4p| =c>o0. (12.16)
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These considerations together with Theorem 12.3, setting
= A and pv = p (u) v = V, ¢, yield the ‘

Tueorem 12.5. Let the product operator LV with a linear
completely continuous symmetric operator L and a continuously
differentiable operator V be defined on a Hilbert space H and
have its range in H.

Let x; be the characteristic values of L = A according to
(12.5) and (12.6), and let Vi, ¢ = pu, peP, satisfy one of the
conditions a) through &) (as defined for Theorem 12.4) for
each uelfl. '

Then the equation

u=LVu+w,

has a solution for each wef.

This theorem generalizes, for example, some existence
theorems for non-linear integral equations of the Hammerstein
type, that 1s, equations of the form?)

u (x) +L£K(x,y)f(y,u(y)) dy = g(x), (12.17)

where z, y are n-dimensional vectors and £ is a region in R";
viz., no definiteness of the kernel K is required and the deri-
vative f, (z, u) need not be bounded by the least characteristic
value k.

Example. The problem —y” = f(z,y),y (a) = A4,y (b) = B,
(b > a), is solvable if, for instance, the function f is continuous
and continuously differentiable with respect to y.in the strip
a <z £0b, |y| < oo, and if f, (z, y) satisfies there one of the
conditions: 2)

LG Sa<

2

(b—a)*

, or f, < 0

or
n?n? (n+12n*.
(b_a)z < Uy éfy(x> y) § Lnt1 < (b_a)z

1) A. Hammerstein [22], see also F. G. Tricomi [23], section 4.6.

2) The known theorems usually cover only the first two cases of this special example.
See F. Lettenmever [24] and H. Epheser [25]. These papers are more general in
another direction.
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The proof follows immediately from Theorem 12.5 by writing

the problem in the form (12.17). In this case the operator 'L
happens to be definite. But this is not required or used in
the proof. ~
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